
Getting from Here to There:
Interactive Planning and Agent Execution for Optimizing Travel

José Luis Ambite, Greg Barish,
Craig A. Knoblock, Maria Muslea, Jean Oh

Information Sciences Institute
University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292, USA
�ambite,barish,knoblock,mariam,jeanoh�@isi.edu

Steven Minton
Fetch Technologies

4676 Admiralty Way,
Marina del Rey, CA 90292, USA

steve.minton@fetch.com

Abstract

Planning and monitoring a trip is a common but complicated
human activity. Creating an itinerary is nontrivial because it
requires coordination with existing schedules and making a
variety of interdependent choices. Once planned, there are
many possible events that can affect the plan, such as sched-
ule changes or flight cancellations, and checking for these
possible events requires time and effort. In this paper, we
describe how Heracles and Theseus, two information gather-
ing and monitoring tools that we built, can be used to sim-
plify this process. Heracles is a hierarchical constraint plan-
ner that aids in interactive itinerary development by showing
how a particular choice (e.g., destination airport) affects other
choices (e.g., possible modes of transportation, available air-
lines, etc.). Heracles builds on an information agent platform,
called Theseus, that provides the technology for efficiently
executing agents for information gathering and monitoring
tasks. In this paper we present the technologies underlying
these systems and describe how they are applied to build a
state-of-the-art travel system.

Introduction
The standard approach to planning business trips is to select
the flights, reserve a hotel, and possibly a car at the des-
tination. Choices of which airports to fly into and out of,
whether to park at the airport or take a taxi, and whether to
rent a car at the destination are often ad hoc choices based
on past experience. These choices are frequently subopti-
mal, but the time and effort required to make more informed
choices usually outweighs the cost. Similarly, once a trip has
been planned it is usually ignored until a few hours before
the first flight. A traveler might check on the status of the
flights or use one of the services that automatically notify a
traveler of flight status information, but otherwise a traveler
just copes with problems that arise as they arise. Beyond
flight delays and cancellations there a variety of possible
events that occur in the real world that one would ideally
like to anticipate, but again the cost and effort required to
monitor for these events is not usually deemed to be worth
the trouble. Schedules can change, prices may go down after
purchasing a ticket, flight delays can result in missed con-
nections, and hotel rooms and rental cars are given away
because travelers arrive late.
Copyright c� 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

To address these issues we have developed an integrated
travel planning and monitoring system. The Travel Assis-
tant provides an interactive approach to making travel plans
where all of the information required to make informed
choices is available to the user. For example, when deciding
whether to park at the airport or take a taxi, the system com-
pares the cost of parking and the cost of a taxi given other
selections, such as the airport, the specific parking lot, and
the starting location of the traveler. Likewise, when the user
is deciding which airport to fly into, the system provides not
only the cost of the flights, but also determines the impact on
the cost of the ground transportation at the destination. Once
a trip is planned, the monitoring tasks are addressed by a set
of information agents that can attend to details for which it
would be impractical for a human assistant to monitor. For
example, beyond simply notifying a traveler of flight delays,
an agent will also send faxes to the hotel and car rental agen-
cies to notify them of the delay and ensure that the room and
car will be available. Likewise, when a traveler arrives in
a city for a connecting flight, an agent notifies the traveler
if there are any earlier connecting flights and provides both
arrival and departure gates.

These innovations in travel planning and monitoring are
made possible by two underlying AI technologies. The
first is the Heracles interactive constraint-based planner
(Knoblock et al. 2001), which captures the interrelation-
ships of the data and user choices using a set of constraint
rules. Using Heracles we can easily define a system for in-
teractively planning a trip. The second is the Theseus infor-
mation agent platform (Barish et al. 2000), which facilitates
the rapid creation of information gathering and monitoring
agents. These agents provide data to the Heracles planner
and keep track of information changes relevant to the travel
plans. Based on these technologies, we have developed a
complete end-to-end travel planning and monitoring system
that is in use today.

The remainder of this paper describes the travel applica-
tion and underlying technology in more detail. The next sec-
tion describes by example the trip planning process as well
as the monitoring agents that ensure that the trip is executed
smoothly. Then, we present the constraint-based planning
technology that supports the trip planning. Next, we de-
scribe the information agent technology, which provides the
data for the planner and the agents for monitoring the trip.

Finally, we compare with related work, and discuss our con-
tributions and future plans.

Planning and Monitoring a Trip
In this section we describe by example the functionality and
interface of our Travel Assistant, showing both its capabil-
ities for interactive planning and for monitoring the travel
plans.

Interactive Travel Planning
Our Travel Assistant starts the travel planning process by re-
trieving the business meetings from the user’s calendar pro-
gram (e.g., Microsoft Outlook). Figure 1 shows the user
interface of the Travel Assistant with the high level informa-
tion for planning a trip to attend a business meeting. The
interface displays a set of boxes showing values, which we
call slots. A slot holds a current value and a set of possible
values, which can be viewed in a pull-down list by clicking
the arrow at the right edge of the slot. For example, there
are slots for the subject and location of the meeting with val-
ues Travel Planner Meeting and DC respectively. The user
could choose to plan another meeting from the list or input
meeting information directly.

Figure 1: Planning a Meeting

Once the system has the details of the meeting, the next
step is to determine how to get to the destination. There are
three possible modes of transportation: Fly, Drive, or Take
a Taxi. The system recommends the transportation mode
based on the distance between the user’s location and the
meeting location. The system obtains the departure loca-
tion from the user’s personal profile and the meeting loca-
tion from Outlook. The system computes the distance by
first geocoding (determining the latitude and longitude) of
the origin and destination addresses using the Mapblast Web
site (www.mapblast.com). Then, using the geocoded infor-
mation, a local constraint computes the distance between the

two points. In our example, the distance between Los Ange-
les and Washington D.C. is 2,294 miles, so the system rec-
ommends that the user Fly. Since the meeting lasts for sev-
eral days, it also recommends that the user stay at a hotel. Of
course, the user can always override the system suggestions.

The Travel Assistant organizes the process of trip plan-
ning and the associated information hierarchically. The left
pane of Figure 1 shows this hierarchical structure, with the
particular choices made for the current plan. In this example,
the trip consists of three tasks: flying to the meeting, stay-
ing at a hotel at the meeting location, and flying back home.
Some tasks are further divided into subtasks, for example,
how to get to and from the aiport when flying. In Heracles
these tasks are represented by related slots and constraints
that are encapsulated into units called templates, which are
organized hierarchically.

The Travel Assistant helps the user evaluate tradeoffs that
involve many different pieces of information and calcula-
tions. For example, Figure 2 illustrates how the system rec-
ommends the mode of transportation to the departure air-
port. This recommendation is made by comparing the cost
of parking a car at the airport for the duration of the trip to
the cost of taking a taxi to and from the airport. The sys-
tem computes the cost of parking by retrieving the available
airport parking lots and their daily rates from the AirWise
site (www.airwise.com), determining the number of days the
car will be parked based on scheduled meetings, and then
calculating the total cost of parking. Similarly, the system
computes the taxi fare by retrieving the distance between
the user’s home address and the departure airport from the
Yahoo Map site (maps.yahoo.com), retrieving the taxi fare
from the Washington Post site (www.washingtonpost.com),
and then calculating the total cost. Initially, the system re-
comends taking a taxi since the taxi fare is only $19.50,
while the cost of parking would be $48.00 using the Ter-
minal Parking lot (the preferred parking lot in the user’s pro-
file). However, when the user changes the selected parking
lot to Economy Lot B, which is $5 per day, this makes the
total parking rate cheaper than the taxi fare, so the system
changes the recommendation to Drive.

The system actively maintains the dependencies among
slots so that changes to earlier decisions are propagated
throughout the travel planning process. For example, Fig-
ure 3 shows how the Taxi template is affected when the user
changes the departure airport in the higher-level Round Trip
Flights template. In the original plan, the flight departs from
Los Angeles International (LAX) at 11:55 PM. The user’s
preference is to arrive an hour before the departure time,
thus he/she needs to arrive at LAX by 10:55 PM. Since
Mapblast calculates that it takes 24 minutes to drive from
the user’s home to LAX, the system recommends leaving by
10:31 PM. When the user changes the departure airport from
LAX to Long Beach airport (LGB), the system retrieves a
new map and recomputes the driving time. Changing the
departure airport also results in a different set of flights. The
recommended flight from LGB departs at 9:50 PM and driv-
ing to LGB takes 28 minutes. Thus, to arrive at LGB by 8:50
PM, the system now suggests leaving home by 8:22 PM.

Figure 2: Comparing Cost of Driving versus Taking a Taxi

Monitoring Travel Status

There are various dynamic events that can affect a travel
plan, for instance, flight delays, cancellations, fare reduc-
tions, etc. Many of these events can be detected in advance
by monitoring information sources. The Travel Assistant is
aware that some of the information it accesses is subject to
change, so it delegates the task of following the evolution of
such information to a set of monitoring agents. For instance,
a flight schedule change is a critical event since it can have
an effect not only on the user’s schedule at the destination
but also on the reservations at a hotel and a car rental agency.
In addition to agents handling critical events, there are also
monitoring agents whose purpose is to make a trip more con-
venient or cost-effective. For example, tracking airfares or
finding restaurants near the current location of the user. In
what follows, we describe the monitoring agents that we de-
fined for travel planning. As shown in Figure 4, Heracles
automatically generates the set of agents for monitoring a
travel plan. Figure 5 shows some example messages sent by
these agents.

The Flight-Status monitoring agent uses the ITN Flight
Tracker site to retrieve the current status of a given flight.
If the flight is on time, the agent sends the user a message
to that effect two hours before departure. If the user’s flight
is delayed or canceled, it sends an alert through the user’s

Figure 3: Change in Selected Airport Propagates to Drive
Subtemplate

Figure 4: Template for Generating Monitoring Agents

(a) Flight-Status Agent: Flight delayed message
Your United Airlines flight 190 has been delayed. It was originally scheduled

to depart at 11:45 AM and is now scheduled to depart at 12:30 PM. The new

arrival time is 7:59 PM.

(b) Flight-Status Agent: Flight cancelled message
Your Delta Air Lines flight 200 has been cancelled.

(c) Flight-Status Agent: Fax to a hotel message
Attention : Registration Desk

I am sending this message on behalf of David Pynadath, who has a reser-

vation at your hotel. David Pynadath is on United Airlines 190, which is now

scheduled to arrive at IAD at 7:59 PM. Since the flight will be arriving late, I

would like to request that you indicate this in the reservation so that the room

is not given away.

(d) Airfare Agent: Airfare dropped message
The airfare for your American Airlines itinerary (IAD - LAX) dropped to $281.

(e) Earlier-Flight Agent: Earlier flights message
The status of your currently scheduled flight is:

190 LAX (11:45 AM) - IAD (7:29 PM) 45 minutes Late

The following United Airlines flight arrives earlier than your flight:

946 LAX (8:31 AM) - IAD (3:35 PM) 11 minutes Late

Figure 5: Actual Messages sent by Monitoring Agents

preferred device (e.g., a text message to a cellular phone). If
the flight is delayed by more than an hour, the agent sends
a fax to the car rental counter to confirm the user’s reserva-
tion. If the flight is going to arrive at the destination airport
after 5 PM, the agent sends another fax to the hotel so that
the reserved room will not be given away. Since the proba-
bility of a change in the status of a flight is greater as the de-
parture time gets closer, the agent monitors the status more
frequently as the departure time nears.

The Airfare monitoring agent keeps track of current prices
for the user’s itinerary. The airlines change prices unpre-
dictably, but the traveler can request a refund (for a fee) if
the price drops below the purchase price. This agent gathers
current fares from Orbitz (www.orbitz.com) and notifies the
user if the price drops by more than a given threshold.

The Flight-Schedule monitoring agent keeps track of
changes to the scheduled departure time of a flight (using

Orbitz) and notifies the user if there is any change. Without
such an agent, a traveler often only discovers this type of
schedule changes after arriving at the airport.

The Earlier-Flight monitoring agent uses Orbitz to find
the flights that leave earlier than the scheduled flight. It
shows the alternative earlier flights and their status. This
information becomes extremely useful when the scheduled
flight is significantly delayed or canceled.

The Flight-Connection agent tracks the user’s current
flight, and a few minutes before it lands, it sends the user
the gate and status of the connecting flight.

The Restaurant-Finder agent locates the user based on ei-
ther a Global Positioning System (GPS) device or his/her
expected location according to the plan. On request, it sug-
gests the five closest restaurants provinding cuisine type,
price, address, phone number, latitude, longitude, and dis-
tance from the user’s location.

In the following sections, we describe in detail the tech-
nology we have used to automate travel planning and mon-
itoring, namely, the Heracles interactive constraint-based
planning framework and the Theseus agent execution and
monitoring system.

Interactive Constraint-based Planning

The critical challenge for Heracles is integrating multiple
information sources, programs, and constraints into a cohe-
sive, effective tool. We saw examples of these diverse capa-
bilities in the Travel Assistant, such as retrieving scheduling
information from a calendar system, computing the duration
of a given meeting, and invoking an information agent to
find directions to the meeting.

Constraint reasoning technology offers a clean way to in-
tegrate multiple heterogeneous subsystems in a plug-and-
play approach. Our approach employs a constraint repre-
sentation where we model each piece of information as a
distinct variable1 and describe the relations that define the
valid values of a set of variables as constraints. A constraint
can be implemented either by a local procedure within the
constraint engine or by an external component. In particular,
we use information agents built with Theseus to implement
many of the external constraints.

Using a constraint-based representation as the basis for
control has the advantage that it is a declarative representa-
tion and can have many alternative execution paths. Thus,
we need not commit to a specific order for executing com-
ponents or propagating information. The constraint propa-
gation system will determine the execution order in a natural
manner. The constraint reasoning system propagates infor-
mation entered by the user as well as the system’s sugges-
tions, decides when to launch information requests, evalu-
ates constraints, and computes preferences.

1In the example in the previous section we have referred to each
piece of information presented to the user as a slot. We use the term
slot for user interface purposes. Each slot has a corresponding vari-
able defined in the constraint network, but there may be variables
that are not presented to the user.

Constraint Network Representation
A constraint network is a set of variables and constraints
that interrelate and define the valid values for the variables.
Figure 6 shows the fragment of the constraint network of the
Travel Assistant that addresses the selection of the method
of travel from the user’s initial location to the airport. The
choices under consideration are: driving one’s car (which
implies leaving it parked at the airport for the duration of
the trip) or taking a taxi.

computeDuration

multiply

getDistance

getTaxiFare

findClosestAirport

getParkingRate

selectModeToAirport

DestinationAddress

OriginAddress

DepartureDate

Mar 15, 2001

ReturnDate

Mar 18, 2001

DepartureAirport

LAX

Distance
15.1 miles

Duration

4 days

ParkingTotal

$64.00

ModeToAirport

Taxi

ParkingRate

$16.00/day

TaxiFare
$23.00

Figure 6: Constraint Network: Driving Versus Taking a Taxi

In the sample network of Figure 6, the variables are shown
as dark rectangles and the assigned values as white rectan-
gles next to them. The variables capture the relevant infor-
mation for this task in the application domain, such as the
DepartureDate, the Duration of the trip, the ParkingTotal (the
total cost of parking for the duration of the trip), the Taxi-
Fare, and the ModeToAirport. The DepartureAirport has an
assigned value of LAX, which is assigned by the system since
it is the closest airport to the user’s address.

Conceptually, a constraint is a n-ary predicate that relates
a set of n variables by defining the valid combinations of val-
ues for those variables. A constraint is a computable com-
ponent which may be implemented by a local table look-up,
by the computation of a local function, by retrieving a set
of tuples from a remote information agent, or by calling an
arbitrary external program. In Heracles the constraints are
directed. The system evaluates a constraint only after it has
assigned values to a subset of its variables, the input vari-
ables. The constraint evaluation produces the set of possible
values for the output variables.

In the sample network of Figure 6 the constraints are
shown as rounded rectangles. For example, the compute-
Duration constraint involves three variables (DepartureDate,
ReturnDate, and Duration), and it’s implemented by a func-
tion that computes the duration of a trip given the departure
and return dates. The constraint getParkingRate is imple-
mented by calling an information agent that accesses a web
site that contains parking rates for airports in the US.

Each variable can also be associated with a preference

constraint. Evaluating the preference constraint over the
possible values produces the assigned value of the variable.
(The user can manually reset the assigned value at any point
by selecting a different alternative.) Preference constraints
are often implemented as functions that impose an ordering
on the values of a domain. An example of a preference for
business travel is to choose a hotel closest to the meeting.

Constraint Propagation
Since the constraints are directed, the constraint network can
be seen as a directed graph. In the current version of the sys-
tem, this constraint graph must be acyclic, which means that
information flows in one direction. This directionality sim-
plifies the interaction with the user. Note that if the user
changes a variable’s value, this change may need to be prop-
agated throughout the constraint graph.

The constraint propagation algorithm proceeds as follows.
When a given variable is assigned a value, either directly
by the user or by the system, the algorithm recomputes the
possible value sets and assigned values of all its dependent
variables. This process continues recursively until there are
no more changes in the network. More specifically, when
a variable X changes its value, the constraints that have X
as input variable are recomputed. This may generate a new
set of possible values for each dependent variable Y. If this
set changes, the preference constraint for Y is evaluated se-
lecting one of the possible values as the new assigned value
for Y. If this assigned value is different from the previous
one, it causes the system to recompute the values for further
downstream variables. Values that have been assigned by
the user are always preferred as long as they are consistent
with the constraints.

Consider again the sample constraint network in Figure 6.
First, the constraint that finds the closest airport to the user’s
home address assigns the value LAX to the variable Depar-
tureAirport. Then, the constraint getParkingRate, which is
a call to an information agent, fires producing a set of rates
for different parking lots. The preference constraint selects
terminal parking which is $16.00/day. This value is multi-
plied by the duration of the trip to compute the ParkingTotal
of $64 (using the simple local constraint multiply). A sim-
ilar chain of events results in the computation of the Taxi-
Fare. Once the ParkingTotal and the TaxiFare are computed,
the selectModeToAirport constraint compares the costs and
chooses the cheapest means of transportation, which in this
case is to take a Taxi.

Template Representation
As described previously, to modularize an application and
deal with its complexity, the user interface presents the plan-
ning application as a hierarchy of templates. For example,
the top-level template of the Travel Assistant (shown in Fig-
ure 1) includes a set of slots associated with who you are
meeting with, when the meeting will occur, and where the
meeting will be held. The templates are organized hierar-
chically so that a higher-level template representing an ab-
stract task (e.g., Trip) may be decomposed into a set of more
specific subtasks, called subtemplates (e.g., Fly, Drive, etc).
This hierarchical task network structure helps to manage the

complexity of the application for the user by hiding less im-
portant details until the major decisions have been achieved.

This template-oriented organization has ramifications for
the constraint network. The network is effectively divided
into partitions, where each partition consists of the vari-
ables and constraints that compose a single template. During
the planning process the system only propagates changes to
variables within the template that the user is currently work-
ing on. This strategy considerably improves performance.

Information Agents
Our system uses information agents to support both the trip
planning and monitoring. While information agents are sim-
ilar to other types of software agents, their plans are distin-
guished by a focus on gathering, integrating, and monitoring
of data from distributed and remote sources. To efficiently
perform these tasks we use Theseus (Barish et al. 2000;
Barish & Knoblock 2002), which is a streaming dataflow
architecture for plan execution. In this section, we de-
scribe how we use Theseus to build agents capable of ef-
ficiently gathering and monitoring information from remote
data sources.

Defining an Information Agent
Building an information agent requires defining a plan in
Theseus. Each plan consists of a name, a set of input and
output variables, and a network of operators connected in a
producer-consumer fashion. For example, the Flight-Status
agent takes flight data (i.e., airline, flight number) as input
and produces status information (i.e., projected arrival time)
as output.

Each operator in a plan receives input data, processes it in
some manner, and outputs the result - which is then poten-
tially used by another operator. Operators logically process
and transmit data in terms of relations, which are composed
of a set of tuples. Each tuple consists of a set of attributes,
where an attribute of a relation can be either a string, num-
ber, nested relation, or XML object.

The set of operators in Theseus support a range of ca-
pabilities. First, there are information gathering operators,
which retrieve data from local and remote sources including
web sites. Second, there are data manipulation operators,
which provide the standard relational operations, such as se-
lect, project and join, as well as XML manipulation opera-
tions using XQuery. Third, there are monitoring-related op-
erators, which provide scheduling and unscheduling of tasks
and communication with a user through email or fax.

Plans in Theseus are just like operators: they are named
and have input and output arguments. Consequently, any
plan can be called as an operator from within any other plan.
This subplan capability allows a developer to define new
agents by composing existing ones.

Accessing Web Sources
Access to on-line data sources is a critical component of our
information agents. In the Travel Assistant there is no data
stored locally in the system. Instead, all information is ac-
cessed directly from web sources. To do this we build wrap-
pers that enable web sources to be queried as structured data

sources. This makes it easy for the system to manipulate the
resulting data as well as integrate it with information from
other data sources.

For example, a wrapper for Yahoo Weather dynamically
turns the source into XML data in response to a query. Since
the weather data changes frequently, it would not be practi-
cal to download this data in advance and cache it for fu-
ture queries. Instead, the wrapper provides access to the live
data, but provides it in a structured form.

We have developed a set of tools for semi-automatically
creating wrappers for web sources (Knoblock et al. 2000).
The tools allow a user to specify by example what the wrap-
per should extract from a source. The examples are then fed
to an inductive learning system that generates a set of rules
for extracting the required data from a site.

Once a wrapper for a site has been created, Theseus agents
can programmatically access data from that site using the
wrapper operator in their plans. For example, with the wrap-
per for Yahoo Weather, we can now send a request to get
the weather for a particular city and it will return the corre-
sponding data.

Monitoring Sources
In addition to being able to gather data from web sources,
Theseus agents are capable of monitoring those sources and
performing a set of actions based on observed changes.
The monitoring is performed by retrieving data from on-
line sources and comparing the returned results against in-
formation that was previously retreived and stored locally in
a database. This provides the capability to not only check
current status information (e.g., flight status), but to also de-
termine how the information has changed over time.

There are several ways in which plans can react to a mon-
itoring event. First, a plan can use e-mail or fax operators
to asynchronously notify interested parties about important
updates to monitored data. Second, a plan can schedule or
unschedule other agents in response to some condition. For
example, once a flight has departed, the flight monitoring
agent can schedule the Flight-Connection agent to run a few
minutes before the scheduled arrival time.

Theseus agents are managed by a scheduling system that
allows agents to be run once or at a fixed interval. The agent
scheduler works by maintaining a database of the tasks to
run and when they are scheduled to run next. Once sched-
uled, agents are launched at the appropriate time. Once they
are run, the database is updated to reflect the next time the
task is to be run. Since the Theseus plan language supports
operators that can schedule and unschedule agents, this pro-
vides the ability to run new agents at appropriate times based
on events in the world.

As an example information agent that monitors a data
source, consider the plan for the Flight-Status agent shown
in Figure 7. Initially, the agent executes a wrapper operator
to retrieve the current flight status information. It then uses
another online source to normalize the information based
on the time zone of the recipient. The resulting normalized
flight status information indicates that the flight is either ar-
rived, cancelled, departed, or pending (waiting to depart). If
the flight has been cancelled, the user is notified via the email

operator. In this case, the flight needs no additional monitor-
ing and the unschedule operator is used to remove it from
the list of monitored flights. For departed flights the Flight-
Connection agent is scheduled. For each pending flight, the
agent must perform two actions. First, it checks if the arrival
time of the flight is later than 5pm and if so it uses the fax
operator to notify the hotel (it only does this once). Second,
the agent compares the current departure time with the pre-
viously retrieved departure time. If they differ by a given
threshold, the agent does three things: (a) it faxes a message
to the car rental agency to notify them of the delay, (b) it up-
dates its local database with the new departure time (to track
future changes) and (c) it e-mails the user.

Figure 7: The Flight Status information monitoring agent

Efficiently Executing Agent Plans
Information agent plans are unique in two key respects.
First, they tend to integrate data from multiple sources - for
example, the Flight-Status agent might query multiple Inter-
net real-time data sources to find out the in-flight status of a
particular airplane. Second, they usually gather and monitor
data from sources that are remote and deliver unpredictable
performance - such as Internet web sites. Thus, information
agent execution is often I/O-bound - with an agent spending
the majority of its execution time waiting for replies from
remote sources it has queried.

To efficiently execute plans that primarily integrate data
from remote sources, Theseus employs a dataflow model of
execution. Under this model, plan operators are arranged
in a producer-consumer fashion, leading to partially ordered
plans. Then, at run-time, operators can execute in paral-
lel when their individual inputs have been received. This
decentralized form of execution maximizes the amount of
horizontal parallelism, or concurrency between independent
data flows, available at run-time.

Theseus alo supports the streaming of data between plan
operators. Streaming enables consumer operators to receive
data emitted by their producers as soon as possible. This,
in turn, enables these consumers to process this data imme-

diately and communicate output to other consumers farther
downstream as soon as possible. For example, consider an
agent plan that fetches a large amount of data from two slow
sources and joins this information together. Streaming en-
ables the join to be executed as soon as possible on the avail-
able data, as it trickles in from either source. As a result,
with streaming, producers and consumers may be process-
ing the same logical set of data concurrently, resulting in a
form of pipelined or vertical parallelism during execution.

Related Work
Most commercial systems for travel planning take the tradi-
tional approach of providing tools for selecting flights, ho-
tel, and car rentals in separate steps. The only integrated
approach is a system called MyTrip from XTRA On-line.
Based on personal calendar information, the system auto-
matically produces a complete plan that includes the flights,
hotel and car rental. Once it has produced a plan, the user
can then edit the individual selections made by the system.
Unlike the Travel Assistant, the user cannot interactively
modify the plan, such as constraining the airlines or depar-
ture airport. Also, MyTrip is limited to only the selection
of flights, hotels, and car rentals. In addition to MyTrip,
there exist some commercial systems (such as the one run by
United Airlines) that provide basic flight status and notifica-
tion. However, these systems do not actually track changes
in the flight status over time (they merely notify passengers a
fixed number of hours before flights) and they do not notify
hotels about flight delays or suggest earlier flights or bet-
ter connections when unexpected events (e.g., bad weather)
occur.

In terms of constraint reasoning, there is a lot of research
on constraint programming (Saraswat & van Hentenryck
1995), but not much attention has been paid to the inter-
play between information gathering and constraint propa-
gation and reasoning. Bressan and Goh (1997) have ap-
plied constraint reasoning technology to information inte-
gration. They use constraint logic programming to find rel-
evant sources and construct an evaluation plan for a user
query. In our system, the relevant sources have already
been identified. In dynamic constraint satisfaction (Mittal &
Falkenhainer 1990), the variables and constraints present in
the network are allowed to change with time. In our frame-
work, this is related to interleaving the constraint satisfac-
tion with the information gathering. Lamma et al. (1999)
propose a framework for interactive constraint satisfaction
problems (ICSP) in which the acquisition of values for each
variable is interleaved with the enforcement of constraints.
The information gathering stage in our constraint integration
framework can also be seen as a form of ICSP. Their applica-
tion domain is on visual object recognition, while our focus
is on information integration

Our work on Theseus is related to two existing types of
systems: general agent executors and network query en-
gines. General agent executors, like RAPS (Firby 1994) and
PRS-Lite (Myers 1996) propose highly concurrent execu-
tion models. The dataflow aspect of Theseus can be seen as
another such model. The main difference is that execution
in Theseus not only involves enabling operators but routing

information between them as well. In this respect, Theseus
shares much in common with several recently proposed net-
work query engines (Ives et al. 1999; Hellerstein et al. 2000;
Naughton et al. 2001). Like Theseus, these systems fo-
cus in efficiently integrating web-based data. However, net-
work query engines have primarily focused on performance
issues; while Theseus also acts as an efficient executor, it
is distinguished from these other query engines by (a) its
novel operators that facilitate monitoring and asynchronous
notification and (b) its modular dataflow agent language that
allows a wider variety of plans to be built and executed.

Discussion

The travel planning and monitoring are fully functional sys-
tems that are in use today. The planner is not yet directly
connected to a reservation system, but it is a very useful
tool for helping to make the myriad of decisions required
for planning a trip. Likewise, the monitoring agents are able
to continually monitor all aspects of a trip and provide im-
mediate notification of changes and cancellations. There are
existing commercial systems that provide small pieces of
these various capabilities, but the technology and applica-
tion presented here is unique in providing a complete end-
to-end solution that plans and then monitors all aspects of a
trip. For example, the planning process will automatically
produce the fax numbers required for use by the monitoring
agents to notify the hotel and car rental agency. The current
system is in use at the Information Sciences Institute and we
plan to make this system more widely available on the Web
as part of the Electric Elves Project (Chalupsky et al. 2001).

One limitation of the current system is that the monitor-
ing agents do not communicate problems or changes back to
the travel planner. Ideally, if a flight is canceled one would
want the system to re-book the traveler on another flight as
soon as possible and then make any other needed changes
to the itinerary based on the changes to the flight. Or if the
price of a ticket declines to automatically rebook the ticket.
The current system does not do this. We are working on the
next generation of the travel planning component which will
support this type of dynamic replanning of a trip based on
changes in the world.

Acknowledgments

The research reported here was supported in part by the Defense
Advanced Research Projects Agency (DARPA) and Air Force Re-
search Laboratory under contract/agreement numbers F30602-01-
C-0197, F30602-00-1-0504, F30602-98-2-0109, in part by the Air
Force Office of Scientific Research under grant number F49620-
01-1-0053, and in part by the Integrated Media Systems Center,
a National Science Foundation Engineering Research Center, co-
operative agreement number EEC-9529152. The U.S.Government
is authorized to reproduce and distribute reports for Governmental
purposes notwithstanding any copy right annotation thereon. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of any
of the above organizations or any person connected with them.

References
Barish, G., and Knoblock, C. A. 2002. Speculative plan
execution for information gathering. In Proceedings of the
6th International Conf. on AI Planning and Scheduling.
Barish, G.; DiPasquo, D.; Knoblock, C. A.; and Minton,
S. 2000. A dataflow approach to agent-based informa-
tion management. In Proceedings of the 2000 International
Conference on Artificial Intelligence (IC-AI 2000).
Bressan, S., and Goh, C. H. 1997. Semantic integration of
disparate information sources over the internet using con-
straint propagation. In Workshop on Constraint Reasoning
on the Internet (at CP97).
Chalupsky, H.; Gil, Y.; Knoblock, C. A.; Lerman, K.; Oh,
J.; Pynadath, D. V.; Russ, T. A.; and Tambe, M. 2001.
Electric elves: Applying agent technology to support hu-
man organizations. In Proceedings of the Thirteenth Inno-
vative Applications of Artificial Intelligence Conference.
Firby, R. J. 1994. Task networks for controlling contin-
uous processes. In Proceedings of the 2nd International
Conference on Artificial Intelligence Planning Systems.
Hellerstein, J. M.; Franklin, M. J.; Chandrasekaran, S.;
Deshpande, A.; Hildrum, K.; Madden, S.; Raman, V.; and
Shah, M. A. 2000. Adaptive query processing: technology
in evolution. IEEE Data Engineering Bulletin 23(2):7–18.
Ives, Z. G.; Florescu, D.; Friedman, M.; Levy, A.; and
Weld, D. S. 1999. An adaptive query execution system
for data integration. In Proceedings of the ACM SIGMOD
International Conference on Management of Data.
Knoblock, C. A.; Lerman, K.; Minton, S.; and Muslea,
I. 2000. Accurately and reliably extracting data from the
web: A machine learning approach. IEEE Data Engineer-
ing Bulletin 23(4).
Knoblock, C. A.; Minton, S.; Ambite, J. L.; Muslea, M.;
Oh, J.; and Frank, M. 2001. Mixed-initiative, multi-source
information assistants. In Proceedings of the Tenth Inter-
national World Wide Web Conference.
Lamma, E.; Mello, P.; Milano, M.; Cucchiara, R.; Ga-
vanelli, M.; and Piccardi, M. 1999. Constraint propagation
and value acquisition: Why we should do it interactively.
In Proceedings of the Sixteenth International Joint Confer-
ence on Artificial Intelligence.
Mittal, S., and Falkenhainer, B. 1990. Dynamic constraint
satisfaction problems. In Proceedings of the Eighth Na-
tional Conference on Artificial Intelligence, 25–32.
Myers, K. L. 1996. A procedural knowledge approach to
task-level control. In Proceedings of the Fourth Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems.
Naughton, J. F.; DeWitt, D. J.; Maier., D.; et al. 2001.
The niagara internet query system. IEEE Data Engineering
Bulletin 24(2):27–33.
Saraswat, V., and van Hentenryck, P., eds. 1995. Princi-
ples and Practice of Constraint Programming. Cambridge,
MA: MIT Press.

