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Abstract—Using the Matt structure alignment program, we take a tour of protein space, producing a hierarchical clustering scheme

that divides protein structural domains into clusters based on geometric dissimilarity. While it was known that purely structural,

geometric, distance-based measures of structural similarity, such as Dali/FSSP, could largely replicate hand-curated schemes such as

SCOP at the family level, it was an open question as to whether any such scheme could approximate SCOP at the more distant

superfamily and fold levels. We partially answer this question in the affirmative, by designing a clustering scheme based on Matt that

approximately matches SCOP at the superfamily level, and demonstrates qualitative differences in performance between Matt and

DaliLite. Implications for the debate over the organization of protein fold space are discussed. Based on our clustering of protein space,

we introduce the Mattbench benchmark set, a new collection of structural alignments useful for testing sequence aligners on more

distantly homologous proteins.

Index Terms—SCOP, hierarchical classification, structure alignment, fold space, automated classification.
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1 INTRODUCTION

THE accepted gold-standard hierarchical classification
systems for protein structural domains, SCOP [23], [2]

and CATH [24], [25], [12], have long relied on manual
classification methods to organize the hierarchy and place
new protein structures within their framework, though
CATH always maintained semiautomated methods. Even
now, where both SCOP and CATH have switched to hybrid
manual/semiautomated methods [12], the automatic meth-
ods are still attempting to fit new protein domain folds into
an initial classification schema that was derived manually.
New modifications to the clustering structure continue to be
made by expert biologists based on sequence, evolutionary,
and functional information, not solely based on geometric
similarity of the placement of atoms in the protein backbone.

On the other hand, pairwise protein structural alignment
programs superimpose protein domains to minimize a
distance value-based solely on geometric criteria [9]. When
such a scheme is coupled with one of many possible methods
that create hierarchical clusters based on pairwise distances
[31], the result is a fully automatic, unsupervised partitioning
of protein structural domains into hierarchical classification
systems. Such “bottom-up” protein structure classifications,
as they are called in [35], have been previously designed
based on VAST [20], [11], Dali [17], [18], [16], and others [39],
and have both practical and theoretical appeal. Practically,
removing a human expert speeds the assignment of new
protein structures to clusters. Theoretically, a mathematical
characterization of protein similarity and dissimilarity, if it
proves biologically useful or meaningful, is objective,
uniformly applied, and gives a human-expert-independent
map of the known protein universe.

Unfortunately, it has been found in multiple previous
papers that SCOP and CATH hierarchical classifications of
protein structure both differ substantially from each other
[13], [10], [8] and also from the classification schema that
result from automatic bottom-up unsupervised clusterings
of protein space [9], [13], [32], [8], [30], even when protein
chains are broken up into the more modular unit of “protein
domain,” as is now done by SCOP, CATH, and most
automated schemes [18], [35]. Previous papers have char-
acterized those protein domain clusters on which SCOP and
CATH agree [13], [10], [8]. Previous automatic methods
seem to be able to be made to match the closest-homology
family level of the SCOP hierarchy, but were found to
diverge considerably at the more distantly homologous
superfamily and at the quite remotely homologous fold levels
of the SCOP hierarchy [9], [13], [32], [19], [30], [34], with
similar divergence from CATH [13], [14], [8]. This is
unfortunate, because, for example, the superfamily level
of the SCOP hierarchy clusters proteins that share similar
topologies and are believed to have evolved from a
common ancestor [23], allowing important inferences to
be made about function [30], [35]. Thus, the superfamily
level of the SCOP hierarchy has strong biological utility (we
focus on SCOP rather than CATH for the remainder of this
paper; similar statements can be made about CATH): if a
fully automated “bottom-up” distance-based clustering
methods cannot approximately replicate it, it is not clearly
meaningful or useful.

This ties into a spirited debate among the computational
proteins community, about the central question of whether
“protein fold space” is discrete or continuous [28]. A
continuous view comes from the theory that modern
protein evolved by aggregating fragments of ancient
proteins [28], [14], [35], [29]. A discrete view comes from
evolutionary process constrained by thermodynamic stabi-
lity of the structure [29]. In particular, if most mutations
move the conformation of a stable folded chain away from
an “island” of thermodynamic structural stability, then
stabilizing selection will promote fold conservation, and
movements between folds will be uncommon [6]. If
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geometric distance and evolutionary relation approximately
coincide, then an automatic method that approximately
matches SCOP at the superfamily level is conceivable.

In this paper, we present a bottom-up automatic
hierarchical classification scheme for protein structural
domains based on the multiple structure alignment pro-
gram Matt [21]. Matt, which stands for “multiple alignment
with translations and twists” was specifically developed by
our group to geometrically align more distantly homo-
logous protein domains. It accomplishes this by allowing
flexibility in the form of small, geometrically impossible
bends and breaks in a protein structure, in order to distort it
into alignment with another protein structure. Matt was
shown to perform particularly well compared to competing
multiple and pairwise structure alignment programs on
proteins whose homology was similar to the SCOP super-
family level [21], [27], [3]. Surprisingly, we find that our
automatic classification scheme based on a pairwise
distance value derived from Matt, coupled with a straight-
forward neighbor-joining algorithm to construct the hier-
archical clusters [33] matches SCOP better than previous
automatic methods, at the superfamily, and even, to some
extent, at the fold level. In comparison, the same hierarch-
ical clustering method using a pairwise distance value
based on DaliLite [16], a recent implementation of the Dali
structural alignment program, replicates previous findings
and cannot mimic SCOP on the superfamily level of the
SCOP hierarchy. We, thus, conclude that perhaps the
threshold at which protein domain space is naturally
discrete extends at least through the superfamily level,
and that perhaps the manually curated SCOP hierarchy has
geometric coherence at the superfamily level (and in some
parts of the fold hierarchy, see Section 4) so these clusters
are intrinsic properties of the geometry of fold space, not
just human-generated categories.

A practical implication of our results may be that
automatic methods with a Matt-based distance value may
ultimately help speed the assignment of new protein
structural domains to the appropriate place in the SCOP
hierarchy. We note, however, that in fact determining where
to place a new structure into an existing hierarchy is a much
simpler problem (analogous to “supervised learning”) than
creating an entire cluster hierarchy from an automatic
pairwise distances from scratch (analogous to “unsuper-
vised learning”), and fairly successful methods already exist
to correctly place a new structure into the existing SCOP
hierarchy [10], [4], [5]. Thus, the primary interest in this
result may be that if a Matt distance value can “recover”
SCOP superfamilies to a great extent, this validates both
automatic and hand-curated methods of classification, and
the entire concept of “superfamily” at the same time.
Namely, at this level of structural similarity, it appears we
may not often have to choose between evolutionary and
geometric criteria for structural domain similarity.

A byproduct of our organization of protein space is
that by looking at where agreement of our Matt clusters
with SCOP is exact, we can construct a new set of gold-
standard protein multiple structure alignments of dis-
tantly homologous proteins (and associated decoy sets) for
which we can have confidence that the Matt structural
alignment is meaningful. Thus, we introduce “Mattbench,”

a set of structural alignments at two levels: superfamilies
(consisting of 225 alignments with between 3 and
15 proteins in each alignment set), and folds (consisting
of 34 alignments with between 3 and 15 proteins in each
alignment set. Mattbench is meant as an alternative to the
SABmark [36] benchmark set, which also attempts to
mimic SCOP, but Mattbench’s alignment sets only cover
those subsets of SCOP superfamilies and folds where Matt
finds geometric consistency. Thus, while Mattbench is
slightly less complete than SABmark in coverage, its
alignments are likely to be more consistent, making it a
better benchmark on which to test sequence alignment
methods. Complete details on how Mattbench is con-
structed appear in Section 2.6; Mattbench itself can be
downloaded from http://www.bcb.tufts.edu/mattbench.

Finally, we remark that this work, like most recent work
that compares different hierarchical classification systems,
already presumes the “structural domain” as the basic
structural unit (as do SCOP and CATH), where many protein
structures contain multiple structural domains [18]. The
problem of partitioning a protein into its structural domains
is far from trivial [37], [15], but there has been much recent
progress in computational methods that split a protein
structure automatically into domains and find the domain
boundaries [15], [26]. In any case, that is not the focus of our
current paper, and we assume that the protein has already
been correctly split into domains as a preprocessing step.

An extended abstract of this paper appeared in [7].

2 METHODS

2.1 Representative Proteins

From the 110,776 protein domains of known structure from
ASTRAL version 1.75, we construct a set of representative
protein domains filtered to 80 percent identity (according to
BLASTP [1]) and a minimum sequence length of 40 residues.
This provides a reasonable first pass for identifying groups of
similar protein domains, and allows us to shrink the search
space significantly. The set of clusters was constructed by
running a greedy agglomerative minimum-linkage cluster-
ing algorithm based on this threshold of 80 percent sequence
identity. This produced 10,418 groups of proteins that shared
significant sequence identity.

From each cluster, we identified a representative. First,
we discard engineered or mutant proteins, and any proteins
whose X-ray crystallography resolution is >5:0 �A, from any
cluster that has alternative representatives that meet our
criteria. Next, treating each cluster as a (potentially, but not
necessarily complete) graph whose nodes are the constitu-
ent proteins and whose edge weights are the sequence
identity values from the BLASTP alignments with at least
80 percent identity, we consider the weighted degree (sum
of edge weights) of each protein, and we favor the proteins
with greatest weighted degree. We break ties first by the
date the structure was determined (preferring more recent
structures), then by the quality of the solved structure. The
remaining ties typically come from sequences with �99%

identity, and we break them arbitrarily. The resulting set
has 10,418 representative protein domains.
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2.2 Distance Values

For these 10,418 representatives, we performed an all-pairs
structural alignment using both DaliLite [16], the structural
aligner used in the FSSP classification scheme [18] and Matt.
In each case, a distance (or dissimilarity) measure is derived
for each pair. For DaliLite, the Z-score proved to be a good
measure, so we used it without further modification.

For Matt, we used a new distance value that is a
modification of the p-value score computed in [21]. Let c be
the length of the aligned core shared between the two
proteins (in residues), r be the root mean square deviation
(RMSD) of the alignment, l1 and l2 be the lengths of the two
protein domains being aligned (in residues), and k1, k2, and
k3 be the constants from the Matt p-value. We compute the
distance between two Matt-aligned proteins as follows:

d ¼ 1

k1 � ðr� k2 � c2

l1þl2
2

þ k3Þ
:

This value differs from the formula that Matt uses to
compute a p-value only in that it squares the core-length
term to better weight longer aligned cores (c2 instead of c).
We found this improved performance.

2.3 Distance Threshold

Based on each of the Dali Z-score and Matt distances, we
next learned the distance cutoffs that most closely
mimicked the family, superfamily, and fold levels of the
SCOP hierarchy as follows:

1. Initialize a training set T and a set of already-chosen
pairs A.

2. 10,000 times, do:

a. Choose proteins p and q such that p 6¼ q and p
and q are in the same SCOP grouping, and the
pair p; q 62 A.

b. Choose proteins r and s such that r 6¼ s and r
and s are in different SCOP groupings, and the
pair r; s 62 A.

c. Add p; q and r; s to A.
d. Determine the DaliLite or Matt distance between

p and q. Call this dp;q.
e. Add dp;q to the training set T with label true.
f. Determine the DaliLite or Matt distance between

r and s. Call this dr;s.
g. Add dr;s to the training set T with label false.

3. Compute true positive rate Rtp, true negative rate
Rtn, positive rate Rp, and negative rate Rn for T
based on the class labels true and false.

4. Determine the value of dp;q that results in maximiz-
ing the accuracy

RtpþRtn

RpþRn
.

In other words, we set dp;q to be the value corresponding
to the point on the Receiver Operating Characteristic (ROC)
curve that intersects the tangent isoperformance line [38],
maximizing the sum Rtp þRtn. The area under the ROC
curve measure (AUC) is a summary statistic that captures
how well the pairwise distance score can discriminate
between structures that share or do not share SCOP cluster
membership.

We note that setting the pairwise distance cutoffs
(determining the value of dp;q in Step 4) is the only

“supervision” our algorithm uses in constructing its cluster-
ing (see discussion below). Once the three single scalar pairwise
distance cutoff (corresponding to SCOP “family,” “superfamily,”
and “fold” levels of dissimilarity) are set, no further information
from SCOP is utilized to produce the clustering.

2.4 Clustering and Tree-Cutting

Based on the distance functions, we computed values for all
pairwise alignments based on the Matt or DaliLite output,
and represented this as a distance matrix. We ran the
ClearCut program [33] in strict neighbor-joining mode (�N
option) to produce a dendrogram based on these Matt or
DaliLite distance values. We then recursively descended
this tree to produce family, superfamily, and fold-level
groupings as follows: for a given subtree, if all leaves
(protein domains) in that subtree are within a threshold t of
one another (where t is the family, superfamily, or fold
threshold), then those leaves are all merged into a new
grouping of that level. Otherwise, we recursively descend
into the two subtrees of that subtree’s root until we reach a
subtree all of whose leaves fall within a given threshold
(family, superfamily, or fold; based on Matt distance or
DaliLite Z-score as appropriate) of one another. Thus, we
are performing a total-linkage clustering, but using the
topology of the dendrogram to determine which protein
domains get left out of a given cluster.

We remark that Sam et al. [31] did an extensive study of
clustering and tree-cutting methods, and looked at their
effect on performance for several distance values. They
tested three “SCOP-dependent” and seven “SCOP-inde-
pendent” tree-cutting strategies. However, their “SCOP-
independent” strategies all required as input the target
number of SCOP clusters to produce at each level. In
contrast, our method discovers the number of clusters as an
organic function of the protein domain space, based only on
a globally learned dissimilarity cutoff; it is, thus, of
independent interest that we nearly replicate the number
of SCOP clusters at each level (see Table 2).

2.5 Jaccard Similarity Metric

The Jaccard index, or Jaccard similarity coefficient, of two
sets A and B is defined as JðA;BÞ ¼ jA\BjjA[Bj. Based on the
Jaccard index of a cluster (e.g., family or superfamily or fold)
produced by our algorithm (a Matt family or DaliLite family)
and a SCOP grouping of the same level, and looking at the
identity of protein domains in the two groupings, we can
compare how alike they are. We can, thus, easily find the
most similar SCOP family to each Matt family, S !M and
vice versa, M ! S. This directional mapping is neither one-
to-one nor onto, but each cluster on the “source” side will be
mapped to some most similar cluster on the “sink” side. The
resulting directed graph allows us to explore the distribution
of Jaccard indices as well as the distribution of degrees of
each cluster. A perfect matching would correspond to every
Jaccard index being 1.0, and every cluster having degree 1.
Clearly, we do not expect to achieve a perfect matching, but
this metric allows us to compare the quality of clustering,
relative to SCOP, of our algorithm using the Matt distance
and the DaliLite Z-score distance.

Each direction of the metric is produced as follows, using
as an example the comparison of Matt families to SCOP
families. Consider the set of Matt families and SCOP
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families as a bipartite graph, with the Matt families on one

side of the bipartition and the SCOP families on the other.

Initially, the graph has no edges. For each Matt family, find

the most similar (by Jaccard index) SCOP family. A

weighted, directed edge is drawn from each Matt family

to its most similar SCOP family; the edge weight is equal to

the Jaccard index, which ranges from 0 to 1. This is

performed until each Matt family has been matched to a

SCOP family. This process is repeated in the other direction,

matching each SCOP family to its most similar Matt family,

and the same thing is done for Matt and DaliLite at the

superfamily and fold levels of the SCOP hierarchy.
Recall that in this analysis, as is standard [13], we are

considering only the protein domains that were identified

as cluster representatives within each group of protein

domains that share 80 percent sequence identity.

2.6 Benchmark Set

With the hierarchy of Matt-derived folds, superfamilies,

and families constructed, we produced a benchmark set of

protein alignments at two levels: superfamilies (consisting

of 225 alignments), and folds (also referred to as the

“twilight zone” of protein homology, consisting of 34 align-

ments). At the superfamily level, we generated the bench-

mark set as follows:

1. Choose Matt superfamilies that contain at least three
representative proteins.

2. For each Matt superfamily:

a. Identify the most similar SCOP superfamily (by
Jaccard index) and take the intersection of it and
the Matt superfamily. Call this set S.

b. Run BLAST on all pairs of proteins in S, storing
the maximum e-value as E.

c. For any pair of proteins p; q 2 S that share
greater than 50 percent sequence identity,
remove the shorter one (breaking ties arbitrarily
by alphabetic order of protein name). Call this
set S0. Proceed if and only if S0 still has at least
three proteins.

d. Run a Matt multiple alignment on S0, and store
this alignment as the Mattbench alignment for S0.

3. For each Mattbench superfamily S, produce a decoy
set D as follows:

a. Consider every Matt representative protein
p 62 S. For each p:

i. Discard p if it is in the most similar (by
Jaccard index) SCOP superfamily to p’s
Matt superfamily.

ii. Run BLAST on p against every protein
s 2 S, storing the e-value es;p and sequence
identity is;p.

iii. Run Matt on p against every protein s 2 S,
storing the Matt distance ms;p.

iv. Discard p if 9s such that is;p � 50%.
v. Discard p unless 9s such that es;p < E (this is

theE stored as the maximum e-value above).

vi. Discard p unless 8s;ms;p > Tsuperfamily (the
superfamily threshold used in Matt clus-
tering).

vii. If p has not been discarded, add it to the
benchmark decoy set D.

The “twilight zone” benchmark set is generated in an
identical manner, except that the Matt and SCOP fold levels
are used, and the sequence identity cutoff is 20 percent rather
than 50 percent. The BLAST E-value criterion is the same
used by SABmark [36] and makes sure each decoy is a useful
decoy rather than an obvious negative match. The Matt
distance criterion is present because if the decoy protein is
within the threshold of some protein in that superfamily, the
decoy is only not in that superfamily because of the overall
topology of the cluster. Both benchmarks can be found at
http://www.bcb.tufts.edu/mattbench.

3 RESULTS

3.1 Pairwise Distance Comparisons

We first asked if a pairwise Matt or DaliLite distance cutoff
could correctly distinguish among pairs of proteins that
were in the same SCOP cluster from those that were not.
Table 1 shows the AUC at the SCOP family, superfamily,
and fold level, for the Matt and DaliLite distance scores.
Note that at the family and fold levels, these values are very
close (DaliLite outperforms Matt by a small margin), but at
the superfamily level, Matt significantly outperforms
DaliLite, achieving 0.842 ROC Area versus DaliLite’s
0.615. Matt was developed to better align structures at the
superfamily level of homology, but the size of the gap in
ROC AUC is still surprising. We further remark that at the
fold level, DaliLite’s seemingly competitive performance is
somewhat illusory, since it is shattering many SCOP folds,
each into many tiny pieces (see below).

3.2 Clustering Performance

While the pairwise performance of Matt compared to
DaliLite at the superfamily level is impressive, pairwise
similarity does not necessarily translate into better cluster-
ing performance. Thus, it is Matt’s clustering performance
we explore next. First, we give the simplest possible
comparison; raw numbers of clusters produced by Matt
and DaliLite compared to SCOP at the three levels. Recall
that unlike the clustering algorithm explored in [31], the
number of clusters produced by our dendrogram and tree-
cutting method is a direct consequence of the pairwise
distance threshold, and is not artificially set to match SCOP
(see Section 2.4). Table 2 shows that the Matt clustering
produces approximately the same number of clusters as
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ROC Area for Pairwise

Performance versus SCOP

While DaliLite slightly outperforms Matt at family and fold levels, Matt
significantly outperforms DaliLite at the superfamily level.



SCOP at all three levels. While DaliLite also produces

approximately the same number of clusters at the family

level, at the superfamily and fold levels it produces many

more clusters than SCOP. We explore exactly how both

methods split and merge SCOP clusters in more detail next.
The Jaccard index serves as a good indicator of how well

Matt and DaliLite match SCOP. As the raw numbers of

clusters in Table 2 suggest, DaliLite often shatters SCOP

superfamilies into multiple clusters. DaliLite also shatters

SCOP folds into many more shards on average than Matt.

How can this be given the very similar pairwise classification

performance at the fold level? We defer this question until the

discussion section. We note that even at the family level, Matt

performs slightly better than DaliLite at both the average

degree and average Jaccard similarity metrics, as shown in

Table 3. The average number of Matt or DaliLite families that

match to a single SCOP family is between 3.5 and 4; however,

notice that a large majority of Matt or DaliLite families map to

a single SCOP family and the average is pulled up by a few

outliers (see histograms in Fig. 2). Average degree values at

the superfamily and fold levels stay nearly constant for Matt,

whereas DaliLite’s average degree values rise to 16.61 for the

superfamily level and 26.57 at the fold level. In the other

direction, considering how many Matt or DaliLite clusters

span multiple SCOP clusters, at the family level the average

degree for Matt and DaliLite are nearly identical (between 1.8

and 2). At the superfamily and fold levels, we would expect

DaliLite to outperform Matt by virtue of the fact that it creates

many smaller clusters (see Table 2), and DaliLite does, but by

a fairly small margin (1.4-1.7 at the superfamily level and 1.1-

2 at the fold level). The distributions are displayed in more

detail in the histograms in Figs. 1, 2, and 3.
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TABLE 2
Number of Clusters at Each Level

for Each Method

Matt more closely matches the number of families, superfamilies, and
folds in SCOP than DaliLite does. DaliLite clustering results in too few
families, but too many superfamilies and folds with respect to SCOP.

Fig. 1. Family level splitting behavior.

TABLE 3
Descriptive Statistics for the Family, Superfamily,

and Fold Levels of Classification

� degree is the average number of clusters from the first scheme that map to a single cluster in the second, and � degree gives the standard
deviation. Similarly, we give min, �, and � of the Jaccard similarity.



3.3 Specific Example

We thought it would be illuminating to provide a pictorial

example of a single SCOP superfamily that Matt splits into

two superfamilies. Consider the SCOP superfamily “DHS-

like NAD/FAD-binding domain” (c.31.1). There are 24 pro-

teins from this superfamily in our representative set. Matt

places 17 of them in one superfamily, but the remaining 7 in

a different superfamily. Fig. 4a gives an example protein

from the Matt superfamily of size 17, while Fig. 4b gives an

example protein from the Matt superfamily of size 7. Both

Matt superfamilies contain the same single flat �-sheet of

six or seven strands, surrounded by �-helices. In addition,
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Fig. 3. Fold level splitting behavior.

Fig. 2. Superfamily level splitting behavior. (a) Number of Matt versus DaliLite superfamilies into which each SCOP superfamily is shattered.
(b) Number of SCOP superfamilies into which each Matt or DaliLite superfamily is shattered.

Fig. 4. Example of a SCOP superfamily split by Matt.



the proteins in the Matt superfamily of size 7 have a second
short 3-4 strands �-sheet. The second short �-sheet is
physically on one end of the first �-sheet in 3D space, but
sometimes occurs between the second to last and last �-
strands in the first �-sheet in terms of linear (sequence)
ordering, or else at the very end. The second �-strand is also
partially surrounded by �-helices.

Because of the common central motif, it is very possible
that these proteins are evolutionarily related and thus
belong in the same SCOP superfamily. However, geome-
trically, the additional short �-sheet is significant enough
for Matt to place them in different superfamilies. Matt does,
however, place them in the same fold.

4 DISCUSSION

We have shown that using more modern structure align-
ment programs, an automatic clustering method that
approximates SCOP at a superfamily level may be feasible.
Of course, any mapping between clusters based on
geometric equivalence, and clusters seeking to capture
evolutionary and geometric equivalence using information
beyond geometry will be imperfect—yet the Matt clusters at
the superfamily level seem sufficiently interesting that
differences between Matt and SCOP could be illuminating.

As noted earlier, DaliLite tends to shatter SCOP folds into
many more shards than Matt. How can this be given the very
similar pairwise classification performance at this level? One
possibility is that the Matt-based distance value is more
stable in regions far beyond the specific thresholds we
learned, and that this leads to the topology of the resulting
dendrogram (before cutting) more faithfully representing the
relationships between more and less closely related folds. In
other words, DaliLite’s Z-scores may result in more
“spoilers” that break up clusters (due to our total-linkage
requirement) than Matt’s distance value. While we have only
compared Matt to DaliLite, comparisons to other aligners
such as TM-Align [40] would undoubtedly be interesting.

An interesting question is what Matt clustering results
mean for protein fold space at the “fold” level of structural
homology. Here, while the Matt clustering clearly seems
more informative than that produced by DaliLite, perfor-
mance is still uneven. There seem to be some SCOP folds
where the Matt split appears meaningful, and others where it
is more arbitrary. For example, a notoriously difficult SCOP
fold for multiple automatic methods is the enormous �=�
TIM barrel fold. SCOP places 33 separate superfamilies into
this one fold, but both of our clustering approaches seem to
split this into multiple folds. For example, DaliLite splits the
TIM barrel SCOP fold into 106 separate folds. Matt splits the
TIM barrel SCOP fold into “only” 17 separate folds, which is
better than 106, but inspection of the boundaries between
these Matt fold classes shows more continuity of shape, and
the cuts appear to be somewhat arbitrary.

Thus, while touring protein space with Matt seems to
lend support to a more discrete view of protein space
through the superfamily level, further study of individual
clusters may be warranted to determine the breakpoint
distance at which continuity takes over. Perhaps the degree
of similarity of different individual SCOP folds can be

characterized, similarly to what Suhrer et al. [34] did at the
family level.

We have made the Mattbench benchmark set available at
www.bcb.tufts.edu/mattbench. We hope that developers of
protein sequence alignment tools will consider testing their
performance on Mattbench whose alignments may be more
consistent and reliable than those of the SABmark [36]
benchmark, while still being alignments of sequences that
are more distant homologous than those of the popular and
HOMSTRAD [22] benchmark.
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