
Planning and Reformulating Queries for

Semantically-Modeled Multidatabase Systems�

Yigal Arens and Craig A. Knoblock
USC Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292

(310) 822-1511
arens@isi.edu, knoblock@isi.edu

Published in the Proceedings of the First International

Conference on Information and Knowledge Manage-

ment, Baltimore, MD, 1992

Abstract

With vast amounts of information available from var-

ious sources, integrating data from multiple databases

is an important problem. The SIMS project attacks

this problem using a variety of Arti�cial Intelligence

techniques, including planning, knowledge representa-

tion, problem reformulation, and learning. To integrate

multiple databases, the user provides a semantic model

of the application domain and then uses this model

to describe the contents of the available databases.

Given a query, the system uses a planner to decide

which databases must be queried and in what order the

queries should be executed. This paper focuses on the

query planning problem | the selection of appropriate

data sources and ordering the accesses to them, and on

the reformulation of queries | the use of knowledge

both about the domain and the databases to modify

queries to make the retrieval plans for them more e�-

cient.

1 Introduction

Most tasks performed by users of complex information

systems involve interaction with multiple databases.

Examples can be found in the areas of analysis (both

of intelligence data and logistics forecasting) and in re-

source planning and brie�ng applications. Retrieval of

�The research reported here was supported by Rome Lab-

oratory of the Air Force Systems Command and the Defense

Advanced Research Projects Agency under contract no. F30602-

91-C-0081. Views and conclusions contained in this report are

the authors' and should not be interpreted as representing the

o�cial opinion or policy of DARPA, RL, the U.S. Government,

or any person or agency connected with them.

desired information dispersed in multiple databases re-

quires general familiarity with their contents and struc-

ture, with their query languages, with their location

on existing networks, and more. The user must break

down a given retrieval task into a sequence of actual

queries to databases, and must handle the temporary

storing and possible transformation of intermediate re-

sults | all this while satisfying constraints on reliabil-

ity of the results and the cost of the retrieval process.

With a large number of databases, it is di�cult to

�nd individuals who possess the required knowledge,

and automation becomes a necessity. There has been

some work on this problem in the database community

[6, 7]. Our work di�ers in that a complete semantic

model of the application domain is created and used

in order to provide a collection of terms with which to

describe the contents of (i.e., to create a semantic model

of) available databases. In contrast to previous work,

the model is not speci�c to a particular set of databases

and there is not necessarily a direct mapping from the

concepts in the model to the objects in the database.

This approach supports a much more exible and easily

extensible interface to a collection of databases.

The SIMS1 project applies a variety of techniques

and systems from Arti�cial Intelligence to build an in-

telligent interface to databases. SIMS builds on the

following ideas:

Knowledge Representation/Modeling, which is used

to describe the domain about which information is

stored in the databases, as well the structure and con-

tents of the databases themselves. The domain model

is a declarative description of the objects and activities

possible in the application domain as seen by a typical

user. The model of each database indicates the data-

1
Services and InformationManagement for decisionSystems.

model used, query language, network location, size es-

timates, update frequency, etc., and describes the con-

tents of its �elds in terms of the domain model. The

user formulates queries using terms from the applica-

tion domain, without needing to know anything about

speci�c databases.

Planning/Search, which is then used to construct a

sequence of queries to individual databases that will

satisfy the user's query. SIMS identi�es databases that

contain relevant data and determines what additional

data may be necessary in order to access them.

Reformulation/Learning. Alternative databases and

queries to retrieve the desired information are consid-

ered. The detailed semantics provided by the appli-

cation domain model are used to guide the search for

more e�cient query formulations. Knowledge about

the contents of the databases is also learned from the

databases and then used to reformulate the queries.

A query is provided to SIMS in the form of a de-

scription of a semantic class of objects about which

information is desired. This description is made up of

statements in the Loom knowledge representation lan-

guage (Section 2.1). SIMS proceeds to reformulate this

query as a collection of more elementary statements

that refer to knowledge stored in individual databases.

These are passed on to the LIM system (Section 2.2)

which does the �nal translation into database queries

in the appropriate language(s).

An initial prototype incorporating many features

of the SIMS approach has been built and applied to

the domain of transportation planning | organizing

the movement of people and equipment from one geo-

graphic location to another using available transporta-

tion facilities and vehicles. An earlier prototype was

applied to information needed for daily Naval brie�ngs

given in Hawaii about the status of the Paci�c Fleet [1].

Several databases with information about ships, ports,

locations, activities, etc., are accessible to the system.

The ideas and techniques for planning the access to

databases (Section 4) have already been implemented

and the reformulation of queries (Section 5) is currently

under development.

The remainder of this paper is structured as follows.

The next section describes the technological infrastruc-

ture used in SIMS. Section 3 presents an example prob-

lem solved by SIMS. Section 4 describes our treatment

of the query planning and subquery formation prob-

lems. Section 5 discusses the reformulation of queries

to improve e�ciency. We conclude with a brief sum-

mary and directions for future work.

2 Technological Infrastructure

2.1 Loom

Loom serves as the knowledge representation system

SIMS uses to describe the domain model and the con-

tents of the databases. It provides both a language

and an environment for constructing intelligent applica-

tions. Loom combines features of both frame-based and

semantic network languages, and provides some reason-

ing facilities. As a knowledge representation language

it may be considered a development of the KL-ONE [2]

family.

The heart of Loom is a powerful knowledge repre-

sentation system, which is used to provide deductive

support for the declarative portion of the Loom lan-

guage. Declarative knowledge in Loom consists of def-

initions, rules, facts, and default rules. A deductive

engine called a classi�er utilizes forward-chaining, se-

mantic uni�cation and object-oriented truth mainte-

nance technologies in order to compile the declarative

knowledge into a network designed to e�ciently sup-

port on-line deductive query processing.

This model-driven programming system supports

frame-based structured inheritance with formal seman-

tics. Its formal semantics allow automatic classi�-

cation of new descriptions, increasing its utility in

the construction of large declarative knowledge bases.

Loom emphasizes usability through its functionality, ef-

�ciency, and its associated tools. For a detailed descrip-

tion of Loom see [10, 11].

To illustrate both Loom and the form of SIMS'

queries, consider Figure 1, which contains a simple se-

mantic query to SIMS. This query requests the value

of the depth of the San Diego port. The three sub-

clauses of the :and specify, respectively, that the vari-

able ?port describes a member of the model class

Port, that the relation Name holds between the value of

?port and the string SAN-DIEGO, and that the relation

Channel Depth holds between the value of ?port and

the value of the variable ?depth. The semantic query

speci�es that the value of the variable ?depth be re-

turned. This query does not necessarily correspond to

a single database query, since there may not exist one

database that contains information about ports, port

names, and port depths.

2.2 LIM

In Loom the members of a class (e.g., the possible val-

ues of the variable ?port in the expression in Figure 1)

are instances of the knowledge base | speci�c objects

(db-retrieve (?depth)

(:and (Port ?port)

(Name ?port "SAN-DIEGO")

(Channel Depth ?port ?depth)))

Figure 1: Example SIMS/Loom Query

whose identity and relationship to other objects and

classes is known. In the case of large-sized realistic do-

mains it is preferable not to de�ne all objects of the do-

main as knowledge base instances. Instead, databases

provide more e�cient structures for organizing large

numbers of such objects, and DBMSs are more e�cient

than AI languages for manipulating them.

The Loom Interface Module (LIM) [12] is being de-

veloped by researchers at Paramax Systems Corp. to

mediate between Loom and databases. LIM reads

an external database's schema and uses it to build a

Loom representation of the database. The Loom user

can then treat classes whose instances are stored in

a database as though they contained \real" Loom in-

stances. Given a Loom query for information in that

class, LIM automatically generates a query in the ap-

propriate database query language to the database that

contains the information, and returns the results as

though they were Loom instances. However, LIM fo-

cuses primarily on the issues involved in mapping a

semantic query to a single database. After SIMS has

planned a query and formed subqueries, each grounded

in a single database, it hands the subqueries to LIM for

the actual data retrieval.

2.3 Prodigy

Prodigy [4, 13] is a means-ends analysis planner com-

plete with six modules for learning search-control rules,

abstractions, operator models, and more. SIMS uses

Prodigy for planning the accesses to the individual

databases in order to satisfy a query.

Prodigy is a given a problem space de�nition and a

problem and is asked to �nd a solution to the problem.

A problem space is de�ned by the legal operators and

states. Operators are composed of a set of conditions,

called preconditions, that must be true in order to ap-

ply an operator and a set of e�ects that describe the

changes to the state that result from applying an op-

erator. States are composed of a set of conditions that

describe the relevant features of a model of the world.

A problem consists of an initial state, which describes

the initial con�guration of the world, and a goal, which

describes the desired con�guration. To solve a prob-

lem, the planner must �nd a sequence of operators that

transform the initial state into a state that satis�es the

goal.

Prodigy has been linked to Loom, so that it can use

the Loom domainmodel as its model of the world. The

system is given a query as the goal and a set of opera-

tors that de�ne the actions that can be used to achieve

the query. Using this set of operators, Prodigy searches

for a plan that will achieve the query.

3 Overview of SIMS

The problem addressed in SIMS is, given a semantic

query, how is that query decomposed into subqueries

that can be mapped directly to individual databases.

The initial query is expressed as a query to the Loom

knowledge representation system. This query must be

re-expressed as a partially ordered set of Loom sub-

queries, each of which will be mapped directly to a

query to a particular database by LIM.

An initial Loom query of the kind SIMS handles is

shown in Figure 2. For example, the �rst constraint,

(Ship ?ship), is a concept expression that constrains

the variable ?ship to the set of ship records in the

knowledge base. The Loom class Ship need not neces-

sarily correspond to the contents of a speci�c �eld in

some database. If it does not, the planner may have to

�nd some combination of subqueries that will obtain all

necessary records. This is discussed further below. The

second constraint is a relation on the ID code of ships,

that further restricts the set of ships to those with an

ID code of 2401. The entire query requests the name,

depth, width, and description of all ports that have suf-

�ciently deep channels to accommodate ships with an

identi�cation code of \2401" and have a mobilization

condition of \10C".

If the information about ships and ports was stored

(db-retrieve (?port-name ?depth ?width ?desc)

(:and (Ship ?ship)

(Id Code ?ship "2401")

(Mob Condition ?ship "10C")

(Min Draft ?ship ?draft)

(Port ?port)

(Channel Depth ?port ?depth)

(Channel Width ?port ?width)

(Description ?port ?desc)

(< ?draft ?depth)

(Name ?port ?port-name)))

Figure 2: Example SIMS Semantic Query

directly in the Loom knowledge base, then Loom could

have simply been used itself to answer this query. How-

ever, we are using Loom to semantically model a do-

main about which data is stored in multiple databases,

so the information required to answer this query must

be retrieved from the appropriate databases, with the

help of LIM. Thus, if the information about ships and

ports were all stored in one database, this query could

be passed directly to LIM. But that is also not the case

here.

Data pertaining to this query is spread over two

databases | one containing information about ships

and the other containing information about ports. The

system is given the query shown in Figure 2 and it must

formulate a set of subqueries that can be executed di-

rectly by either LIM or Loom to derive the desired re-

sult. Since LIM provides a transparent interface to a

single database, we can use it to return intermediate

results, which can then be processed further in Loom.

As we will see, the execution of the example query will

require three subqueries. One to each of the databases

and one to combine the intermediate results obtained

from them. The process of formulating these queries is

the topic of the next section, Section 4.

The �rst step in processing a semantic query is to

produce a grounded plan to implement the query. By

this we mean that SIMS must produce a plan consisting

of data-retrieval and data-manipulation speci�cations,

with an associated partial ordering of the speci�ed ac-

tions. The data-retrieval steps of the plan must be

grounded in speci�c databases, i.e., all data a step re-

quests must be contained in a single database. Any

data-manipulation steps of the plan are performed us-

ing the Loom reasoning facilities. The grounded plan

produced takes the form of a graph of plan steps.

The steps in a plan are partially ordered based on

the structure of the query. This ordering is deter-

mined by the fact that some steps make use of data

that is obtained by other steps, and thus must logi-

cally be considered after them. For example, a plan

step may compare two items of data according to some

measure. If the data are obtained from two di�erent

databases, then the comparison must come later than

the retrievals of the data items.

Next, the plan produced as above is inspected

and, when appropriate, data-retrieval steps that are

grounded in the same database are grouped | even-

tually their execution will result in a single query. We

therefore call this process subquery formation. The

result of this grouping process is a new graph in which

each node ultimately corresponds either to a query to

some database, or to internal manipulation by SIMS of

data so acquired.

After a plan for the query has been obtained, the sys-

tem estimates the processing time of the individual sub-

queries based on whether steps involve data-retrieval

or manipulation and the amount of data involved. The

system then attempts to reformulate or eliminate those

subqueries that are particularly costly. The time esti-

mate is used to determine the amount of time that can

be spent on attempts to reformulate the plan. This

reformulation process is described in Section 5.

4 Query Planning

There are a number of steps required to plan the ac-

cesses to the individual databases. The planning pro-

cess described here selects the databases to be used

in answering the query, �nds a legal ordering of the

database accesses and comparisons by analyzing the

dependency structure of the constraints, and general-

izes the plan to remove any unnecessary ordering con-

straints in order to maximize the potential parallelism

in the plan. This complete database access plan is then

converted back into a partially ordered set of grounded

Loom subqueries that can be handed to LIM or exe-

cuted directly. The �rst subsection below describes the

selection and ordering, and the second subsection de-

scribes how the plan is converted into the appropriate

subqueries.

4.1 Database Selection and Ordering

Given a semantic query, there is not necessarily a one-

to-one mapping between the KB concepts in it and the

information as organized in the databases. A concept

mentioned in the query may be retrievable from several

possible databases, or may not be directly retrievable

from any database. For example, the KB may have

a concept of ship, while the databases may organize

ships by country of registry. There is thus no single

database to which one could direct a query concerning

ships. However, the concept hierarchy can often be

used to enable retrieval of this information by checking

for information about either the superconcepts or the

subconcepts of the desired concept. In our example,

SIMS may determine | by analyzing the query | that

the ships of interest are naval ships, and ask only about

those.

In the case of using a superconcept, the correspond-

ing database, if such exists, may provide too much in-

formation and in the case of using subconcepts, a com-

plete covering of the original concept must be used in

order to provide the desired information. In some cases,

obtaining the information may require combining data

from several databases.

We are dealing with large database systems, so there

can be a huge di�erence in e�ciency between di�erent

possible implementations of a query. We would there-

fore like to �nd queries that can be implemented as

e�ciently as possible. To do this the planner must

take into account the cost of accessing the di�erent

databases, the cost of retrieving intermediate results,

and the cost of combining these intermediate results

to produce the �nal results. In addition, since the

databases are distributed over di�erent machines or

even di�erent sites, we would also like to take advan-

tage of potential parallelism and generate subqueries

that can be issued concurrently.

Consider the fragment of the knowledge base shown

in Figure 3, which covers some of the knowledge rel-

evant to the example query in Figure 2. The circles

in the �gure denote concepts in the knowledge base,

the upward arrows indicate is-a links, and the down-

ward arrows indicate relations to other concepts. For

example, the ship concept has two subconcepts, com-

mercial ship and naval ship, and is the domain of a

relation which indicates its draft. The shaded cir-

cles correspond to concepts whose instances can be re-

trieved directly from some database. Thus, the chstr

database contains information about all ships and the

afsc database contains information about ports and

naval ships. The selection of which databases are used

to provide the information for each concept is done in

the course of planning the query.

A central task of the planner is to determine the

ordering of the various accesses to databases. In

the course of executing this task it also selects the

databases from which to extract information. The or-

dering is determined by analyzing which steps in the

plan for the query are generating bindings for variables

and which steps are serving as �lters. If one step de-

pends on information produced in another step, then it

must be ordered after that second one.

The Prodigy system, described in Section 2.3 is used

to select the databases, determine the subqueries, and

order them. The problem is cast as a set of Prodigy

operators for both selecting and ordering the database

accesses. The original semantic query constitutes the

goal that is to be achieved by the planner. The planner

starts out with information about the databases that

are available and the KB classes that \correspond" to

data in them.

Thing

Ship Port

Comm.
Ship

Naval
Ship

depthdraft

Port−in−
AFSC−DB

Naval−
Ship−in−
AFSC−DB

Ship−in−
CHSTR−DB

Figure 3: Fragment of the Knowledge-Base Model

The example query described in the last section is

mapped by Prodigy into the goal for the planner shown

in Figure 4. Each subclause of the query is annotated

with additional information indicating whether it is a

concept, relation, or comparison subclause. Also, a �-

nal goal is inserted, which speci�es that all the pending

queries must be completed.

(and (concpt ship ?ship)

(relatn id code ?ship 2401)

(relatn mob condition ?ship 10c)

(relatn min draft ?ship ?draft)

(concpt port ?port)

(relatn channel depth ?port ?depth)

(relatn channel width ?port ?width)

(relatn description ?port ?desc)

(comparison < ?draft ?depth)

(relatn name ?port ?port-name)

(forall (<x>) (database <x>)

(closed-db <x>)))

Figure 4: Goal Statement for the Planner

The set of operators used by the planner is

shown in Figure 5. The �rst three opera-

tors, retrieve-concept, specialize-concept, and

generalize-concept, select the databases used to

retrieve the desired information. The next three

operators, generate-values, filter-values, and

compare-values, determine the constraints on the or-

der of the accesses to the individual databases. The

remaining operators, begin-query and end-query,

delimit the operations performed on an individual

database.

Operator Purpose

Retrieve-Concept Retrieves information from a

particular database.

Specialize-Concept Replaces a concept with an ap-

propriate set of subconcepts.

Generalize-Concept Replaces a concept with a su-

perconcept.

Generate-Values Uses a given relation to gener-

ate values for a given variable.

Filter-Values Uses a given relation to �lter

values for a given variable.

Compare-Values Performs a comparison be-

tween two sets of values.

Begin-Query Indicates the beginning of a

query to one of the databases.

End-Query Indicates the end of a query.

Figure 5: Operators for Planning a Query

As an illustration, the retrieve-concept operator

is shown in Figure 6. This operator speci�es a set of

preconditions that must be true in order to apply the

operator. In this case the preconditions are that in-

formation about this concept is directly available from

some database and that this database has been opened.

If the �rst precondition does not hold, then the sys-

tem can consider a more specialized or more gener-

alized concept in order to �nd one or more concepts

about which information can be obtained directly from

a known database. If the database has not been opened

for retrieval, then the planner would create the subgoal

of doing so and eventually insert a begin-query opera-

tion. The retrieve-concept operator has two e�ects.

The �rst speci�es that the information for this con-

cept is now available, and the second speci�es in which

database the information is available.

(Retrieve-Concept

(params (<pred> <object> <db>))

(preconds (and (database-concpt <pred> <db>)

(open-db <db>)))

(effects ((add (concpt <pred> <object>))

(add (available <object> <db>)))))

Figure 6: Operator for Retrieving a Concept from a

Database

The system generates a plan to achieve the goal in

Figure 4 by selecting operators to achieve each of the

goal conditions. If the preconditions of a selected op-

erator do not hold, then the system must recursively

achieve each of the preconditions. Once the system

has achieved all of the goal conditions, it will have a

plan for retrieving the information to satisfy the ini-

tial query. The resulting plan speci�es which databases

are to be used to satisfy the query as well as any con-

straints on the order in which the information is re-

trieved. Plan steps will specialize references to high-

level Loom concepts like ship into references to classes

like chstr ship record s which are associated directly

with some database.

Prodigy initially produces a totally ordered plan for

retrieving information. This plan is then converted into

a partially ordered set of plan steps free of unnecessary

ordering constraints. Each of the operator's precon-

ditions in the database access plan explicitly state the

conditions on which that operator depends. We use the

algorithm of Veloso [16] to convert the totally ordered

plan into a partially ordered plan from the de�nition

of the operators. This algorithm is polynomial in the

length of the plan. The resulting partially ordered plan

is shown in Figure 7. Note that the Loom classes now

used are only those which correspond directly to some

database.

4.2 Subquery Formation

The second step in the query planning process is to

formulate the subqueries which will be passed on to

LIM and eventually translated into database queries.

Since LIM takes care of such details, we do not need

to worry about the access languages of the individual

databases, their locations, etc. Instead, we only need

to formulate Loom queries that refer to information in

one database. LIM and the DBMSs for the individual

databases are responsible for selecting the appropriate

access paths and locally optimizing the query within

that database (we discuss global optimization in the

next section).

The subqueries are formed by grouping together

steps of the original plan. This is a relatively straight-

forward process that is aided by the presence of

begin-query/end-query steps in the plan graph. The

grouping is done by combining nodes in the plan par-

tial order, to produce a �nal partial order on the sub-

queries. The subqueries for the example problem are

shown in Figure 8. It shows that to implement the orig-

inal query, three operations are necessary. The �rst two

Figure 7: Preliminary SIMS Plan for Example Query

are accesses to separate databases that can be done in

parallel. The third operation is a comparison in Loom

on the results from these two subqueries. This last step

cannot begin until the other two are complete.

It should be noted that this plan itself can be viewed

as a (reformulated) query. Its component subqueries

are still in the Loom query notation. It is only LIM that

transforms these subqueries into true database queries.

5 Query Reformulation

Constructing a plan for retrieving information is only

part of the problem. An important consideration in

mapping the initial semantic query into a set of sub-

queries is the total time that it will take to execute all

of the subqueries. One approach to reducing this cost

is to search for reformulations of the query access plan

that reduce the total cost. Database management sys-

tems often perform syntactic query reformulation [8].

We leave that task to the respective DBMS then, and

focus instead on more global semantic query reformula-

tion [5, 9]. The idea is to transform the query resulting

from the planning process into a semantically equiva-

lent one that can be executed more e�ciently.

Consider the planned query illustrated in Figure 8.

The �nal step in this query, comparing the depth and

the draft, could be quite costly since the comparison is

done between potentially large numbers of data items

and is performed in Loom, which is considerably slower

than state-of-the-art DBMSs. There are a variety of

ways in which this query could be reformulated to re-

duce or eliminate the cost of this last step. For exam-

ple, knowledge about the information in the databases

could be used to augment the earlier subqueries, so that

less intermediate information would be generated. Or,

knowledge about the domain could be used to trans-

form a subquery into an equivalent one that can be

more e�ciently executed.

Our approach to this problem di�ers from other re-

lated work on semantic query reformulation in two

important respects. First, we do not rely on seman-

tic integrity constraints to perform the reformulation

process. Instead we use a richer collection of domain

knowledge combined with knowledge compiled from the

databases. Second, the reformulation process is inte-

grated with the planning and focuses on costly aspects

of a query, avoiding wasteful e�ort which could conceiv-

ably take longer than executing a awed plan. This is

necessary in our case, since the richness of the domain

Figure 8: Final SIMS Plan for Example Query

model provides an almost endless search space for po-

tential reformulations.

Below we describe how the system decides when to

reformulate a query, which knowledge is used for per-

forming the reformulation, and the actual reformula-

tion techniques. Unlike the work in Section 4, the work

described below has not yet been fully implemented.

5.1 When to Reformulate

We wish to reformulate queries in order to reduce their

overall cost. In order to decide when to reformulate

and how much time to spend, SIMS must be able to

estimate the cost in terms of time and space of exe-

cuting the initial query produced by the system as de-

scribed above. Estimates are obtained from informa-

tion stored in the KB concerning the size of databases,

the type of DBMS used by them, and by directly query-

ing databases that are able to provide time estimates.

If these costs are relatively small, then the query can

simply be executed as is. If it is above a particular

threshold, SIMS will examine the separate subqueries

to identify those whose modi�cation can most reduce

the cost of the plan. It then focuses its e�ort on re-

formulating those subqueries. The total e�ort to be

expended by the system on reformulation is set not to

exceed some fraction of the total estimated cost. This

prevents SIMS from spending more time reformulating

a query than it would spend executing the original plan.

Consider the example query described in the last sec-

tion. As we pointed out earlier, the last step of compar-

ing the depths and drafts may be particularly expen-

sive. Thus, the system would search for reformulations

that would reduce the cost of this speci�c step.

5.2 Knowledge for Reformulation

Most work on semantic query reformulation uses se-

mantic integrity constraints to reformulate queries.

The value of the standard approach is limited since

the semantic integrity constraints available in a typi-

cal system are quite restricted in their expressive power

compared to what is possible using a full-edged knowl-

edge representation of the complete domain, like that

provided by Loom. SIMS has a much richer set of

knowledge available for performing reformulation. For

example, using Loom, SIMS can represent constraints

regarding knowledge stored in more than one database.

5.2.1 Domain Knowledge

A central source of reformulation knowledge is the se-

mantic model of the domain. This knowledge consists

of the relationships among concepts, the relations be-

tween concepts and subconcepts, as well as more spe-

ci�c knowledge about the relationship between partic-

ular objects. For example, Figure 3 showed a fragment

of the knowledge base where the ship concept has two

subconcepts | naval ship and commercial ship. If the

system also contains the fact that a ship with an ID

code of 2401 is a naval ship, then this domain knowl-

edge could be used to transform the query into one in

which all of the information can be obtained with a sin-

gle query to the afsc database. That database would

then contain all necessary data about both the ships

we are concerned with and the ports. The compari-

son previously done in Loom could then be done in the

afsc database as well.

5.2.2 Knowledge Compiled from Databases

Instead of limiting the system to knowledge that must

hold for the entire domain, we can use a compila-

tion process that extracts knowledge from the indi-

vidual databases and stores it in the knowledge base

[3, 14, 15]. The compilation of knowledge about a

database is driven by the need for particular types of in-

formation. Thus, when an expensive query is given and

the semantic query reformulator cannot �nd a reformu-

lation of it, the system makes a note of that along with

the aspect of the query that made it expensive. The

knowledge compiler can exploit time when the system

and databases are not in use, to search for knowledge

that could have been used to reformulate the expensive

queries. If any relevant knowledge is found, the system

records it for future use. Note that the system does not

simply cache data from databases, but compiles more

abstract knowledge about the data. Since the compiled

knowledge can be a�ected by changes in the database,

SIMS must maintain dependency information and up-

date the compiled knowledge regularly.

For example, one particular type of knowledge that

could reduce the cost of retrieving and comparing the

depth and draft is the ranges for each of these at-

tributes. Ports with a depth less than the minimum

draft for ships of the type we are interested need not

be retrieved. Let us assume that in our case the draft

of the ships in the chstr database ranges from 25

to 50 feet and the depth of the ports in the afsc

database ranges from 20 to 40 feet. Such information

about the ranges could be extracted from the databases

and stored in the knowledge base to help with future

queries. We explain below how such information may

be used.

The one existing system that does provide a more

general approach to learning for reformulation was de-

veloped by Siegel [15]. However, the particular learn-

ing mechanisms are quite limited and what the system

learns is guided by a set of heuristics instead of being

driven by the need to reformulate speci�c queries.

5.3 Reformulation Processes

Using available knowledge sources, reformulation in-

volves modi�cations to the parallelized subqueries

shown in Figure 8. The subqueries can be modi�ed by

adding constraints, deleting unnecessary constraints,

and replacing constraints with di�erent ones. We cur-

rently require that the entire reformulated query plan

be semantically equivalent to the original.

Returning to our example, we would like to reduce

the cost of retrieving the data into Loom and perform-

ing the comparison. One natural way to do this is to

reduce the amount of information that is compared.

This can be done by adding constraints to the two sub-

queries. If these constraints are necessarily entailed by

the information in the knowledge base, the semantics

of the overall query will not change. In this particular

case, the maximum draft of any ship in the relevant

class is known to be 50, while the maximum draft of

the relevant ports is only 40, so we can add a constraint

to the subquery to extract only ships with a maximum

draft of 40. Any ship with a draft greater than 40

could never be less than the depth of any port, so this

restriction will not change the �nal result. Similarly,

the subquery for ports can be similarly augmented by

noticing that the minimumdraft of any ship is 25, while

the minimumport depth is 20, so only ports with depth

greater than 25 need to be considered.

This type of reformulation can potentially provide

tremendous reductions in execution cost. Exactly how

much reduction is obtained depends on the databases,

knowledge and queries. We are in the process of imple-

menting and testing the described approach.

6 Conclusions

This paper described the initial work in SIMS on

query processing for multidatabase systems. The sys-

tem described here addresses the important problem

of how to e�ciently integrate information from multi-

ple databases. The approach described integrates this

information in the context of a knowledge representa-

tion system (Loom) and builds on the Loom Interface

Manager (LIM), which provides access to the individ-

ual databases. This allows SIMS to focus speci�cally on

the issue of how to map a global query to the separate

subqueries to individual databases. This paper address

both the problem of how to plan out these queries, and

of how to reformulate queries in order to implement

them more e�ciently.

The query planning is done using Prodigy, which pro-

vides a exible and easily extensible system for select-

ing the databases, and partitioning and ordering the

queries. The plans produces by Prodigy are then par-

allelized, to take advantage of databases that can be ac-

cessed simultaneously. Parallelization is done using the

dependency structure of the plan produced by Prodigy.

The result is passed on to the reformulation component.

The reformulation component searches for modi�ca-

tions that can be made to the query plan in order to im-

prove its e�ciency. The reformulation process is driven

by estimates of the costs of executing the various parts

of a query. The amount of time spent in the reformu-

lation process is determined by the estimated cost of

executing the entire plan. Some of the knowledge used

to perform the reformulation is obtained from the do-

main model, and some may be learned by the system.

Learning, too, is driven by the planning of past queries.

The system will thus tailor itself to the types of queries

that are frequently asked.

There are a variety of issues that this paper does not

address. One important issue is how to integrate infor-

mation when there are multiple sources for the same

knowledge. To address this problem, we plan to build

on the work of Dayal [6]. Dayal de�nes a language with

which to express the integration of various sources of

data. We believe this language can be incorporated into

the existing system by de�ning additional operators for

reasoning about the language. As in Dayal's work, the

user will have to specify the particular method of inte-

gration for the data, and then the system will construct

a plan to retrieve the data according to this method.

Another important issue that was just briey men-

tioned in this paper is compiling knowledge from

databases to be used for reformulating future queries.

We plan to rely heavily on the ability to learn about

the actual contents of each database. This will provide

a much more exible reformulation system.

Acknowledgments

Chin Y. Chee, another member of the SIMS project, is

responsible for much of the programming that has gone

into SIMS, as well as for the grapher used to display

the partially ordered database access plans. Thanks to

Manuela Veloso for providing us with her code for gen-

erating partial orders. Thanks also to the LIM project

for providing us with one of the databases used for our

work, as well as the query used in the example.

References

[1] Yigal Arens. Services and information management for
decision support. In AISIG-90: Proceedings of the An-

nual AI Systems in Government Conference, George
Washington University, Washington, DC, 1990.

[2] R.J. Brachman and J.G. Schmolze. An overview of the
KL-ONE knowledge representation system. Cognitive

Science, 9(2):171{216, 1985.

[3] Yandong Cai, Nick Cercone, and Jiawei Han. Learn-
ing in relational databases: An attribute-oriented
approach. Computational Intelligence, 7(3):119{132,
1991.

[4] Jaime G. Carbonell, Craig A. Knoblock, and Steven
Minton. PRODIGY: An integrated architecture for
planning and learning. In Kurt VanLehn, editor, Ar-
chitectures for Intelligence, pages 241{278. Lawrence
Erlbaum, Hillsdale, NJ, 1991.

[5] Upen S. Chakravarthy, John Grant, and Jack Minker.
Logic-based approach to semantic query optimization.
ACM Transactions on Database Systems, 15(2):162{
207, 1990.

[6] Umeshwar Dayal. Query processing in a multidatabase
system. In Query Processing in Database Systems,
pages 81{108. Springer Verlag, New York, 1985.

[7] R. Hull and R. King. Semantic database modeling:
Survey, applications, and research issues. ACM Com-

puting Surveys, 19(3):201{260, 1987.

[8] M. Jarke and J. Koch. Query optimization in database
systems. ACM Computer Surveys, 16:111{152, 1984.

[9] Jonathan Jay King. Query Optimization by Semantic

Reasoning. PhD thesis, Stanford University, Depart-
ment of Computer Science, 1981.

[10] R. MacGregor. A deductive pattern matcher. In Pro-

ceedings of AAAI-88, The National Conference on Ar-

ti�cial Intelligence, St. Paul, MN, 1988.

[11] R. MacGregor. The evolving technology of
classi�cation-based knowledge representation systems.
In John Sowa, editor, Principles of Semantic Networks:
Explorations in the Representation of Knowledge. Mor-
gan Kaufmann, 1990.

[12] Donald P. McKay, Timothy W. Finin, and Anthony
O'Hare. The intelligent database interface: Integrat-
ing AI and database systems. In AAAI-90: Proceedings
of The Eighth National Conference on Arti�cial Intel-

ligence, 1990.

[13] Steven Minton, Jaime G. Carbonell, Craig A.
Knoblock, Daniel R. Kuokka, Oren Etzioni, and
Yolanda Gil. Explanation-based learning: A problem
solving perspective. Arti�cial Intelligence, 40(1-3):63{
118, 1989.

[14] G. Piatetsky-Shapiro. Knowledge Discovery in

Databases. MIT Press, Cambridge, MA, 1991.

[15] Michael D. Siegel. Automatic rule derivation for se-
mantic query optimization. In Larry Kerschberg, ed-
itor, Proceedings of the Second International Con-

ference on Expert Database Systems, pages 371{385.
George Mason Foundation, Fairfax, VA, 1988.

[16] Manuela M. Veloso. Nonlinear problem solving us-
ing intelligent casual-commitment. Technical Re-
port CMU-CS-89-210, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, 1989.

