
Flexible and Scalable Query Planning in Distributed and
Heterogeneous Environments�

Jos�e Luis Ambite & Craig A. Knoblock
Information Sciences Institute and Department of Computer Science

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292, USA

fambite, knoblockg@isi.edu

Abstract

We present the application of the Planning by Rewrit-
ing (PbR) framework to query planning in distributed
and heterogeneous environments. PbR is a new
paradigm for e�cient high-quality planning that ex-
ploits plan rewriting rules and e�cient local search
techniques to transform an easy-to-generate, but pos-
sibly suboptimal, initial plan into a high-quality plan.
The resulting planner is scalable,
exible, has any-
time behavior, and, applied to query planning, yields
a novel combination of traditional query optimiza-
tion with heterogeneous information source selection.
Query planners are the core component of mediator
systems, which are becoming increasingly important
in a world of interconnected information, and consti-
tute excellent testbeds for planning technology.

Introduction

Query planning is a problem of considerable practical
signi�cance. It lies at the core of mediators, systems
that integrate information from multiple distributed
and heterogeneous sources, and traditional database
systems. Mediators are becoming increasingly impor-
tant given the current explosion of information acces-
sible through networks.
Query planning in mediators presents particular

challenges for planning technology. First, it is a highly
combinatorial problem, where complex queries have to
be composed from the relevant sources among hun-
dreds of available information sources. Second, query
plans often have to be produced rapidly. Third, �nd-
ing any valid plan is not enough, plan quality is also
critical. Finally, mediators need to incorporate tradi-
tional techniques for query planning in databases and
extend them with new capabilities, such as replanning
after failures and information gathering actions.
The Planning by Rewriting (Ambite & Knoblock

1997) paradigm is designed to address planning e�-
ciency and plan quality, while providing the bene�ts
of domain-independence. Its characteristics make it
especially well-suited for query planning. First, PbR

�Copyright c
1998, American Association for Arti�cial
Intelligence (www.aaai.org). All rights reserved.

provides a declarative domain-independent framework
that is easier to understand, maintain and extend than
traditional query optimizers. Di�erent query planning
domains can be conveniently speci�ed, for example,
for di�erent data models such as relational and object-
oriented. The uniform speci�cation of the planner fa-
cilitates its extension with new capabilities, such as
learning mechanisms or interleaving planning and exe-
cution. Moreover, a general planning architecture fos-
ters reuse in the domain speci�cations and the search
methods. For example, the speci�cation of the join
operator translates straightforwardly from a relational
to an object-oriented model. Likewise, search meth-
ods can be implemented once for the general planner
and the most appropriate con�guration chosen for each
particular domain.

Second, PbR scales better than other domain-
independent planning algorithms. Scalability is critical
because of the complexity of query planning in media-
tors. Third, an important advantage of PbR is its any-
time nature, which allows it to trade o� planning e�ort
and plan quality. For example, a typical quality metric
in query planning is the plan execution time. It may
not make sense to keep planning if the cost of the cur-
rent plan is small enough, even if a cheaper one could
be found. Finally, the generality of the PbR frame-
work has allowed the design of a novel combination of
traditional query optimization and source selection. In
previous work these two types of query processing had
been performed in di�erent stages. Because our plan-
ner integrates both optimizations in the same search
space, it can apply local search techniques and sup-
port anytime behavior.

The application of PbR to query planning in me-
diators, with the resulting integration of traditional
query optimization and source selection, is the main
contribution of this paper. The remainder of the pa-
per is structured as follows. First, we present the prob-
lem of query planning in distributed and heterogeneous
environments, and we brie
y review the Planning by
Rewriting paradigm. Then we describe in detail how
PbR is applied to query planning in mediators and
show scalability results for several planner con�gura-

tions. Finally, we discuss related work, future work
and conclusions.

Query Planning in Mediators

Mediators provide access to information in distributed
and heterogeneous environments. Query planning in
mediators involves generating a plan that e�ciently
computes a user query from the relevant information
sources. This plan is composed of data retrieval ac-
tions at diverse information sources and operations on
this data (such as those of the relational algebra: join,
selection, etc.). For an e�cient execution, the plan has
to specify, �rst, which data processing operations are
going to be needed and in what order, and, second,
from which sources each di�erent piece of information
should be obtained. The �rst problem has been the
focus of traditional query optimization in databases.
The second problem, source selection, is characteristic
of distributed and heterogeneous systems. The highly
combinatorial nature of query planning in mediators
arises from these two independent sources of complex-
ity, namely, the ordering of data processing operators
and the selection of relevant information sources for
terms in a given query.
Mediators need to provide mechanisms to resolve the

semantic heterogeneity among the di�erent sources.
Our approach follows that of the SIMS mediator sys-
tem (Arens, Knoblock, & Shen 1996; Knoblock & Am-
bite 1997). Brie
y, SIMS assumes that a set of in-
formation sources such as databases, knowledge bases,
web servers, etc., supply data about a particular appli-
cation domain. The system designer speci�es a global
model of the application domain and de�nes the con-
tents of the sources in terms in this global model. A
SIMS mediator integrates and provides a single point
of access for all the information in such a domain. The
user interacts directly with the SIMS mediator express-
ing queries against the domain model, without knowl-
edge about the schemas or locations of the sources.
The global model and the user queries are speci�ed in
the Loom description logic (MacGregor 1988), which is
the knowledge representation subsystem of the SIMS
mediator. Selecting the sources, translating between
global domain terms and source terms, and ordering
the operations is the task of the query planner.1

The speci�cation of the operators for distributed
query processing and the encoding of information goals
is presented in (Knoblock 1996). A sample operator,
join, is shown in Figure 1. The join operator takes two
subqueries, that are available locally at the mediator
and combines them using some conditions to produce
the joined query. Other operators include retrieve, se-
lection, assignment, and union. A sample information
goal is shown in Figure 2. This goal asks to send to

1We explain how the knowledge representation system
and the query planner interact in the section on the appli-
cation of PbR to query planning in mediators.

the output device of the mediator all the names of air-
ports in Tunisia. Figure 3 shows two plans, of di�erent
quality, that compute this query by joining data from
di�erent sources. Query processing in mediators is fur-
ther described after we review the general Planning-by-
Rewriting framework.

(define (operator join)
:parameters (?query ?jconds ?query-a ?query-b)
:precondition
(:and
(available local ?query-a)
(available local ?query-b)
(join-query ?query ?jconds ?query-a ?query-b))

:effect (available local ?query))

Figure 1: Sample Operator

(available output
(sims-retrieve (?ap_name)
(:and (airport ?aport)

(country-name ?aport "Tunisia")
(port-name ?aport ?ap_name))))

Figure 2: Sample Information Goal

Review of Planning by Rewriting

Planning by Rewriting (Ambite & Knoblock 1997) fol-
lows the iterative improvement style of many optimiza-
tion algorithms. The framework works in two phases:

1. E�ciently generate an initial solution plan.

2. Iteratively rewrite the current solution plan in order
to improve its quality using a set of declarative plan
rewriting rules until either an acceptable solution is
found or a resource limit is reached.

In Planning by Rewriting a plan is represented by a
graph notation in the spirit of partial-order causal-link
planners such as UCPOP (Penberthy & Weld 1992).
The nodes are domain actions. The edges specify a
temporal ordering relation among nodes, imposed by
causal links and ordering constraints.
A plan rewriting rule, akin to term and graph rewrit-

ing rules, speci�es the replacement under certain con-
ditions of a partial plan by another partial plan. Our
system ensures that the rewritten plan remains com-
plete and consistent. These rules are intended to im-
prove the quality of the plans. Figures 5, 7, and 8 in
the next section are examples of plan rewriting rules
in the query planning domain.
The following is a list of the main issues in Planning

by Rewriting. A detailed description of the general
Planning by Rewriting paradigm is given in (Ambite
& Knoblock 1997). The next section discusses these
issues in the context of query planning.

Figure 3: Sample Query Plans: Optimal (left) and Suboptimal (right)

� E�cient generation of an initial solution plan. In
many domains obtaining a possibly suboptimal ini-
tial plan is easy.

� De�nition and application of the plan rewriting
rules. The user can specify appropriate rewriting
rules for a domain in a simple, but quite general, rule
de�nition language. These rules are matched against
the current plan and generate new transformed plans
of possibly better quality.

� Plan quality measure. This is the plan cost function
of the application domain that should be optimized
during the planning process.

� Search of the space of rewritings. There are many
possible ways of searching the space of rewritten
plans, for example, gradient descent, simulated an-
nealing, etc.

Application of Planning by Rewriting
to Query Planning in Mediators

For the Planning by Rewriting framework to be appli-
cable, there must exist an e�cient mechanism to gen-
erate an initial solution plan. It is desirable that this
mechanism also be able to produce several (possibly
random) initial plans on demand. Both properties are
satis�ed by the query planning domain. Initial query
evaluation plans can be e�ciently obtained as random
depth-�rst search parses of the query. These initial
plans although correct may be of very low quality.
For our query planning domain the quality of a plan

is its execution cost. The execution cost of a dis-
tributed query plan depends on the size of intermediate
results, the cost of performing data manipulation oper-
ations (e.g., join, selection, etc.), and the transmission
through the network of the intermediate results from
the remote sources to the mediator. We estimate the
execution cost based on the expected size of the in-
termediate results. We assume that the transmission
and processing costs are proportional to the size of
the data involved. The query size estimation is com-
puted from simple statistics obtained from the source
relations, such as number of tuples in a relation, the
number of distinct values for each attribute, and the
maximumand minimumvalues for numeric attributes.

A randomly generated initial plan for the query in
Figure 2 is shown on the right side of Figure 3. This
plan has a much lower quality than the optimal plan
(shown on the left in Figure 3). Note the three se-
quential retrievals from the same source, geoh, at the
same host, higgledy.isi.edu, not taking advantage
of the possibility of executing the queries in parallel
at di�erent hosts. Also it is generally more e�cient
to perform selections as early as possible in order to
reduce the data that the subsequent steps of the plan
must process. This initial plan performs the selection
step last as opposed to the plan on the left in Figure 3
where it is done immediately after the corresponding
retrieve.

The core of the planning process consists of the iter-
ative application of a set of plan rewriting rules until
a plan of acceptable quality is found. In our query
planning domain, the rules can be grouped into three
classes. The �rst class of rules is derived from the
properties of the distributed environment. A logical
description of these rules is shown in Figure 4. The
Source-Swap rule allows the planner to explore the
choice of alternative information sources that can sat-
isfy the same query but may have di�erent retrieval or
transmission costs. This rule is not only necessary for
query plan optimization but it also serves as a repair
rule when planning and execution are interleaved. Sup-
pose that the planner started executing a plan and one
of the sources needed went down, then the subquery
sent to that source will fail. By applying this rule PbR
can repair the plan and complete the execution without
replanning and re-executing from scratch. The other
three rules rely on the fact that, whenever possible, it
is generally more e�cient to execute a group of oper-
ators together at a remote information source than to
transmit the data over the network and execute the op-
erations at the local system. Note the need for check-
ing the capabilities of the information sources. We
do not assume that sources are full databases. They
may have no query processing capabilities (for exam-
ple, wrapped WWW pages) or support very limited
types of queries (for example WWW forms). Figure 5
shows the Remote-Join-Eval rule in the input syntax
accepted by the PbR planner. This rule speci�es that
if in a plan there exist two retrieve operators from the

same remote database which are consequently joined,
and the remote source is capable of performing joins,
the system can rewrite the plan into one that contains
a single retrieve operation that pushes the join opera-
tion to the remote database.

Source-Swap:
retrieve(Q;Source1) ^
alternative-source(Q;Source1; Source2)
) retrieve(Q;Source2)

Remote-Join-Eval:
(retrieve(Q1; Source) 1 retrieve(Q2; Source))
^capability(Source; join)
) retrieve(Q1 1 Q2; Source)

Remote-Selection-Eval:
�Aretrieve(Q1; Source) ^ capability(Source; selection)
) retrieve(�AQ1; Source)

Remote-Assignment-Eval:
assignX:=f(Ai)retrieve(Q1(Ai); Source) ^
capability(Source; assignment)
) retrieve(assignX:=f(Ai)Q1(Ai); Source)

Figure 4: Transformations (Distributed Environment)

(define-rule :name remote-join-eval
:if (:operators

((?n1 (retrieve ?query1 ?source))
(?n2 (retrieve ?query2 ?source))
(?n3 (join ?query ?jc ?query1 ?query2)))
:constraints ((capability ?source 'join)))

:replace (:operators (?n1 ?n2 ?n3))
:with (:operators

((?n4 (retrieve ?query ?source))))

Figure 5: Remote-Join-Eval Rewriting Rule

The second class of rules are derived from the com-
mutative, associative, and distributive properties of
the operators of the relational algebra. A logical de-
scription of these rules is shown in Figure 6. The
Join-Swap rule in the PbR syntax is shown in Fig-
ure 7. This rule speci�es that two consecutive joins
operators can be reordered and allows the planner to
explore the space of join trees. In our query plan-
ning domain (Knoblock 1996) queries are expressed
as complex terms. The PbR rules use the interpreted
predicates in the constraints �eld to manipulate such
query expressions. For example, the join-swappable
predicate checks if the two join operators have queries
that can be exchanged. This user-de�ned predicate
takes as input the description of the two join opera-
tions (the �rst eight variables) and produces as output
the description of the two reordered join operations (as
bindings for the last eight variables). If two subqueries
do not share any attributes, the join degenerates into a
cross-product. Although a cross-product is ine�cient,
such rewritings are allowed for completeness.
The third set of rewriting rules arises from the het-

Join-Swap:
Q1 1 (Q2 1 Q3), Q2 1 (Q1 1 Q3), Q3 1 (Q2 1 Q1)

Selection-Swap: �A(Q1 1 Q2), �AQ1 1 Q2

Assignment-Swap:
assignX:=f(Ai)(Q1(Ai) 1 Q2),
assignX:=f(Ai)Q1(Ai) 1 Q2

Join-Union-Distribution:
Q1 1 (Q2 [Q3), (Q1 1 Q2) [(Q1 1 Q3)

Figure 6: Transformations (Relational Algebra)

(define-rule :name join-swap
:if (:operators

((?n1 (join ?q1 ?jc1 ?sq1a ?sq1b))
(?n2 (join ?q2 ?jc2 ?sq2a ?sq2b)))

:links (?n1 ?n2)
:constraints
(join-swappable ?q1 ?jc1 ?sq1a ?sq1b ;in

?q2 ?jc2 ?sq2a ?sq2b ;in
?q3 ?jc3 ?sq3a ?sq3b ;out
?q4 ?jc4 ?sq4a ?sq4b));out

:replace (:operators (?n1 ?n2))
:with (:operators

((?n3 (join ?q3 ?jc3 ?sq3a ?sq3b))
(?n4 (join ?q4 ?jc4 ?sq4a ?sq4b)))))

Figure 7: Join-Swap Rewriting Rule

erogeneous nature of the environment. As we ex-
plained earlier, a mediator needs to reconcile the se-
mantic di�erences among the sources. A common ap-
proach (Arens, Knoblock, & Shen 1996; Levy, Rajara-
man, & Ordille 1996; Kwok & Weld 1996) is to de�ne
each source class as a logical formula over classes in a
global domain model. In the SIMS mediator, for each
class and set of attributes in the domain model the
system automatically compiles axioms that describe
how to obtain such information by combining a set
of sources. A set of maximal axioms is precompiled
when the domain model is de�ned. The set of relevant
axioms for a given user query can be e�ciently com-
puted by instantiating these maximal axioms at run
time. A detailed explanation of this process lies out-
side the scope of this paper, see (Ambite et al. 1998).
For the purposes of this paper we will consider these
axioms as given. Our system automatically derives
query-speci�c plan rewriting rules from these integra-
tion axioms in order to explore the alternative ways of
obtaining each class of information in a user query. A
sample axiom for the query in Figure 2 is:

airport(country-code port-name) ,
airport(geoloc-code port-name) ^
location(geoloc-code country-code)

This axiom states that in order to obtain the at-
tributes country-code and port-name of the airport
class, the system needs to join data from two sources.
The �rst source provides geoloc-code and port-name
of airports, and the second provides geoloc-code

and country-code of geographic locations. In our
model the class airport is a subclass of location
so it inherits its attributes. Thus, the airport class
has three attributes: geoloc-code, country-code,
and port-name. The corresponding rewriting rule
is shown in Figure 8. This rule states that if in a
plan there is a set of steps (?nodes) that obtain at-
tributes country-code and port-name of the airport
class, the planner could alternatively obtain this infor-
mation using the axiom shown above. That is, the
?nodes identi�ed in the rule antecedent will be re-
moved from the plan and replaced by the join and the
two retrieve steps in the rule consequent. This type of
rewriting rules resemble task expansion in Hierarchical
Task-Network Planning (Erol, Nau, & Hendler 1994;
Tate 1977), although in PbR they are used for local
search instead of generative planning.

(define-rule :name
(<=> (airport country-code port-name)

(:and (airport geoloc-code port-name)
(location geoloc-code country-code)))

:if (:constraints
((identify-axiom-steps
(airport country-code port-name) ?nodes)))

:replace (:operators ?nodes)
:with
(:operators
((?n1 (retrieve port@local

(airport geoloc-code port-name)))
(?n2 (retrieve geoh@higgledy.isi.edu

(location geoloc-code country-code)))
(?n3 (join (airport country-code port-name)

((= geoloc-code.1 geoloc-code.2))
(airport geoloc-code.1 port-name)
(location geoloc-code.2 country-code))

))))

Figure 8: Rewriting Rule for Integration Axiom

The space of rewritings for query planning is too
large for complete search methods to provide an ac-
ceptable performance. The fact that in many cases,
such as query planning, the quality of a plan can only
be estimated supports the argument for possibly in-
complete search strategies, such as gradient descent.
The e�ort spent in �nding the global optimum may
not be justi�ed given that the cost function only cap-
tures approximately the real costs in the domain. As
the accuracy of the cost model increases the plan-
ner may perform a more complete search of the plan
space. In these cases simulated annealing may be
more appropriate than strict gradient descent. In or-
der to explore the space of query plans our planner
currently uses variations of gradient descent (steepest
and �rst-improvement) with random restart to escape
low-quality local minima and a �xed-length random
walk to traverse plateaus.

Results in Query planning
We performed two experiments to test the scalability
of the PbR approach applied to query planning. In the
�rst experiment, we compare the behavior of PbR and
Sage in a distributed query planning domain as the size
of the queries increases. In the second experiment, we
compare Sage and PbR in a distributed and heteroge-
neous domain by increasing the number of alternative
sources per domain class.
For the �rst experiment we generated a synthetic do-

main for the SIMS mediator and de�ned a set of con-
junctive queries involving from 1 to 20 domain classes.
The queries have one selection on each class. Each
source contains two classes and can perform remote
operations. We present results for three planners:

Sage: This is the original query planner (Knoblock
1995; 1996) for the SIMS mediator, which performs
a best-�rst search with a heuristic commonly used
in query optimization that explores only the space
of left join trees. It generates optimal left-tree query
plans.

Initial: This is the initial plan generator for PbR. It
generates random depth-�rst search parses of the
query. It is the fastest planner but may produce
very low quality plans.

PbR: We used the Join-Swap, Remote-Selection-
-Eval, Remote-Join-Eval, and Source-Swap
rewriting rules introduced above. The search strat-
egy is �rst-improvement gradient descent and it
picks the best plan after three random restarts.

The results of the �rst experiment are shown in Fig-
ures 9 and 10. Figure 9 shows the planning time in
a logarithmic scale. The times for PbR include both
the generation of the three random initial plans and
their rewriting. The times for Initial are the average
of the three random depth-�rst parses of each query.
Sage is able to solve queries involving up to 8 classes,
but larger queries cannot be solved within the search
limit of 200,000 nodes. PbR scales better and solved
all queries with low cost plans. Figure 10 shows the
quality of the query plans for the three planners. A log-
arithmic scale is used because of the large absolute val-
ues of the plan costs. PbR rewrites the very poor qual-
ity plans generated by Initial into high-quality plans.
The quality of the plans produced by PbR and Sage
is comparable for the range tractable for Sage (in fact
PbR produces better quality plans because it searches
the larger space of bushy query trees) and beyond that
range it scales gracefully.
In the second experiment, we test the scalability of

PbR as the number of alternative sources for a class
of information in the domain increases. We de�ned a
set of synthetic domains with only �ve domain classes
but increasing the number of sources per domain class
from 1 to 100. In Figure 11 we show the planning time
for PbR and Sage for queries involving four and �ve
classes. Sage can solve the �ve-class queries in domains

0.01

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20

T
im

e
(in

 C
P

U
 s

ec
on

ds
)

Number of Classes per Query

Sage
Initial
PbR

Figure 9: Time: Distributed

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

0 2 4 6 8 10 12 14 16 18 20

Q
ue

ry
 C

os
t

Number of Classes per Query

Sage
Initial
PbR

Figure 10: Quality: Distributed

up to �ve sources per class and the four-class queries up
to ten sources per class within its 200000 nodes search
limit. PbR scales up much better solving the queries
for all the domains. In order to control for quality we
assigned the same cost of access to all sources. Thus
we know that the cost of the optimal plan is constant.
Figure 12 shows that PbR closely approximates the
optimal cost regardless of the increasing complexity of
the search space and the very high cost of many initial
plans.

Related Work

In the database literature, query optimization has been
extensively studied (Jarke & Koch 1984). Query op-
timizers attempt to both �nd the most e�cient alge-
braic form of a query and to choose speci�c methods
to implement each data processing operation (Graefe
1993). For example, a join can be performed by a va-
riety of algorithms, such as nested loops, merge scan,
hash join, etc. In the present paper we have focused
on the algebraic part of query optimization because
in our distributed environment the mediator does not

0.1

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

T
im

e
(in

 C
P

U
 s

ec
on

ds
)

Number of Sources per Class

Sage (4)
Sage (5)
Initial (4)
Initial (5)
PbR (4)
PbR (5)

Figure 11: Time: Distributed and Heterogeneous

100

1000

10000

100000

0 10 20 30 40 50 60 70 80 90 100

Q
ue

ry
 C

os
t

Number of Sources per Class

Sage (4)
Sage (5)
Initial (4)
Initial (5)
PbR (4)
PbR (5)

Figure 12: Quality: Distributed and Heterogeneous

have any control over the optimizations employed in
remote databases, and, so far, the size of data the
mediator needs to manipulate locally has not required
very sophisticated consideration of implementation al-
gorithms.

The research on query optimization most relevant
to our approach lies in three areas. The �rst area is
distributed query optimization. An algorithm for dis-
tributed query optimization based on query tree trans-
formation is presented in (Chu & Hurley 1982). Our
relational algebra plan rewriting rules are similar to
their transformations, but our system accepts arbitrary
speci�cation of rules as opposed to a hand-coded algo-
rithm. The second area is declarative and extensible
query optimizers. An extensible query optimizer based
on query rewriting was implemented for the Startbust
system (Pirahesh, Hellerstein, & Hasan 1992). They
also de�ne declarative rules to manipulates graphs,
but they rely heavily in procedural attachments to im-
plement the preconditions and e�ects of rules. They
handle full SQL queries on centralized databases, but
they do not deal with semantic heterogeneity. Our

rules currently do not cover the aggregation operators
of SQL, although we could incorporate rewrites simi-
lar to those in (Yan & Larson 1995). Another in
u-
ential work in query optimization is Exodus (Graefe
& DeWitt 1987). Exodus is a query optimizer gen-
erator that compiles a query optimizer out of a given
set of operators, transformation rules and the code for
the methods that implement each operator. Although
Exodus strives for extensibility, its operator de�nition
language is more restricted than ours. Also it has a
�xed search strategy (a form of hill climbing). Exodus
focuses more in implementation methods for relational
operators and it operates on centralized databases.
Volcano (Graefe et al. 1994), a successor of Exodus,
provides a general implementation of data processing
operations based on iterators, but does not o�er more
generality on algebraic query optimization. Interest-
ingly, it provides a simple form of contingency plan-
ning in which two alternative implementation meth-
ods are included in the plan and which one is cho-
sen depends on the value of a parameter at execution
time. We expect that PbR would be able to provide
more general interleaving of planning and execution
(Knoblock 1995). The third area of work is on e�cient
search algorithms for query planners (Swami 1989;
Ioannidis & Kang 1990). Since our approach is based
on a domain-independent planner it is more
exible
than previous research, supporting the integration of
di�erent domains (operators and rewriting rules) and
search algorithms in an uniform and easily extensible
framework.

Despite the practical importance of query planning,
there has been little work in the planning literature.
Occam (Kwok & Weld 1996) is a planner for infor-
mation gathering that focuses on the source selection
problem. Our work combines both source selection
and traditional query optimization. Sage (Knoblock
1996) considers plan quality and supports interleaving
of planning and execution. PbR does not currently in-
terleave planning and execution, but it is as general
as Sage with better scaling properties as shown in the
results section.

The framework of Planning by Rewriting is related
to several pieces of previous work in AI planning.
Most signi�cantly it is a generalization of plan merg-
ing (Foulser, Li, & Yang 1992) and it follows on iter-
ative repair ideas such as those in (Minton 1992) and
(Zweben, Daun, & Deale 1994). A more detailed dis-
cussion appears in (Ambite & Knoblock 1997).

Finally, PbR can be understood as an instantiation
of the local search idea, which has a long tradition
in combinatorial optimization (Papadimitriou & Stei-
glitz 1982). However, instead of hard-coding a speci�c
algorithm for each problem, PbR provides a general
framework in which a problem is cast as a declarative
planning speci�cation and a set of declarative rewrit-
ing rules, while the bulk of the program consisting of
the rewriting and search engine is reused.

Conclusions and Future Work

We have presented the application of the Planning
by Rewriting framework to the challenging domain of
query planning in mediators. As a result we have de-
veloped a novel combination of traditional query opti-
mization and source selection. PbR explores this inte-
grated optimization space using e�cient local search
methods that make the planner scalable to large
queries and domains with large number of alternative
sources.

Query planning is an excellent domain to test plan-
ning techniques, and, in particular our Planning by
Rewriting framework. We plan to extend the capabil-
ities of PbR in several dimensions: more sophisticated
query planning domains, interleaving of planning and
execution, insertion of information gathering actions,
and new search methods. More complex query plan-
ning domains will serve both to test the expressiveness
of our rule de�nition language and to compare with
query optimizers in the database literature. Interleav-
ing planning and execution is necessary in order to deal
e�ectively with unexpected situations in the environ-
ment such as database or network failures. It also en-
ables the planner to perform dynamic query optimiza-
tion in which plans depend on run-time conditions,
and to insert information gathering actions (Ashish,
Knoblock, & Levy 1997).

We plan to explore a variety of search techniques
for query planning, for example, variable depth rewrit-
ing. In variable depth search a sequence of rewritings
is applied atomically. This allows the planner to over-
come initial cost increases that eventually would lead
to strong cost reductions. This idea leads to the cre-
ation of rule programs which is particularly appeal-
ing in the query planning domain in which sequences
of rewritings are natural. For example, a sequence of
Join-Swap transformations may put two retrieve oper-
ators on the same database together in the query tree
and then Remote-Join-Eval would collapse the ex-
plicit join operator and the two retrieves into a single
retrieval of a remote join.

Acknowledgments

This work was supported in part by the United States
Air Force under contract number F49620-98-1-0046, by
the Rome Laboratory of the Air Force Systems Com-
mand and the Defense Advanced Research Projects
Agency (DARPA) under contract number F30602-97-
2-0352, and by a research grant from General Dynam-
ics Information Systems. The views and conclusions
contained in this paper are the authors' and should
not be interpreted as representing the o�cial opinion
or policy of any of the above organizations or any per-
son connected with them. The authors wish to thank
the anonymous reviewers for their detailed and useful
comments.

References

Ambite, J. L., and Knoblock, C. A. 1997. Planning by
rewriting: E�ciently generating high-quality plans.
In Proceedings of the Fourteenth National Conference
on Arti�cial Intelligence.

Ambite, J. L.; Knoblock, C. A.; Muslea, I.; and
Philpot, A. 1998. Compiling source descriptions for
e�cient and
exible information integration. Submit-
ted.

Arens, Y.; Knoblock, C. A.; and Shen, W.-M. 1996.
Query reformulation for dynamic information inte-
gration. Journal of Intelligent Information Systems,
Special Issue on Intelligent Information Integration
6(2/3):99{130.

Ashish, N.; Knoblock, C. A.; and Levy, A. 1997. In-
formation gathering plans with sensing actions. In
Proceedings of the Fourth European Conference on
Planning.

Chu, W. W., and Hurley, P. 1982. Optimal query
processing for distributed database systems. IEEE
Transactions on Computers 31(9):835{850.

Erol, K.; Nau, D.; and Hendler, J. 1994. UMCP:
A sound and complete planning procedure for hier-
archical task-network planning. In Proceedings of the
Second International Conference on Arti�cial Intelli-
gence Planning Systems, 249{254.

Foulser, D. E.; Li, M.; and Yang, Q. 1992. Theory and
algorithms for plan merging. Arti�cial Intelligence
57(2{3):143{182.

Graefe, G., and DeWitt, D. J. 1987. The EXO-
DUS optimizer generator. In Proceedings of the ACM
SIGMOD International Conference on Management
of Data.

Graefe, G.; Cole, R. L.; Davison, D. L.; McKenna,
W. J.; and Wolniewicz, R. H. 1994. Extensible query
optimization and parallel execution in volcano. In
J. C. Freytag, G. Vossen and D. Maier., ed., Query
Processing for Advanced Database Applications. San
Francisco, California: Morgan Kaufmann. 305{381.

Graefe, G. 1993. Query evaluation techniques for
large databases. ACM Computing Surveys 25(2):73{
170.

Ioannidis, Y., and Kang, Y. C. 1990. Randomized al-
gorithms for optimizing large join queries. In Proceed-
ings of the ACM SIGMOD International Conference
on Management of Data, 312{321.

Jarke, M., and Koch, J. 1984. Query optimiza-
tion in database systems. ACM Computing Surveys
16(2):111{152.

Knoblock, C. A., and Ambite, J. L. 1997. Agents for
information gathering. In Bradshaw, J., ed., Software
Agents. Menlo Park, CA: AAAI/MIT Press.

Knoblock, C. A. 1995. Planning, executing, sensing,
and replanning for information gathering. In Proceed-

ings of the Fourteenth International Joint Conference
on Arti�cial Intelligence.

Knoblock, C. A. 1996. Building a planner for in-
formation gathering: A report from the trenches. In
Proceedings of the Third International Conference on
Arti�cial Intelligence Planning Systems.

Kwok, C. T., and Weld, D. S. 1996. Planning to
gather information. In Proceedings of the Thirteenth
National Conference on Arti�cial Intelligence.

Levy, A. Y.; Rajaraman, A.; and Ordille, J. J. 1996.
Query-answering algorithms for information agents.
In Proceedings of the Thirteenth National Conference
on Arti�cial Intelligence.

MacGregor, R. 1988. A deductive pattern matcher.
In Proceedings of the Seventh National Conference on
Arti�cial Intelligence.

Minton, S. 1992. Minimizing con
icts: A heuristic re-
pair method for constraint-satisfaction and scheduling
problems. Arti�cial Intelligence 58(1-3):161{205.

Papadimitriou, C. H., and Steiglitz, K. 1982. Com-
binatorial Optimization: Algorithms and Complexity.
Englewood Cli�s, NJ: Prentice Hall.

Penberthy, J. S., and Weld, D. S. 1992. UCPOP:
A sound, complete, partial order planner for ADL.
In Third International Conference on Principles of
Knowledge Representation and Reasoning, 189{197.

Pirahesh, H.; Hellerstein, J. M.; and Hasan, W. 1992.
Extensible/rule based query rewrite optimization in
starburst. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data.

Swami, A. N. 1989. Optimization of large join queries:
Combining heuristic and combinatorial techniques. In
Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, 367{376.

Tate, A. 1977. Generating project networks. In Pro-
ceedings of the Fifth International Joint Conference
on Arti�cial Intelligence, 888{893.

Yan, W. P., and Larson, P.-A. 1995. Eager aggre-
gation and lazy aggregation. In McLeod, D.; Sacks-
Davis, R.; and Schek, H., eds., Proceedings of 21th
International Conference on Very Large Data Bases.

Zweben, M.; Daun, B.; and Deale, M. 1994. Schedul-
ing and rescheduling with iterative repair. In Intelli-
gent Scheduling. San Mateo, CA: Morgan Kaufman.
241{255.

