Scalable Construction and Querying of Massive Knowledge Bases

Part II: Schema-agnostic Knowledge Base Querying

Yu Su

Department of Computer Science University of California, Santa Barbara

Growing Gap between Human and Data

What disease does the patient have?

- (EMR) Similar patients?
- (Literature) New findings?
- (Gene sequence) Suspicious mutations?

Ad-hoc information needs for on-demand decision making

Massive, heterogeneous data

86.9% adoption (NEHRS 2015)

27M+ papers, >1M new/year (PubMed)

\$1000 gene sequencing

24x7 monitoring

How can AI Bridge the Gap?

Structured Query: RDF + SPARQL

Triples in an RDF

	Subject	Predicate	Object		
	Barack_Obama	parentOf	Malia_Obama		
	Barack_Obama	parentOf	Natasha_Obama		
	Barack_Obama	spouse	Michelle_Obama		
	Barack_Obama_Sr.	parentOf	Barack_Obama		
		SPAR	QL query		
Bara	ck_Obama_Sr.	9	SELECT ?x WHERE		
	Ma Parentof parentof	lia_Obama	T Barack_Obama_Sr. parentOf ? y parentOf ?x.		
	parentof N	latasha_Obama L	}		
Bara	ack Obama Spour	Answ	swer		
	RDF graph		<malia_obama> <natasha_obama></natasha_obama></malia_obama>		
-					

Why Structured Query Falls Short?

Knowledge Base	# Entities	# Triples	# Classes	# Relations
Freebase	45M	3B	53K	35K
DBpedia	6.6M	13B	760	2.8K
Google Knowledge Graph*	570M	18B	1.5K	35K
YAGO	10M	120M	350K	100
Knowledge Vault	45M	1.6B	1.1K	4.5K

* as of 2014

- It's more than large: High heterogeneity of KBs
- If it's hard to write SQL on simple relational tables, it's only harder to write SPARQL on large knowledge bases
 - Even harder on automatically constructed KBs with a loosely-defined schema

Not Everyone Can Program...

"find all patients diagnosed with eye tumor"

WITH Traversed (cls,syn) AS ((SELECT R.cls, R.syn FROM XMLTABLE ('Document("Thesaurus.xml") /terminology/conceptDef/properties [property/name/text()="Synonym" and property/value/text()="Eye Tumor"] /property[name/text()="Synonym"]/value' COLUMNS cls CHAR(64) **PATH** './parent::*/parent::* /parent::*/name', tgt CHAR(64) **PATH**'.') AS R) UNION ALL (SELECT CH.cls, CH.syn FROM Traversed PR. XMLTABLE ('Document("Thesaurus.xml") /terminology/conceptDef/definingConcepts/ concept[./text()=\$parent]/parent::*/parent::*/ properties/property[name/text()="Synonym"]/value' PASSING PR.cls AS "parent" COLUMNS cls CHAR(64) PATH './parent::*/ parent::*/parent::*/name', syn CHAR(64) PATH'.') AS CH)) SELECT DISTINCT V.* FROM Visit V WHERE V. diagnosis IN (SELECT DISTINCT syn FROM Traversed)

"Semantic queries by example", Lim et al., EDBT (2014)

NCI thesaurus

In Pursue of Efficiency

In Pursue of Efficiency

Outline

- Schema-agnostic Graph Query
- Natural Language Interface (a.k.a., Semantic Parsing)
 - A little history
 - Cold-start with crowdsourcing
 - Cold-start with neural transfer learning

Schemaless and Structureless Graph Querying

Shengqi Yang, Yinghui Wu, Huan Sun and Xifeng Yan UC Santa Barbara VLDB'14

Graph Query

Knowledge Base	Query
"University of Washington"	"UW"
"neoplasm"	"tumor"
"Doctor"	"Dr."
"Barack Obama"	"Obama"
"Jeffrey Jacob Abrams"	"J. J. Abrams"
"teacher"	"educator"
"1980"	"~30"
"3 mi"	"4.8 km"
"Hinton" - "DNNresearch" - "Google"	"Hinton" - "Google"

Schemaless Graph Querying (SLQ)

✓ Acronym transformation: 'UT' \rightarrow 'University of Toronto' ✓ Abbreviation transformation: 'Prof.' \rightarrow 'Professor'

✓ Numeric transformation: $^{-70'}$ → $^{+1947'}$

 \checkmark Structural transformation: an edge \rightarrow a path

Transformations for KB-Query Mismatch

Transformation	Category	Example
First/Last token	String	"Barack Obama" > "Obama"
Abbreviation	String	"Jeffrey Jacob Abrams" > "J. J. Abrams"
Prefix	String	"Doctor" > "Dr"
Acronym	String	"International Business Machines" > "IBM"
Synonym	Semantic	"tumor" > "neoplasm"
Ontology	Semantic	"teacher" > "educator"
Range	Numeric	"∼30" >"1980"
Unit Conversion	Numeric	"3 mi" > "4.8 km"
Distance	Topology	"Pine" - "M:I" > "Pine" - "J.J. Abrams" - "M:I"

Candidate Match Ranking

Features

- Node matching features: $F_V(v, \varphi(v)) = \sum \alpha_i f_i(v, \varphi(v))$
- Edge matching features: $F_E(e, \varphi(e)) = \sum_{i=1}^{n} \beta_j g_i(e, \varphi(e))$
- Overall Matching Score

Conditional Random Field

15

$$P(\varphi(Q) | Q) \propto \exp(\sum_{v \in V_O} F_v(v, \varphi(v)) + \sum_{e \in E_O} F_e(e, \varphi(e)))$$

Exploiting Relevance Feedback in Knowledge Graph Search

Yu Su, Shengqi Yang, Huan Sun, Mudhakar Srivatsa, Sue Kase, Michelle Vanni, and Xifeng Yan UC Santa Barbara, IBM Research, Army Research Lab KDD'15

Query-specific Ranking via Relevance Feedback

Generic ranking: sub-optimal for specific queries

- By "Washington", user A means *Washington D.C.*, while user B might mean *University of Washington*
- Query-specific ranking: tailored for each query
 - But need additional query-specific information for further disambiguation

Relevance Feedback:

- 1. Given user query, generate initial ranking results
- 2.1. Explicit feedback: Users indicate the (ir)relevance of a handful of answers
- 2.2. Pseudo feedback: Bilindly assume top-10 initial results are correct
- 3. Improve ranking with feedback information

- Q: A graph query
- G: A knowledge graph
- $\phi(Q)$: A candidate match to Q
- $F(\phi(Q) | Q, \theta)$: A generic ranking function
- \mathcal{M}^+ : A set of positive/relevant matches of Q
- \mathcal{M}^- : A set of negative/non-relevant matches of Q

Graph Relevance Feedback (GRF): Generate a query-specific ranking function \tilde{F} for Q based on \mathcal{M}^+ and \mathcal{M}^-

A General GRF Framework

Query-specific Tuning

- \Box θ represents (query-independent) feature weights. However, each query carries its own view of feature importance
- □ Find query-specific θ^* that better aligned with the query using user feedback

Type Inference

□ Infer the implicit type of each query node

The types of the positive entities constitute a composite type for each query node

Context Inference

- □ *Entity context*: 1-hop neighborhood of the entity
- The contexts of the positive entities constitute a composite context for each query node

Experimental Setup

- □ Knowledge base: DBpedia (4.6M nodes, 100M edges)
- Graph query sets: WIKI and YAGO

Evaluation with Explicit Feedback

- Explicit feedback: User gives relevance feedback on top-10 results
- GRF boosts SLQ by over 100% Ш
- Three GRF components complement each other

Evaluation with Pseudo Feedback

- Pseudo feedback: Blindly assume top-10 results from initial run are correct
- Erroneous feedback information but zero user effort

MAP@K	1	5	10	20	50	100
SLQ_WIKI	0.23	0.21	0.24	0.25	0.27	0.28
GRF_WIKI	0.73	0.58	0.52	0.50	0.49	0.49
SLQ_YAGO	0.40	0.35	0.33	0.32	0.36	0.39
GRF_YAGO	0.82	0.66	0.60	0.57	0.58	0.61

Outline

- Schema-agnostic Graph Query
- Natural Language Interface (a.k.a., Semantic Parsing)
 - A little history
 - Cold-start with crowdsourcing
 - Cold-start with neural transfer learning

Natural Language Interface \approx Model-Theoretic Semantics

Rule-based Natural Language Interface

			61
MA	118	1/13	₹∎
200 M	208	9 2 9 3	

1960s-1990s

1990s-2010s

2015-present

Rule-based

- Semantic• Manually designed rulesMapping• Deterministic
- Natural- Low
- Training Few
- Data
- Portability
- bility
 Low
 Mostly applied on relational databases

Statistical

Neural

Statistical Natural Language Interface

1	14	6
841	142	

1960s-1990s

1990s-2010s

2015-present

	Rule-based	Statistical		Neural
Semantic Mapping Natural- ness	 Manually designed rules Deterministic Low 	 Manually designer rules/features Learn weights free Better 	ed rom data	
Training Data	• Few	• More		
Portability	 Low Mostly applied on relational databases 	 Better Relational datab knowledge bases 	oases, s	

Deep Learning Accurate, Generic, Simple

Speech recognition: Graves, Mohamed, Hinton 2013

"Hey Siri, play some jazz music"

Machine translation: Sutskever, Vinyals, Le 2014

Neural Natural Language Interface

[Dong & Lapata 2016], [Jia & Liang 2016], [Mei et al., 2016]

1960s-1990s

1

1990s-2010s

2015-present

	Rule-based	Statistical	Neural
Semantic mapping	Manually designed rulesDeterministic	 Manually designed Rules/features Learn weights from data 	 Both features and weights learned from data
Natural- ness	• Low	• Better	• Best
Training Data	• Few	• More	• A LOT more
Portability	 Low Mostly applied on relational databases 	 Better Relational databases, knowledge bases 	 Best Relational databases knowledge bases, web tables, APIs,

Outline

- Schema-agnostic Graph Query
- Natural Language Interface (a.k.a., Semantic Parsing)
 - A little history
 - Cold-start with crowdsourcing
 - Cold-start with neural transfer learning
Portability: the Cold Start Problem

Portability: the Cold Start Problem

"I want to build an NLI for my domain, but I don't have any user and training data"

How to Build NLI for New Domain

- 1950s-1990s: Rule engineering (for rule-based NLI)
- **1990s-2010s:** Feature engineering (for statistical NLI)
- **2015-present:** Data engineering (for neural NLI)
 - Crowdsourcing Sour verb ? exceed
 - Neurahatansferdearningsing. pres ? exceeds

```
what is its past form ? exceeded
what is its perfect form ? exceeded
what is its participle form ? exceeding
to what set does the subject belong ? numeric
is there a direct object ? yes
to what set does it belong ? numeric
is there an indirect object ? no
is it linked to a complement ? no
what is its predicate ? greater_than
do you really wish to add this verb? y
```

Deep Learning with Weak Supervision

Knowledge

Strong Supervision

□ In-domain, on-task

Weak Supervision

- □ In-domain, off-task
- □ Out-of-domain, on-task
- □ Out-of-domain, off-task

Training data: {(utterance, logical form)}

If we already have utterances (questions/commands/ queries/...) from users...

- But for most domains we are interested in, there is yet any user, nor any utterance
- Ask domain experts to do everything?

- Can we only use crowd workers?
- Crowd workers do not understand formal languages!

- Can we only use crowd workers?
- Crowd workers do not understand formal languages!

A General Framework for Crowdsourcing NLI Data

"How many children of Eddard Stark were born in Winterfell?"

3: Paraphrasing via crowdsourcing

"What is the number of person who is born in Winterfell, and who is child of Eddard Stark?"

2: Canonical utterance generation

1: Logical form generation

[Building a Semantic Parser Overnight, Wang et al. 2015]

Advantages

- Scalable
 - Low-cost annotation, applicable to many domains
- □ Configurable
 - Full control on what to annotate and how many to get
- Complete coverage
 - Fully exercise the formal language and data
- □ Representative (partially)
 - Natural wording
 - Do not capture distribution of user interests

Challenges

Logical form generation

- How to automate and configure?
- What logical forms are "relevant"?
- How many to generate (huge candidate space)
- Canonical utterance generation
 - How to minimize the expertise requirement and workload for grammar design
- Paraphrasing via crowdsourcing
 - How to optimize the crowdsourcing process, i.e., select the right logical forms to annotate
 - How to control and improve result quality
 - How to encourage diversity

On Generating Characteristic-rich Question Sets for QA Evaluation

Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa, Izzeddin Gur, Zenghui Yan, Xifeng Yan UCSB, OSU, Army Research Lab, IBM Research EMNLP'16

Motivation

- Existing datasets for knowledge based question answering (KBQA) mainly contain *simple questions*
 - WebQuestions, SimpleQuestions, etc.

"Where was Obama born?"

"What party did Clay establish?"

"What kind of money to take to bahamas?"

Multi-dimensional Benchmarking

- Structural complexity
 - "People who are on a gluten-free diet can't eat what cereal grain that is used to make challah?"
- Quantitative analysis (function)
 - "In which month does the average rainfall of New York City exceed 86 mm?"
- Commonness
 - "Where was Obama born?" vs.
 - "What is the tilt of axis of Polestar?"
- Paraphrase
 - "What is the nutritional composition of coca-cola?"
 - "What is the supplement information for coca-cola?"
 - "What kind of nutrient does coke have?"

Configurable Benchmark Construction

Functions

Category	Counting	Super	Superlative		
Functions	count	max and min	argmax and argmin	$<,>,\leq$, and \geq	
Domain	Question node	Question node of numeric class	Template/grounded node of numeric class	Template/grounded node of numeric class	
Example	count Rocket Launch Site spaceports NASA	Float internalStorage	argmax Integer	Spirit Spirit ≤ alcoholByVolume 40.0	
Question	How many launch sites does nasa have?	What's the smallest internal storage of ipad?	Find the largest concert venue.	List distilled spirits with no more than 40.0% abv.	

Too Many Graph Queries

- Freebase: 24K classes, 65K relations, 41M entities, 596M facts
- Easily generate millions of graph queries
- Which ones correspond to *relevant* questions?

Commonness Checking

ClueWeb+FACC1: 1B documents, 10B entity mentions

GraphQuestions

□ 5166 questions, 148 domains, 506 classes, 596 relations

Question	Domain	Answer	# of edges	Function	$\log_{10}(p(q))$	$ \mathbf{A} $
Find terrorist organizations involved in September 11 attacks .						
The September 11 attacks were carried out with the involvement of what terrorist organizations?	Terrorism	alQaeda	1	none	-16.67	1
Who did nine eleven ?						
How many children of Eddard Stark were born in Winterfell ?		3	2	count	-23.34	1
Winterfell is the home of how many of Eddard Stark's children?	Fictional Universe					
What's the number of Ned Stark 's children whose birthplace is Winterfell ?						
In which month does the average rainfall of New York City exceed 86 mm?		March, August	3	comp.	-37.84	7
Rainfall averages more than 86 mm in New York City during which months?	Travel					
List the calendar months when NYC averages in excess of 86 millimeters of rain?						

Testbest for Research Progress

Pointing out Future Directions

"What is the nutritional composition of coca-cola?" "What is the supplement information for coca-cola?" "What kind of nutrient does coke have?"

"Learning to Paraphrase for Question Answering" Dong et al., *EMNLP* (2017) (Su et al., 2016)

The Quest of Compositionality

[people who are on a gluten-free diet]_{rel1} [can't eat]_{rel2} [what cereal grain that is used to make challah]_{rel3}

Further study on compositionality in CIKM'17 and SIGIR'18 (under review) (Su et al., 2016)

GraphQuestions V2 (coming soon)

- 10 to 20 times larger in scale
- Support more benchmarking scenarios
 - Cross-domain transfer learning, few- or zero-shot learning, compositionality, etc.

Answer: Amateur radio Answer Type: Interest.	I don I					
Auxilliary Information: Barry Goldwater: Type: U.S. Congressperson. Description: Barry Morris Gold' president in the 1964 election. Go movement in the 1960s. He also t through the conservative coalition primaries. Goldwater's conservative incumbent Democrat Lyndon B. Je campaign and other critics painted state.	Please evaluate these rephrased questions. Task 2					
	Original: What is [Barry Goldwater] interested in?	Which of these listed items, if any, fails to refer to the given entity				
	New: In what is [Barry Goldwater] interested? Do these mean exactly the same thing? Yes: No: O Original: [The Stanley Hotel] is part of what hotel brand? New: What hotel brand is [The Stanley Hotel] part of? Do these mean exactly the same thing? Yes: No: O	United States Senate Committee on the Judiciary	Task 3			
Vrite the new question below:	Original: Which system of nobility supercedes [Peerage of Great New: [Peerage of Great Britain] is superceded by which system of Do these mean exactly the same thing? Yes: No: O	☐ committee ☐ senate committee on the judiciary ☐ None of the above	Submit			

Crowdsourcing Optimization

Outline

- Schema-agnostic Graph Query
- Natural Language Interface (a.k.a., Semantic Parsing)
 - A little history
 - Cold-start with crowdsourcing
 - Cold-start with neural transfer learning

How to Build NLI for New Domain

- 1950s-1990s: Rule engineering (for rule-based NLI)
- □ 1990s-2010s: Feature engineering (for statistical NLI)
- 2015-present: Data engineering (for neural NLI)
 - Crowdsourcing
 - Neural transfer learning Out-of-domain, on-task supervision! Source Target Domain Domain Natural Language Interface Natural Language Knowledge Ľ Interface Transfer

What is Transferrable in NLI across Domains?

Source Domain: Basketball

Cross-domain NLI via Paraphrasing

Seq2Seq Model for Paraphrasing

- □ Seq2Seq + Bi-directional encoder + Attentive decoder
- Learn to predict whether input utterance paraphrases canonical utterance
- Deterministic mapping between canonical utterance and logical form

Word Embedding

- □ Word \triangleq Dense vector (typically 50-1000 dimensional)
- Pre-trained on huge external text corpora

Pre-trained Word Embedding Alleviates Vocabulary Shifting

- Vocabulary shifting: Only 45%~70% target domain vocabulary are covered by source domains^[1]
- Pre-trained word embedding can alleviate the vocabulary shifting problem
 - Word2vec: 300-d vectors pre-trained on the 100B-token Google News Corpus; vocabulary size = 3M

	Calendar	Housing	Restaurants	Social	Publications	Recipes	Basketball	Blocks
Coverage	71.1	60.7	55.8	46.0	65.6	71.9	45.6	61.7
+word2vec	93.9	90.9	90.4	89.3	95.6	97.3	89.4	93.8

Overnight Dataset: 8 KBs

[1] Wang et al. Building a Semantic Parser Overnight. 2015

Neural Transfer Learning for NLI

- Input utterance $x = (x_1, ..., x_m)$, canonical utterance $y = (y_1, ..., y_n)$
- $\square \quad \text{Embedding: } \phi(\mathbf{x}) = (\phi(x_1), \dots, \phi(x_m)), \ \phi(\mathbf{y}) = (\phi(y_1), \dots, \phi(y_n))$
- **Learning on source domain:** $p(\phi(\mathbf{y})|\phi(\mathbf{x}), \boldsymbol{\theta})$
- □ Warm start on target domain: $p(\phi(y)|\phi(x), \theta)$
- **\Box** Fine-tuning on target domain: $p(\phi(\mathbf{y})|\phi(\mathbf{x}), \boldsymbol{\theta}^*)$

Experimental Setup

- Dataset: Overnight [Wang et al., 2015]
 - 8 domains (Social, Basketball, Restaurant, etc.)
- □ Metric: average accuracy
- Transfer learning setup
 - For each target domain, use the other 7 domains as source
- Word embedding initialization
 - **Random:** Randomly draw from uniform distribution with unit variance $U(-\sqrt{3}, \sqrt{3})$
 - Word2vec: 300-dimensional word2vec (skip-gram) embedding pre-trained on 100B-word News corpus

Direct Use of Word2vec Fails Dramatically...

- Transfer learning works (new state of the art)
- Word2vec brings 6.2% absolute decrease in accuracy

Problems of Pre-trained Word Embedding

- Small micro variance: hurt optimization
 - Activation variances \approx input variances [Glorot & Bengio, 2010]
 - Small input variance implies poor exploration in parameter space
- Large macro variance: hurt generalization
 - Distribution discrepancy between training and testing

[EMNLP'17]
Proposed Solution: Standardization

- □ Standardize each word vector to unit variance
- But it was unclear before why standardization should be applied on pre-trained word embedding
 - Obvious downside: make loss function of word embedding sub-optimal

Initialization	L2 norm	Variance	Cosine Sim.
Random WORD2VEC WORD2VEC + ES	17.3 ± 0.45 2.04 ± 1.08 17.3 ± 0.05	$\begin{array}{c} 1.00 \pm 0.05 \\ 0.02 \pm 0.02 \\ 1.00 \pm 0.00 \end{array}$	$\begin{array}{c} 0.00 \pm 0.06 \\ 0.13 \pm 0.11 \\ 0.13 \pm 0.11 \end{array}$

Random: randomly draw from uniform distribution with unit varianceWord2vec: pre-trained word2vec embeddingES: per-example standardization (per column)

Standardization Fixes the Variance Problems

- Standardization brings 8.7% absolute increase
- Transfer learning brings another 2.4% increase

Recap

- "I want to build an NLI for my domain, but I don't have any training data"
- □ Can I collect training data via crowdsourcing?
 - Yes, and it's not so expansive
 - Cost can be further reduced by crowdsourcing optimization
- Can I leverage existing training data from other domains?
 - Yes, if you turn it into a paraphrasing problem
 - Pre-trained word embedding can greatly help neural transfer learning, but only when properly standardized

FUTURE RESEARCH

How can AI Bridge the Gap?

#3: Knowledge-based Machine Reasoning

Methodological Exploration

- Inherent structure of the NLI problem space
 - Strong prior for learning
 - Key: compositionality of natural & formal languages
- Integration of neural and symbolic computation
 - Neural network modularized over symbolic structures
 - (Cognitive science) neural encoding of symbolic structures
- Goal-oriented human-computer conversation
 - Accommodate dynamic hypothesis generation and verification in a natural conversation

End-to-end General-purpose Knowledge Engine

"Which cement stocks go up the most when a Category 3 hurricane hits Florida?"

KENSHC

