
, , 1{38 ()
c
 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Query Reformulation for

Dynamic Information Integration

YIGAL ARENS, CRAIG A. KNOBLOCK, AND WEI-MIN SHEN

farens, knoblock, sheng@isi.edu

Information Sciences Institute and
Department of Computer Science

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292

Received June 15, 1995

Editor:

Abstract. The standard approach to integrating heterogeneous information sources is to build

a global schema that relates all of the information in the di�erent sources, and to pose queries
directly against it. The problem is that schema integration is usually di�cult, and as soon as any
of the information sources change or a new source is added, the process may have to be repeated.

The SIMS system uses an alternative approach. A domain model of the application domain
is created, establishing a �xed vocabulary for describing data sets in the domain. Using this

language, each available information source is described. Queries to SIMS against the collection
of available information sources are posed using terms from the domain model, and reformulation
operators are employed to dynamically select an appropriate set of information sources and to

determine how to integrate the available information to satisfy a query. This approach results
in a system that is more
exible than existing ones, more easily scalable, and able to respond
dynamically to newly available or unexpectedly missing information sources.

This paper describes the query reformulation process in SIMS and the operators used in it.
We provide precise de�nitions of the reformulation operators and explain the rationale behind
choosing the speci�c ones SIMS uses. We have demonstrated the feasibility and e�ectiveness of
this approach by applying SIMS in the domains of transportation planning and medical trauma
care.

Keywords: Information integration, multidatabase systems, query reformulation, heterogeneous
databases.

1. Introduction

The overall goal of the SIMS project is to provide intelligent access to heterogeneous

distributed information sources (databases, knowledge bases,
at �les, and certain

types of programs), while insulating human users and application programs from the

need to be aware of the location of the sources, their query languages, organization,

size, etc.

The standard approach to this problem has been to construct a global schema

that relates all the information in the di�erent sources and to have the user pose

2

queries against this global schema or various views of it. The problem with this

approach is that integrating the schemas is typically very di�cult, and any changes

to existing data sources or the addition of new ones requires a substantial, if not

complete, repetition of the schema integration process. In addition, this standard

approach is not suitable for including information sources that are not databases.

SIMS provides an alternative approach. A domain model of the application do-

main is created, using a knowledge representation language to establish a �xed

vocabulary describing objects in the domain, their attributes, and the relationships

among them. SIMS accepts queries in this high-level uniform language. It processes

these queries in a manner hidden from the user, ultimately returning the requested

data. Thus, the queries to SIMS need not contain information describing which

sources are relevant to �nding their answers or where they are located (although

they may, if a user wishes to obtain data only from a speci�c source). Queries do

not need to state how information obtained from di�erent sources should be joined

or otherwise combined or manipulated. It is the task of SIMS to determine how to

e�ciently and transparently retrieve and integrate the data necessary to answer a

query.

The SIMS approach, where there is no �xed mapping from a query to the sources

used to answer a query, has several important advantages. The approach is:

Flexible: The SIMS planner will consider alternative ways to retrieve the data

requested by a query. If multiple databases contain the same data, or copies of

portions of the data, SIMS will determine this in the course of its operation. It will

then select the best source for retrieval of the data according to its criteria. If there

is no direct source available for the requested information, the system will attempt

to reformulate a query to use related classes of information that could provide the

same data. The
exibility of considering alternative ways to retrieve a set of data

forms the basis for SIMS' ability to dynamically recover from execution failures.

Scalable: New information sources are added to SIMS without regard to infor-

mation sources that are already part of the system. A new source is modeled using

terms from the shared domain model only. This simpli�es the process of adding

new information sources since the new source can be modeled independently of the

other information sources.

Dynamic: Since the plan for retrieving requested data is produced at the time

the query is submitted, the existing circumstances can be taken into account. SIMS

can respond to information sources that are temporarily unavailable, or to recently

added sources. SIMS can even replan if an information source is discovered to

be unavailable during the process of executing a plan that was created under the

assumption that the source was available.

There are four basic components to query-processing in SIMS [2]. These are:

� Query reformulation

This component identi�es the sources of information that are required in order

to answer a query and determines how data from them must be combined to

produce precisely what the user requested. This is done by reformulating the

3

user's query expressed in domain terms into queries to speci�c information

sources. This subtask of SIMS is the subject of this paper. An early version of

the query reformulation process in SIMS was brie
y described in [3]. This paper

re�nes those early ideas, presents the detailed speci�cation of the reformulation

operators, and describes the search process.

� Query access planning

The second component constructs a plan for retrieval of the information re-

quested by the reformulated query (and hence, by the original query). The

plan involves steps such as sending a speci�c query to some information source,

moving data from one source to another, joining results from di�erent informa-

tion sources, and temporarily storing partial results. See [17], [18] for details.

� Semantic query-plan optimization

The third component exploits learned knowledge about the contents of databases

to perform semantic query optimization. We have extended semantic query op-

timization techniques to support multidatabase queries and have developed an

approach to learn the rules for the optimization process. See [10], [11], [12], [13]

for details.

� Execution

Finally, the fourth component executes the optimized query plan. SIMS exe-

cutes queries against the appropriate information sources (doing so in parallel

when possible), transfers data, constructs a response to the user, and returns it.

An execution failure will cause SIMS to replan part or all of a query. To support

execution, SIMS makes use of wrappers that mediate between it and the infor-

mation sources themselves. A wrapper will accept a query for an information

source formulated in SIMS' query language, translate it into the appropriate

query language for its information source, submit it, and forward the resulting

data back to SIMS.

In this paper, we will focus on the �rst component and describe how query refor-

mulation is used to identify relevant information sources, decide which data should

be retrieved from them, and integrate it to satisfy the user's query.

SIMS relies on its model of an application domain and on models of the available

information sources to reformulate a query expressed in domain-level terms into a

query using only terms from the models of the information sources. Steps in the

reformulation process consist of applications of any of several available reformula-

tion operators. The application of each operator rewrites a number of clauses of

the given query into a di�erent, but semantically equivalent, set of clauses. Opera-

tors are repeatedly applied until the resulting query explicitly refers to information

sources that contain (or can produce, in the case of programs) the needed infor-

mation. Furthermore, the resulting query will make explicit how information from

the various sources must be combined to result in an answer to the original query

posed to SIMS.

4

This paper will present the details of query reformulation in SIMS. We start, in

Section 2, with a description of the representation system used by SIMS to describe

both the model of the application domain and models of the individual information

sources, which are used in the reformulation process. Section 3 then describes the

operators used to reformulate queries. Section 4 explains how the reformulation

operators are applied and how they interact with query access planning. Section 5

presents experimental results. Section 6 discusses the limitations of the SIMS ap-

proach: which types of queries can be answered and which cannot. Section 7

describes related work and Section 8 summarizes our conclusions and directions for

future work.

2. Modeling and Querying Information Sources

Before we can describe the query reformulation process, we must �rst provide some

background on our approach to modeling a domain, modeling the contents of infor-

mation sources, and querying these information sources. We describe each of these

in turn.

2.1. The Domain Model

In order to combine information from heterogeneous information sources we need a

shared ontology that can be used to describe the contents of sources available within

some application domain. This is done using a domain model, which describes the

classes of information in the domain and the relationships among the classes. This

model is used to integrate the various information sources that are available and

provide the terminology for accessing them. Queries are expressed in terms of the

domain model, and all available information sources are de�ned in terms of this

model.

Throughout this section we use an example from a transportation planning do-

main | planning the movement of personnel and materiel from one location to

another using aircraft, ships, trucks, etc. The example has been simpli�ed from the

actual domain in order to provide a short, self-contained description of a model.

The domain model is described in the Loom language [23], which is a member

of the KL-ONE family of knowledge representation systems [6]. The basic objects

in Loom are classes (also called concepts), which de�ne a set of related instances,

and roles, which de�ne the attributes of a class. The model is used to capture the

following information about classes and roles:

� De�nition of a class.

� Relationship to other classes (i.e., subclass, superclass, coverings).

� De�nition of a role.

5

Figure 1 shows a small fragment of a domain model. Classes are indicated with

circles, roles with thin arrows, and subclass relations with thick arrows. Roles are

inherited down to subclasses. In Figure 1, there is a node in the model representing

the class of ports and another node representing the class of airports. The thick

arrow between these classes indicates that Airport is a subclass of Port. There are

also roles on these classes, such as the role country-code speci�ed between Port

and Country-Id with a notation (not shown) indicating that each of the former

has precisely one of the latter. Some of these roles are also marked as key roles,

indicating that they uniquely identify the members of that class.

runway−of

structure−length

country−code

geoloc−code

key

runway−ap−name

 Geoloc
 Code

Port

 Country
 Id

Airport

Airport
 Name

 Runway

Seaport

depthkey
name

Figure 1. Domain Model Fragment

The Loom de�nition of the Airport concept is as follows:

(defconcept Airport

:is-primitive

(:and Port

(:all name Airport-Name)

(:all runway-of Runway)

(:all altitude Number))

:annotations

((key (name))))

This de�nition states that an Airport is a subclass of Port and, in addition to

the inherited roles from Port, it has three additional roles: name, runway-of, and

6

altitude. The roles provide the name, runways, and altitude for each airport.

The Loom term \is-primitive" is used to indicate that this de�nition may not be

complete and there may be additional distinguishing features that are not stated.

Each domain class typically has one or more roles de�ned as keys.1 Each key can

consist of a single role or a set of roles. The keys are used to uniquely identify

instances of a class. For example, the role name is de�ned as a key for the class

Airport. This is de�ned in the annotations of the Airport class. Key roles are

critical in determining how information from di�erent sources can be integrated.

This integration process is described in detail in Section 3. In this case, the model

also indicates that the geoloc-code uniquely identi�es an airport.

The entities included in the domainmodel are not necessarily meant to correspond

directly to objects described in any particular information source. The domain

model is intended to be a description of the application domain from the point of

view of someone who needs to perform real-world tasks in that domain and/or to

obtain information about it.

For example, the class of high-altitude airports, which are airports with an alti-
tude greater than 5,000 feet, might be particularly important for a given applica-
tion, yet there may be no information source that contains only this class of airport.
Nevertheless, we can de�ne this class in terms of other classes for which information
is available. The Loom de�nition of this concept would be:

(defconcept High-Altitude-Airport

:is (:and Airport

(> altitude 5000)))

Note that in this de�nition the concept is not marked as primitive, indicating that

this is a complete de�nition of what it means to be a high-altitude airport. In

Section 3.6 we will describe how the system exploits this de�nition in processing a

query.

In addition to the subclass and superclass relationships, we can also de�ne cover-

ings of a class. A covering of a class is a set of subclasses whose union is equivalent

to the original class. A class can have multiple coverings. For example, Airport

and Seaport cover the Port class. This would be expressed in the de�nition of the

Port class as follows:

(defconcept Port

:is-primitive

(:and Geographic-Location

(:all primary-port-name String)

(:all secondary-port-name String)

(:all railroad-access String)

(:all road-access String))

:annotations

((key (geoloc-code))

(covering Port (Airport Seaport))))

7

A role is typically de�ned simply by stating its domain and range. For example,
the name role is de�ned with a domain of the class Airport and a range of the class
Airport-Name.

(defrole2 name

:domain Airport

:range Airport-Name)

A role can also be de�ned in terms of other roles. This is important because
not all roles in the domain model have corresponding data in any information
source. If there is no corresponding information for a role in any information source,
the system can attempt to reformulate the query by substituting for the role an
equivalent combination of other roles. For example, consider the role runway-of.
This role is de�ned as follows:

(defrole runway-of

:is (:satisfies (?a ?r)

(for-some (?name)

(:and (Airport ?a)

(name ?a ?name)

(Runway ?r)

(runway-ap-name ?r ?name)))))

This de�nition states that the runway-of role on Airport holds when there exists

a runway whose runway-ap-name has the same value as the name of the airport.

This knowledge will be of use in the course of processing queries (see Section 3.6).

2.2. Information Source Models

An information source is incorporated into SIMS by �rst modeling the contents of

the information source and then relating the concepts and roles of the information

source model to corresponding concepts and roles of the domain model. The model

of an information source is quite simple and contains the classes of information

available in the information source and the attributes of those classes.

Figure 2 provides an example illustrating the principles involved in representing

an information source in SIMS. This �gure shows how the contents of a relational

database table are represented as an information source model. The table is repre-

sented by a class that stands for the collection of objects described by the rows of

the table. In this case, for the Airport table in the AFSC database we will create

the Loom class AFSC:Airport whose instances stand for the airports described in

that table. For each column of the table there is a corresponding role on the class.

In this case, AFSC:Airport has two roles corresponding to the two columns in the

table. In general, we represent n-ary relations as a set of binary relations between

the class and the individual columns of the relation.

8

runway−of

structure−length

country−code

geoloc−code

aport_nm glc_cd

key

runway−ap−name

IS−linkIS−link

IS−link

key

Country
 Id

 Geoloc
 Code

Port

Airport

Airport
 Name

 Runway

 AFSC
 Airport

AFSC:Airport.glc_cd AFSC:Airport.aport_nm

 AFSC DB:
Airport TABLE

Seaport

depthkey
name

Figure 2. A Model of a Database Table Embedded in the Domain Model

9

An information source concept is de�ned similarly to a concept in the domain

model. The class is marked as an information source class by an annotation that

de�nes which source contains the data.

(defconcept AFSC:Airport

:is-primitive

(:and (:the AFSC:Airport.aport nm String)

(:the AFSC:Airport.glc cd String))

:annotations ((info-source AFSC)))

Each column in the table is represented in Loom as a role whose domain is the class

corresponding to the table, and whose range corresponds to the class from which the

values in the column are drawn. For example, the aport nm column in the Airport

table of the AFSC database is represented as the Loom role AFSC:Airport.aport nm,

as shown below.

(defrole AFSC:Airport.aport nm

:domain AFSC:Airport

:range String)

Finally, each new concept and role must be related to the domain model. This is

done by de�ning an information source link, IS-link, between the new concept and

roles and the appropriate concept and roles in the domain model. The meaning of

an IS-link between an information source class and a domain class is that the two

classes contain exactly the same set of individuals, although the information source

class might contain only a subset of the attributes for the class. The links between

the roles indicate that those roles have the same meaning for the linked classes.

Modeling an information source may require augmenting the domain model with

additional classes in order to describe precisely the contents of a given information

source. The advantage of this approach is that it provides the knowledge required

to correctly integrate information in di�erent sources.

An IS-link is the way SIMS makes explicit the semantics of the information in an

information source. An information source may contain names, but the signi�cance

of those names is not self-evident. Are they indeed the names of the airports being

described in each respective row of the table? Or are they the names of the closest

alternative airports? Are they the names of the cities in which the airports are

located? The possibilities are endless, and the schema alone is not su�cient to

choose one. SIMS must know the precise relationship | and an IS-link to a

previously de�ned domain model concept or role establishes it.

The IS-links for the AFSC:Airport concept are de�ned as follows:

(def-is-link AFSC:Airport Airport

((AFSC:Airport.aport nm name)

(AFSC:Airport.glc cd geoloc-code)))

10

This states that the information source concept AFSC:Airport is linked to the

domain-level concept of Airport, the role AFSC:Airport.aport nm is linked to

name, and AFSC:Airport.glc cd is linked to geoloc-code.

2.3. The Query Language

Domain model concepts and roles provide the vocabulary for the query language

with which the user queries SIMS. To submit a query to SIMS, the user composes

a Loom statement, using terms in the domain or information source models to

describe the precise set of data that is of interest. If the user happens to be familiar

with particular information sources and their representation, those concepts and

roles may be used as well. But such knowledge is not required. SIMS is designed

precisely to allow users to query without speci�c knowledge of the data's structure

and distribution.

The query shown in Figure 3 requests the country codes for airports with runways

longer than 10,000 feet. Line 1 in the query speci�es that all possible values of the

variable ?country-code should be returned. Lines 2 through 6 state constraints

that must be satis�ed in retrieving the desired values. Line 2 states that the

values of the variable ?aport should be taken from the class Airport. Line 3

states that the role country-code must hold between the variables ?airport and

?country-code. And so on.

Line 1: (retrieve (?country-code)

Line 2: (:and (Airport ?aport)

Line 3: (country-code ?aport ?country-code)

Line 4: (runway-of ?aport ?rway)

Line 5: (structure-length ?rway ?rlength)

Line 6: (>= ?rlength 10000)))

Figure 3. Example Query

3. The Operators for Query Reformulation

This section de�nes the set of operators that can be used for query reformulation.

Each operator de�nes a generic schema that describes the transformation of a clause

or collection of clauses into another clause or collection of clauses. The applicabil-

ity of these operators depends on the models, the given query, and the available

information sources. This section describes the details of the individual operators

and the next section describes how these operators are used to process a query.

11

3.1. The Motivation for the Choice of Operators

A query to SIMS is formulated using terminology from its domain model. We refer

to one of these as a Domain Query. The �rst step in constructing a query plan

involves the application of query-rewriting operators until a new, but semantically

equivalent, query is obtained: one using only the terminology of information-source

models. We refer to one of these as an Information-Source Query. The collection of

query-rewriting operators available to SIMS is a major factor in determining which

subsets of the data stored in the various information sources will be conveniently

retrievable by a query to SIMS.

In designing SIMS, and speci�cally in de�ning its query-reformulation operators,

we have attempted to follow these informal guidelines:

� No Loss of Data: SIMS should provide the ability to retrieve any data avail-

able from the individual sources. In other words, any data that can be retrieved

by directly querying a particular information source using its own query lan-

guage should be retrievable using SIMS.

� No Loss of Expressive Power: SIMS should support any query that com-

monly existing query languages support. If a distributed query language is

available that can be used to access a database available in SIMS, the expres-

sive power of SIMS should be at least as great as that language.

� Natural Closure: SIMS should be conveniently and naturally extensible. For

any (Loom) concept/role arising naturally as a (well-formed Loom) combination

of concepts/roles already in the domain model, it should be possible to add

that concept/role to the model, and any domain query using it should result in

retrieval of the expected data.

Desirable as these guidelines are, it may not be possible to follow them in all cases.

For example, SIMS is bound by the expressive power of Loom. Loss of Data may

occur if SIMS is dealing with a database supporting a structure and queries that

cannot be naturally mapped to Loom { e.g., keyword-based queries against loosely

structured text databases. However, we have selected reformulation operators and

an approach to reformulation that will guarantee adherence to these guidelines at

least for relational databases using SQL and distributed SQL, as well as for
at �le

databases using languages that have a weaker expressive power.

In the discussion that follows, we attempt to explain the reasons behind our choice

of reformulation operators on the basis of the guidelines just presented.

3.2. The Minimal Model

In order to insure that there be no loss of data, the model used in SIMS must include

concepts representing every simple collection of data in an information source which

is retrievable using the query language of that information source. As pointed out

12

above, this cannot always be guaranteed. However, in dealing with a relational

database whose query language is SQL, we can rely on the fact that all of the SQL

constructs can be expressed in Loom [31]. Thus, it is enough to make sure that the

schema of the database and its information source model \mirror" each other; every

database relation will have a corresponding information source model concept, and

every attribute will have a corresponding role on that concept (Cf. Figure 2).

We de�ne the following types of models:

The Minimal Model of an Information Source: Amodel that includes an in-

formation source-level model and enough of a domain-level model to exactly

cover the information source model. There will be a one-to-one IS-link corre-

spondence between the source- and domain-level classes and roles. This is the

smallest model that provides su�cient domain-level entities to support reference

to every existing information source concept and role.

The Minimal Model: The union of all minimal models for all the information

sources available to the system. Informally, the minimal model is the smallest

model that can describe the semantics of, and provide access to, the entire

contents of the available information sources.

For example, the minimalmodel corresponding to the example information sources

we have been using in this paper is pictured in Figure 4. There are two databases

that are integrated in this model: AFSC and GEO. The �rst database has one

table called AFSC:Airport, and the second database has two tables: GEO:Runway

and GEO:Port. Each table consists of two columns. AFSC:Airport has aport nm

and glc cd; GEO:Runway has aport nm and runway length ft; and GEO:Port

has glc cd and cy cd. In this minimal model, there are three domain concepts:

Airport (corresponding to AFSC:Airport), Runway (corresponding to GEO:Runway),

and Port (corresponding to GEO:Port). Airport has two roles: name (for aport nm)

and geoloc-code (for glc cd). Runway has two roles: runway-ap-name (for aport nm)

and structure-length (for runway length ft). Port has geoloc-code (for glc cd)

and country-code (for cy cd). Note that each role in this domain model is linked

through IS-links to the representation of some column in some table in the databases

(information sources). For example, name of Airport has a link from aport nm of

AFSC:Airport. In addition, every database table is linked to a single concept at

the domain level. For example, AFSC:Airport is linked to Airport. These IS-links

are shown by the dashed arrows. Note the di�erences between this model and the

one shown in Figure 2: there is no relation between Airport and Port in this

minimal model, and the column AFSC:Airport.glc cd is linked to geoloc-code

of Airport. Furthermore, the role runway-of is not in the minimalmodel, because

there are no IS-links to it.

In the two subsections that follow, we present reformulation operators used by

SIMS that enable information sources to be chosen for a query against the minimal

model, thus attempting to ensure no loss of data. We will also show that the

minimal models and these operators are su�cient to support all queries equivalent

13

structure−length

country−code

geoloc−code

runway−ap−name

geoloc−code

Geoloc
 Code

Port

 Country
 Id

Airport

Airport
 Name Runway

 GEO
 Port

 AFSC
 Airport

 GEO
 Runway

AFSC:Airport.glc_cd

GEO:Port.glc_cd GEO:Port.cy_cd

AFSC:Airport.aport_nm
GEO:Runway.aport_nm

GEO:Runway.runway_length_ft

name

Figure 4. An Example of a Minimal Model

to those that can be posed in distributed SQL (assuming that the information

sources being modeled are relational databases). This attempts to insure no loss of

expressive power.

The functionality supported by the following two operators is roughly equiva-

lent to that available in [21]. Levy et al. treat the problem as one of integrating

materialized relations { each could represent an information source { into a view

represented by a query. This work shows that the complexity of the problem is

NP-complete (or worse in the case of a more expressive language).

3.3. The Choose-Source Operator

Let us consider the following distributed SQL query, Q1:

Q1: SELECT A.glc cd, B.runway length ft

FROM AFSC:Airport A, GEO:Runway B

WHERE A.aport nm = B.aport nm

where AFSC and GEO are two di�erent databases. To support such a query in

SIMS, what is needed is a minimal model for these databases, containing domain-

level concepts corresponding to the tables in them, and the ability to choose the

14

corresponding tables and replace the domain concepts used in the query with suit-

able references to the corresponding tables.

The step of choosing the appropriate information source corresponding to a

domain-level term used in a query is performed by an operator called choose-source.
For example, using the minimal model shown in Figure 4, the domain query that

is equivalent to the query Q1 is:

(retrieve (?code ?length)

(and (Airport ?c1)

(geoloc-code ?c1 ?code)

(name ?c1 ?v)

(Runway ?c2)

(structure-length ?c2 ?length)

(runway-ap-name ?c2 ?v)))

We consider each SIMS query to be a composition of clusters of clauses. A cluster

is the collection of clauses that refer to some variable and to any constraints upon it.

A cluster is a domain cluster if at least some of its clauses are at the domain level.

A cluster is an information source cluster if all its clauses are at the information

source level. For example, there are two domain clusters in the above domain query.

The �rst contains all the references to the variable ?c1: its declaration as a member

of the class Airport and the further speci�cations concerning the values of its roles

geoloc-code and name. The second cluster contains all the references to ?c2: its

declaration as a member of the concept Runway and clauses concerning its roles

structure-length and runway-ap-name.
The choose-source operator in this example rewrites all the domain clusters in

the query as the corresponding information source clusters by following the IS-links
that are associated with them. Speci�cally, the operator rewrites the above query
as:

(retrieve (?code ?length)

(and (AFSC:Airport ?c1)

(AFSC:Airport.glc cd ?c1 ?code)

(AFSC:Airport.aport nm ?c1 ?v)

(GEO:Runway ?c2)

(GEO:Runway.runway length ft ?c2 ?length)

(GEO:Runway.aport nm ?c2 ?v)))

When this query is sent to a wrapper for a relational database, it is translated into

a query that is equivalent to the SQL Q1 listed at the beginning of this subsection.

Note that the operator preserves the meaning of the domain query because it simply

rewrites the domain concepts and roles using their corresponding, semantically

equivalent, database tables and columns.
In the simple example above, each domain cluster is mapped through IS-links to a

single information source cluster. In general, however, more than one information
source may contain the requested data. In that case, one domain cluster may

15

potentially map to several di�erent information sources. In such a situation the
operator generates a set of reformulated queries, each one corresponding to one of
the possible mappings to information source clusters. For example, consider a case
where, in addition to AFSC:Airport, there is another table in a database called DB4

that contains the same information as AFSC:Airport. Let it be DB4:Airport. It,
too, will be linked to the domain concept Airport. Then, the above domain query
will be rewritten by the operator into two equivalent queries:

(retrieve (?code ?length)

(and (AFSC:Airport ?c1)

(AFSC:Airport.glc cd ?c1 ?code)

(AFSC:Airport.aport nm ?c1 ?v)

(GEO:Runway ?c2)

(GEO:Runway.runway length ft ?c2 ?length)

(GEO:Runway.aport nm ?c2 ?v)))

(retrieve (?code ?length)

(and (DB4:Airport ?c1)

(DB4:Airport.glc cd ?c1 ?code)

(DB4:Airport.aport nm ?c1 ?v)

(GEO:Runway ?c2)

(GEO:Runway.runway length ft ?c2 ?length)

(GEO:Runway.aport nm ?c2 ?v)))

The SIMS planner will consider both options and ultimately choose based on other

information available, such as resource constraints, resource availability, and query-

ing costs. For example, if the AFSC database is not available at the moment, SIMS

will choose the second query to get the desired information from DB4.

The algorithm of the choose-source operator is as follows. It �rst checks if

all the domain clusters in the query have IS-links to some information source. If

so, it then replaces the clusters with the corresponding information source clauses.

Using terminology standard in the AI Planning �eld, the algorithm can be de�ned

as follows:

Operator Choose-Source

Preconditions: 1. For every domain cluster ' in the query, there is

an information source � to which all clauses in '

have IS-links.

Actions: 1. Replace every ' with its corresponding clauses us-

ing terms from �.

3.4. The Decompose Operator

The choose-source operator described in the previous section is designed to deal

with situations in which an entire domain cluster can be mapped to a single in-

16

formation source through IS-links. But users will probably wish to write queries

containing domain clusters that have roles intended for mapping to di�erent infor-

mation sources. That will enable users, for example, to request airports that satisfy

a whole list of constraints, even if the attributes referred to in the constraints are

not all present in a single database.

Queries concerning such a concept will have to be \decomposed" into several

subqueries, each referring only to attributes present in a single information source

{ the original domain cluster will have to be decomposed into a set of new domain

clusters. While this is done, additional clauses may have to be added to the clusters

to make certain that the data retrieved from di�erent information sources still refers

to the same objects. This is accomplished by the decompose operator.

For example, suppose that the concept Airport in Figure 4 has another role called
main-runway-direction, and it is IS-linked to a column called runway direction

of the table DB4:Airport. Assume that the DB4:Airport table has a key role called
apt name and it is IS-linked to the key role name of Airport. Then for a domain
model query as follows:

(retrieve (?code ?dir)

(and (Airport ?a)

(geoloc-code ?a ?code)

(main-runway-direction ?a ?dir)))

the choose-source operator is not directly applicable because there is no single
information source to which the entire Airport cluster can be mapped. However,
the decompose operator can rewrite the query as follows:

(retrieve (?code ?dir)

(and (Airport ?a1)

(geoloc-code ?a1 ?code)

(name ?a1 ?n)

(Airport ?a2)

(main-runway-direction ?a2 ?dir)

(name ?a2 ?n)))

Now the choose-source operator can apply and rewrite the new query into a

query that can be executed over the two databases AFSC and DB4. Note that

at the domain level, the two new clusters are joined on the key role name. But

at the information source level, ?a1's name will be mapped onto aport name of

AFSC:Airport, while ?a2's name will be mapped onto apt name of DB4:Airport.

The decompose operator acts as follows. It �nds a cluster containing a concept

C that needs to be decomposed, and a group � of roles in the cluster that have

IS-links to an information source concept Ci. It then constructs a new cluster using

a new concept clause (C ?ci) and the roles in �. This new cluster is joined with

the rest of the original cluster through a key of C that has an IS-link to Ci:

17

Operator Decompose

Preconditions: 1. The query has an unmapped cluster ' that con-

tains a concept clause (C ?c).

2. The concept C and a group � of roles in ' have

IS-links to an information source concept Ci.

3. C has a key role R, Ci has a key role Ri, and there

is a IS-link between R and Ri.

Actions: 1. Introduce a new concept clause (C ?ci).

2. Replace the concept variable ?c in the roles in �

by ?ci.

3. Insert the roles (R ?c ?v) and (Ri ?ci ?v) to join c

and ci.

The decompose operator allows the user more
exibility in writing a query. From

the user's point of view, queries are more \concept-oriented". They can be written

without concern for which information source each role will be retrieved from.

3.5. The Augmented Domain Model

In the last two sections we have been considering queries against a minimal domain

model. The minimal model alone su�ces to provide SIMS with the querying ca-

pability of distributed SQL. However, we wish to support the incorporation of any

number of additional concepts and roles into the domain model. Enough new con-

cepts and roles should be de�ned as are needed to support convenient formulation

of queries that might be of use to a human or computer system performing some

task in the domain. To support this Natural Closure of the model, however, more

operators must be added to SIMS as well.

To illustrate one of the many ways in which new concepts may be de�ned in

Loom to augment the minimal model, consider the augmented model in Figure 5.

We de�ne the new role runway-of, for example, as holding between an airport

and a runway if and only if there exists some airport name that is shared by the

airport (through name) and the runway (through runway-ap-name). Note that

although the role runway-of has no IS-links, the two roles used to de�ne it (name

and runway-ap-name) have IS-links to some database attributes.

The following two subsections, Section 3.6 and Section 3.7, introduce the opera-

tors needed to handle newly de�ned Loom concepts and roles. They are grouped

into two general types according to whether the newly de�ned term itself is explic-

itly used in the query, or whether the de�nition of the term is in the query. In

both cases, the possibility of substituting the relevant clauses in the query must be

inferred.

18

country−code

geoloc−code

key

runway−ap−name

 High
Altitude
Airport

Geoloc
 Code

Port

 Country
 Id

Airport

Airport
 Name

 Runway

 GEO
 Port

 AFSC
 Airport

 GEO
 Runway

GEO:Port.glc_cd GEO:Port.cy_cd

AFSC:Airport.glc_cd AFSC:Airport.aport_nm
GEO:Runway.aport_nm

GEO:Runway.runway_length_ft

structure−length

runway−ofkey
name

Figure 5. An Augmented Model

3.6. The Substitute Operators

There are two operators that use de�nitions in reformulating queries: the substitute-

by-definition operator replaces roles or concepts in the query by their explicit

de�nitions, and the substitute-by-partition operator replaces a concept in the

query by its direct subconcepts in the hierarchy if they form a partition.

3.6.1. Substitute-by-De�nition

A role or a concept can be de�ned explicitly in Loom using a set of clauses. For
example, the role runway-of is de�ned as follows:

(defrole runway-of

:is (:satisfies (?a ?r)

(for-some (?name)

(:and (Airport ?a)

(name ?a ?name)

(Runway ?r)

(runway-ap-name ?r ?name)))))

19

To illustrate how a role's de�nition is used, consider the following domain query:

(retrieve (?ap ?rw)

(and (Airport ?ap)

(runway-of ?ap ?rw)))

Based on the existence of the de�nition of runway-of, the substitute-by-defi-
nition operator will rewrite the query as:

(retrieve (?ap ?rw)

(and (Airport ?ap)

(name ?ap ?name1)

(Runway ?rw)

(runway-ap-name ?rw ?name1)))

In a similar fashion, the operator can also replace a concept by its de�nition, if a
model-de�ned concept exists in the query. For example, suppose we de�ne the new
concept High-Altitude-Airport as follows:

(defconcept High-Altitude-Airport

:is (:and Airport

(> altitude 5000)))

In other words, an airport belongs to the class High-Altitude-Airport if it is
located at an altitude above 5000 feet. Given the following domain query:

(retrieve (?name)

(and (High-Altitude-Airport ?hap)

(name ?hap ?name)

...))

the substitute-by-definition operator will rewrite it as:

(retrieve (?name)

(and (Airport ?hap)

(altitude ?hap ?altitude1)

(> ?altitude1 5000)

(name ?hap ?name)

...))

The complete speci�cation of the operator is as follows:

Operator Substitute-by-De�nition

Preconditions: 1. The query contains a clause X (a concept or a

role) that has an explicit de�nition �.

Action: 1. Replace X by � with appropriate variable

substitutions.

20

3.6.2. Substitute-by-Partition

In addition to de�nitions of concepts and roles, concepts may also have covering def-

initions. For example, a concept C is equivalent to the union of all its direct subcon-

cepts fC1; :::; Cng, if they form a complete coverage. The substitute-by-partition

operator is designed to use this type of knowledge, and it replaces a concept in the

query by its direct subconcepts in the hierarchy if they form a partition.
To illustrate this, consider the following domain query:

(retrieve (?name)

(and (Port ?p)

(name ?p ?name)

...))

Notice that the role name has no IS-links when associated with the concept Port,
and neither of them is explicitly de�ned in the model. However, the Port concept
has two subconcepts, Airport and Seaport, and in this case, they happen to form a
partition of Port (see Section 2.1). So the operator replaces the appropriate clauses
in the query by a union of two new subqueries:

(retrieve (?name)

(union (and (Seaport ?p)

(name ?p ?name)

...)

(and (Airport ?p)

(name ?p ?name)

...)))

Both of these subqueries will ultimately be reformulated further to obtain the name

from the appropriate information sources.

The complete speci�cation of this partition operator is as follows:

Operator Substitute-by-Partition

Preconditions: 1. The query contains a cluster ' � (C ?v)^�, where

� is the set of C's roles and constraints.

2. The concept C has a set of n direct subconcepts,

C1; :::; Cn, that form a partition of C.

Action: 1. Replace the cluster ' by
S
f(Ci ?v) ^ �g, where

1 � i � n.

3.7. The Infer-Equivalences Operators

There are two operators that rewrite clauses using concepts and role constraints to

infer equivalence to an alternative query. The �rst, generalize-with-join, is used

when it is possible to infer that a superconcept along with a set of constraints is

21

equivalent to some concept used in the query. The second, specialize-using-con-

straints, is used when it is possible to infer that a concept along with constraints

present in the query is equivalent to some subconcept. Both operators preserve the

semantics of the original query.

3.7.1. Generalize-With-Join

The generalize-with-join operator handles cases where instances of a concept

are identi�able among those of a superconcept by the fact the values of some of

their roles are constrained in a particular way. The operator serves, in e�ect, to

specify a join between the subconcept and the superconcept.

For example, consider the following query:

(retrieve (?cc ?name)

(and (Airport ?aport)

(country-code ?aport ?cc)

(name ?aport ?name)))

Since the role of country-code has an IS-link only when it is associated with the

Port concept and not the Airport concept (i.e., it corresponds to an attribute in a

database of ports, not speci�cally airports), the Airport concept in the query must

be generalized to Port and a join constraint added between these two concepts to

preserve the semantics of the query.

The procedure for applying this operator is as follows. Given a domain concept
C and a role on it R (e.g., country-code above), go up the concept hierarchy to
�nd a superconcept of C, C0, that has the desired role R with an IS-link. Introduce
a new cluster of C0 with the role R and additional constraints on a key of C and C0

to join the two concepts (C inherits this key from C
0). In our current example, the

key they are joined over is geoloc-code. So the reformulated query is as follows:

(retrieve (?cc ?name)

(and (Airport ?aport)

(geoloc-code ?aport ?gc)

(name ?aport ?name)

(Port ?port)

(country-code ?port ?cc)

(geoloc-code ?port ?gc)))

Notice that even though a part of this new query requests the country-code

for all ports (the concept Port also includes Seaport), the returned information

will only be for airports because the constraints (geoloc-code ?port ?gc) and

(geoloc-code ?aport ?gc) will �lter out any port that is not an airport.

The algorithm for inferring a superconcept by introducing a join constraint as

follows:

22

Operator Generalize-With-Join

Preconditions: 1. The query contains a cluster:

(C ?c) ^ (R ?c ?v) ^ �.

2. There exists a superconcept C0
� C that is in the

domain of R and has a key role �.

Actions: 1. Add a new concept clause (C0 ?u).

2. Replace the role (R ?c ?v) by (R ?u ?v).

3. Add the join roles (� ?c ?w) ^ (� ?u ?w), where

?w is a new variable.

3.7.2. Specialize-Using-Constraints

In addition to introducing superconcepts constrained by joins, it may be possible
to infer the possibility of replacing a concept used in a query with some subconcept
of it, given constraints already present in the query. For example, in our domain
model the concept Port has two subconcepts: Airport and Seaport. Suppose we
are given the following domain query:

(retrieve (?n ?d)

(and (Port ?p)

(name ?p ?n)

(depth ?p ?d)))

Notice that no information source contains depth information on ports. Never-
theless, since the depth role is de�ned only on one of the subconcepts of Port {
Seaport { this query can be specialized as follows:

(retrieve (?n ?d)

(and (Seaport ?p)

(name ?p ?n)

(depth ?p ?d)))

This specialization is safe to perform since the existing clauses (Port ?p) and

(depth ?p ?d) already tell us that the query concerns only ports that have the

depth role, i.e., seaports. In other words, there is a \semantic equivalence" between

(Port ?p) with (depth ?p ?d) and the specialization (Seaport ?p). The opera-

tor excludes all other specializations of the port concept, such as airport, because

they do not possess the constraining role (depth ?p ?d).
Sometimes the constraints on the concept in the query may satisfy the de�nition

of a subconcept. For example, in the following query:

(retrieve (?name)

(and (Airport ?p)

(altitude ?p ?alt)

(> ?alt 6000)

23

(name ?p ?name)

...))

the set of clauses ((Airport ?p) (altitude ?p ?alt) (> ?alt 6000)) is sub-
sumed by the de�nition of High-Altitude-Airport (Loom's subsumption algo-
rithm is used by SIMS to support this type of reasoning). It is thus correct to
replace the concept Airport by its subconcept High-Altitude-Airport:

(retrieve (?name)

(and (High-Altitude-Airport ?p)

(altitude ?p ?alt)

(> ?alt 6000)

(name ?p ?name)

...))

The e�ect of this operator is to replace a concept clause (possibly along with some

constraints present in the query) with an \equivalent" subconcept. This equivalence

may be implied by the mere presence of the roles used in the constraint, or it may be

due to the speci�c nature of the constraints (e.g., subsumed by a concept de�nition).

In either case, the reformulated query is equivalent to the original. The complete

speci�cation of this operator is as follows:

Operator Specialize-Using-Constraints

Preconditions: 1. The query contains a cluster (C ?c) ^ �, where �

is a set of roles of C.

2. A role (R ?c ?v) in � is de�ned only on a subcon-

cept C0
� C, or the cluster (C ?c)^� is subsumed

by a subconcept C0
� C.

Action: 1. Replace (C ?c) by (C0 ?c), and remove those role

clauses that are implied by the de�nition of C0.

4. Using the Query Reformulation Operators

In this section we describe how the reformulation operators are used to process a

query. We �rst present our approach to dynamically selecting information sources to

answer a given query, and then we present a complete reformulation of an example

query.

4.1. The Reformulation Process

A domain query is expressed using the terms of the domain model, and the system

must select an appropriate set of information sources to retrieve the data. This

requires that the original query be converted into one or more queries that use only

terms of the information-source models. Transformation of the domain-level query

into a set of source-level queries is performed using the reformulation operators

24

presented in the previous section. Each of these operators is used either to transform

one set of domain-level terms into another set of domain-level terms, or to replace

domain-level terms with information-source-level terms. All of the reformulation

operators are semantics preserving, so the �nal query and every intermediate query

will have the same semantics as the original query.

When applied to a given query, the reformulation operators produce a set of

possible information-source queries. A number of possible reformulations may be

applied to any given query. Since some reformulations will result in a better overall

plan than others, the system must consider these alternative sequences of reformu-

lations. At each point in the search process, the system selects the most promising

intermediate query (described below) and applies the possible reformulation opera-

tors to it. This process is repeated until every domain-level term has been replaced

by one or more information-source-level terms or the space of reformulations has

been exhausted. In the latter case, SIMS determines that there is no way to obtain

the requested information given the available information sources.

The space of possible reformulations may be very large. In order to constrain the

search for suitable operators, the system considers reformulations only for domain-

level terms that do not have a direct mapping to an information source. For ex-

ample, a query about ports may be reformulated into one about airports if there is

no database that contains information about ports. On the other hand, the system

would not even attempt to reformulate that portion of the query if there were at

least one database that contained all of the required information about ports.

In earlier versions of SIMS [3], the system would completely reformulate a domain

query into an information-source query before generating the query access plan. In

that case, the system would search for a reformulation of the query that required

the smallest number of reformulation operators. The problem with this approach

is that the shortest reformulation will not necessarily result in the lowest cost plan.

In the current version of SIMS, reformulation and query access planning are tightly

integrated. This means that the system reformulates queries and generates the

query access plan all within the same search process [18].

The SIMS query planning process is described in [18] and will only be brie
y

reviewed here in order to describe how query reformulation �ts within query plan-

ning. Traditional query processors determine the operations and the ordering on

the operations for producing the requested set of data. In SIMS, the query pro-

cessor determines the operations and orderings and also chooses the information

sources to be used to answer a given query using the reformulation operators. In

addition to the reformulation operators described previously, query processing also

requires a set of data manipulation operators: move, for moving a set of data from

one information source to another; join, for combining two sets of data into a

combined set; select, for selecting a subset of the data; assignment, for deriving

a new attribute; union, for merging sets of data; and compute, for performing ad-

ditional processing in Loom that is not supported by either the remote information

source or any of the other data manipulation operators (e.g., disjunction, group-by,

aggregation, set-di�erence). Both the data manipulation operators and the query

25

reformulation operators are speci�ed in a general operator language and are used

in a general-purpose planner called sage [18], which is built on the ucpop [4]

planning system.

The advantage of integrating the query planning and reformulation process is

that the system can now generate estimates on the cost of processing partially

constructed plans. This information is used within a branch-and-bound search to

�nd the lowest cost plan to implement a query. The system uses statistics on the

size of concepts and cardinality of attributes and assumes a uniform distribution of

the data to estimate the amount of data that will be manipulated by each operation.

These estimates can then be used to estimate the overall cost of each query plan,

which is used to guide the search process. This approach is more e�cient than other

approaches to query processing that enumerate the set of possible query plans and

then compare their costs [28].

4.2. An Example Query Plan

Suppose we are given the following query, which requests the names of the airports
where a C5 aircraft can land in a given country.

(retrieve (?pname)

(:and (Airport ?aport)

(country-code ?aport "IT")

(primary-port-name ?aport ?pname)

(runway-of ?aport ?rway)

(structure-length ?rway ?rlength)

(Military-Transport-Aircraft ?acraft)

(vehicle-type-name ?acraft "C-5")

(wartime-min-runway-avg-landing ?acraft ?landlength)

(>= ?rlength ?landlength)))

Figure 6 shows the complete query plan produced by the system for this query. This

plan contains both data manipulation operations and reformulation operations,

but only the former will actually be executed. The reformulation operations are

just used in the process of producing the plan. In this case the system would

retrieve data about the airports and runways from one information source and the

information about the C-5 from another information source, and bring it all into

the local system. It would then join this information over the runway length and

landing length and move the result to the output, i.e., return it to the user.

The plan shown here is the �nal one selected for processing. A number of inter-

mediate plans were considered during processing and this one was selected because

it had the lowest estimated overall execution cost. In the remainder of this section

we describe the details of the reformulation operators used to produce this query

plan.

The query processor starts with the query posed by the user and transforms it

into subqueries to individual information sources. The operators shown in Figure 6

26

Figure 6. A Screen Shot of a Query Plan Produced by SIMS

27

are generated by working backward from the query, so we will discuss them from

right to left. The plan is executed in the opposite order, starting with retrieving

data from the information sources and ending with presenting the data to the user.

The substitute-by-definition operator is considered �rst with the de�nition of

runway-of since that relation is not linked to any information source. This action

replaces runway-of with its de�nition, and the result is shown with the changes

underlined:

(retrieve (?pname)

(:and (Airport ?aport)

(country-code ?aport "IT")

(primary-port-name ?aport ?pname)

(Runway ?rway)

(runway-ap-name ?rway ?pname)

(structure-length ?rway ?rlength)

(Military-Transport-Aircraft ?acraft)

(vehicle-type-name ?acraft "C-5")

(wartime-min-runway-avg-landing ?acraft ?landlength)

(>= ?rlength ?landlength)))

Next, the decompose operator is applied to the Airport cluster. Since only

primary-port-name has an IS-link, the operator replaces this part of the domain

cluster and introduces a join constraint using the key geoloc-code.

(retrieve (?pname)

(:and (Airport ?aport)

(country-code ?aport "IT")

(geoloc-code ?aport ?key119)

(Airport ?aport120)

(primary-port-name ?aport120 ?pname)

(geoloc-code ?aport120 ?key119)

(Runway ?rway)

(runway-ap-name ?rway ?pname)

(structure-length ?rway ?rlength)

(Military-Transport-Aircraft ?acraft)

(vehicle-type-name ?acraft "C-5")

(wartime-min-runway-avg-landing ?acraft ?landlength)

(>= ?rlength ?landlength)))

The next step is to �nd a source for airports that contains country-code infor-

mation. In this particular case, the generalize-with-join operator generalizes

Airport to Geographic-Location and introduces a join constraint on the key of

Geographic-Location and Airport. The key role used in this case is geoloc-code.

The result is as follows:

28

(retrieve (?pname)

(:and (Geographic-Location ?geographic-location#122)

(geoloc-code ?geographic-location#122 ?key119)

(country-code ?geographic-location#122 "IT")

(Airport ?aport120)

(primary-port-name ?aport120 ?pname)

(geoloc-code ?aport120 ?key119)

(Runway ?rway)

(runway-ap-name ?rway ?pname)

(structure-length ?rway ?rlength)

(Military-Transport-Aircraft ?acraft)

(vehicle-type-name ?acraft "C-5")

(wartime-min-runway-avg-landing ?acraft ?landlength)

(>= ?rlength ?landlength)))

Since all the clauses may directly into at least one information source, the system

now considers the data-manipulation operators. In this case no single information

source contains all of the required information, so the move operator is selected to

move the data from the local system to the output. In order to get the information

into the local system, the planner selects the join operator to combine the data

over the runway length and landing length. This in turn requires retrieving two

smaller sets of data, shown by the upper and lower branches in the plan.

The set of data to be retrieved in the upper branch of the plan corresponds to
the information on the C-5 aircraft and is described by the following subquery:

(retrieve (?landlength)

(:and (Military-Transport-Aircraft ?acraft)

(vehicle-type-name ?acraft "C-5")

(wartime-min-runway-avg-landing ?acraft ?landlength)))

The choose-source reformulation operator maps the subquery into the ASSETS

database and replaces the domain-level terms with the corresponding terms used

in that information source.

(retrieve (?landlength)

(:and (ASSETS:Aircraft Airfield Chars ?acraft)

(ASSETS:Aircraft Airfield Chars.ac type name ?acraft "C-5")

(ASSETS:Aircraft Airfield Chars.wt min avg land dist ft ?acraft

?landlength)))

The move operator is inserted into the plan to indicate that this query must be

sent to the ASSETS information source and the result brought into the local system

for additional processing.

The lower branch of the query plan is handled similarly. This subquery concerns

information on geographic locations, airports, and runways:

29

(retrieve (?pname ?rlength)

(:and (Geographic-Location ?geographic-location#122)

(geoloc-code ?geographic-location#122 ?key119)

(country-code ?geographic-location#122 "IT")

(Airport ?aport120)

(primary-port-name ?aport120 ?pname)

(geoloc-code ?aport120 ?key119)

(Runway ?rway)

(runway-ap-name ?rway ?pname)

(structure-length ?rway ?rlength)))

The choose-source operator is used to select the GEO database for this data and

translate the terms into those used in that information source.

(retrieve (?pname ?rlength)

(:and (GEO:Geoloc ?geographic-location#122)

(GEO:Geoloc.glc cd ?geographic-location#122 ?key119)

(GEO:Geoloc.cy cd ?geographic-location#122 "IT")

(GEO:Airports ?aport120)

(GEO:Airports.aport nm ?aport120 ?pname)

(GEO:Airports.glc cd ?aport120 ?key119)

(GEO:Runways ?rway)

(GEO:Runways.aport nm ?rway ?pname)

(GEO:Runways.runway length ft ?rway ?rlength)))

Finally, the move operator is inserted to execute this query against this informa-

tion source and bring the results into the local system.

Notice that the query produced by the query processing is still expressed in Loom

query syntax. However, each of these queries now corresponds to a single informa-

tion source and is expressed in terms of the information source model. The problem

of translating this query into a query appropriate for the given information source

and executing them against the source is handled by a wrapper. In this case the

queries must be translated into SQL. We use the Loom Interface Manager (LIM)

[24], [25] to perform this translation and execute the queries against an Oracle

database.

5. Experimental Results

The SIMS system has been tested and used in several real-world information in-

tegration applications, including trauma care information management and trans-

portation information integration. In this section, we give a detailed description of

the latter.

The transportation application involves eight relational databases (APPORTN,

DEPLOY, FMLIB, UNITCHR, EQPMNT, ASSETS, GEO, and TPFDD) about

30

airports, seaports, and geographical locations. These databases are replicated at

ISI and a commercial site accessible over the Internet. The databases are quite

large. For example, GEO has 23 tables, the number of columns per table ranges

from 2 to 33, and the largest table has 52,687 rows. ASSETS has 20 tables, the

number of columns per table ranges from 2 to 40, and the largest table has 4,490

rows.

To integrate these information sources, we have constructed a domain model that
contains about 170 concepts. For testing purposes we selected a set of 21 queries;
three of which are shown below:

List all airports in Italy where a C5 airplane can land:

(retrieve (?pname)

(:and (Airport ?aport)

(country-code ?aport "IT")

(primary-port-name ?aport ?pname)

(runway-of ?aport ?rway)

(structure-length ?rway ?rlength)

(Military-Transport-Aircraft ?acraft)

(vehicle-type-name ?acraft "C-5")

(wartime-min-runway-avg-landing ?acraft ?landlength)

(>= ?rlength ?landlength)))

List all Italian airports with ramp space for 10 C-141B aircraft at peacetime:

(retrieve (?pname)

(:and (Airport ?aport)

(country-code ?aport "IT")

(aircraft-parking-space ?aport ?appark)

(primary-port-name ?aport ?pname)

(Military-Transport-Aircraft ?acraft)

(vehicle-type-name ?acraft "C-141B")

(peacetime-ramp-space ?acraft ?acpark)

(>= (/ (* 9 ?appark) ?acpark) 10)))

List wharves in Naples with container cranes and rail for half of

the wharf by pier name and berth ID

(retrieve (?pname ?berthid)

(:and (Seaport ?sport)

(primary-port-name ?sport "Naples")

(harbor-of ?sport ?harbor)

(cargo-pier-of ?harbor ?pier)

(pier-name ?pier ?pname)

(cargo-wharf-of ?pier ?wharf)

(wharf-berth-identifier ?wharf ?berthid)

(wharf-length ?wharf ?wharflen)

31

(container-crane-qty ?wharf ?cranenum)

(> ?cranenum 0)

(wharf-railway-capability ?wharf ?wharfrail)

(>= ?wharfrail (/ ?wharflen 2))))

The average planning time on a Sparc 20 workstation for these 21 queries is 0.46

CPU seconds, with a standard deviation of 0.35. The average planning and exe-

cution time for these queries, when all databases are running at ISI, is 0.96 CPU

seconds, with a standard deviation of 0.80. Note that the planning of complex

queries can be performed in a fraction of a second, which shows that the reformu-

lation process is e�cient enough to be practical.

Note also that the merits of SIMS go beyond the e�ciency of query execution.
SIMS provides users with a simple and uniform way to gather information in a dis-
tributed environment. If all these queries were written manually for each individual
database, the user would face a di�cult task. For example, for the �rst example
query above to be written manually, the following two separate SQL queries for
GEO and ASSETS, respectively, must be written and executed:

For ASSETS database:

SELECT A.wt min avg land dist ft

FROM aircraft airfield chars A

WHERE A.ac type name = "C-5"

For GEO database:

SELECT D.aport nm, B.runway length ft

FROM runways B, geoloc C, airports D

WHERE C.cy cd = 'IT' AND

B.aport nm = D.aport nm AND

C.gld cd = D.glc cd

after which the user must select those D.aport nmwhose values of B.runway length ft

are greater than the values of A.wt min avg land dist ft. This, of course, assumes

that the user even knows where the data is located. Furthermore, SIMS is able to

recover automatically from inaccessibility of data sources.

6. Limitations of the Approach and Implementation

We have identi�ed several limitations of the reformulation process, and describe

them below. The �rst two are di�culties stemming from the nature of the problem

handled by SIMS, while the last is due to the current state of the SIMS implemen-

tation.

32

6.1. Object Identity

As with any system that obtains information from multiple sources, SIMS faces

the problem of determining the identity of retrieved objects. To deal with this, the

domain model in SIMS contains information about unique identi�ers in the domain

(such as a Social Security Number in the case of people), and it is required that

each domain class include such a key. In addition, SIMS requires that for each pair

of existing identi�ers for a class of objects, there exist some information source (or

sources) with the unique mapping between them.

For example, a SIMS model of the transportation planning domain might indicate

that automobiles are uniquely identi�ed either by Vehicle Identi�cation Numbers

or by license plate numbers combined with state of registration. Every information

source that contains information about automobiles must then use (at least) one

of these keys to identify the automobiles in it, and SIMS must have access to some

information source (or combination of sources) that can be used to map one to

the other. If we did not require this information, the responses to queries about

automobiles would be unreliable. This is a problem that would be faced by any

system attempting to answer such queries.

6.2. Value Mappings

Di�erent information sources may contain data of the same semantic type, but

using di�erent units | such as temperature in degrees Celsius in one case, and

Fahrenheit in another. SIMS modeling supports (and requires) the identi�cation of

the units for values contained in each information source. To be assured of correct

responses to queries, a mapping must be available in some information source for

every pair of units. This mapping may be in the form of a function, such as one

converting between di�erent temperature units, or in some databases or knowledge

base; SIMS accepts all of these as information sources. It should be noted that the

problem of obtaining such mappings is a complex one in many cases [30].

6.3. Non-Relational Databases

Although we believe that the SIMS approach is applicable to other information

sources, in its current implementation SIMS deals only with Oracle relational

databases, MUMPS databases (through an MSQL [15] wrapper), Loom knowledge

bases, and programs that can be called within our computational environment to

generate data. The extension of SIMS to OODBs and
at �les would appear to be

straightforward, and is planned in the near future.

33

7. Related Work

There are a variety of approaches to handling distributed, heterogeneous, and au-

tonomous databases [27], [29]. Of these approaches, the tightly coupled federated

systems are the most closely related to SIMS in that they attempt to support total

integration of all information sources in the sense that SIMS provides. However,

building a tightly coupled federated system requires constructing a global schema

for the databases to be combined. A given query would then always be mapped to

the same combination of queries to the underlying databases. An example of this

is the work on Multibase [19], where the basic goals are the same as those of SIMS,

but the mapping between the global schema and the local schemas is hard wired.

In contrast, the approach presented in this paper does not attempt to federate

a �xed set of databases, but to provide a framework for integrating any number

of information sources in a particular domain. SIMS provides a general domain

model that can be used to describe all information in the domain. It adds a
exible

query processing capability that dynamically reformulates queries to retrieve the

requested data. In contrast to previous work, the domain model in SIMS is not

speci�c to a particular group of information sources, nor is there necessarily a

direct mapping from the concepts in the model to the objects in the information

sources. The appropriate sources for the requested information are selected at run-

time based on the speci�c information requested by the user, the data available in

the various sources, and the current availability of these information sources. The

combination of semantic modeling and dynamic reformulation of queries provides a

much more
exible and easily extensible interface to a possibly changing collection

of information sources.

The situation is similar with multidatabase systems such as Pegasus [1] and

UniSQL [16]. Pegasus addresses the semantic heterogeneity problem primarily by

requiring users/administrators to write speci�c programs that will reconcile seman-

tic di�erences. Pegasus does have one kind of reformulation strategy that is similar

to SIMS', in which a superclass can be specialized into a collection of its subclasses.

For example, a query about employees may be mapped to queries about engineers

and programmers, the two classes of employees that are present in two di�erent

databases in the system. However, Pegasus does not in general support dynamic

mapping as SIMS does.

In UniSQL as well, �xed, uni�ed views of the multiple databases are provided

and queries are processed against them. Furthermore, UniSQL considers possible

con
icts as arising among tables and/or among attributes { i.e., these are deter-

mined by database-to-database comparisons. In SIMS we attempt to address this

n
2 problem by providing a single reference vocabulary (the domain model) with

which to describe each new information source independently of the others.

Raschid et al. [26] provide an interesting alternative approach to interoperabil-

ity among heterogeneous databases, speci�cally dealing with relational and object

databases. Their system deals with mapping queries against one local schema to

queries against the local schema of another database. Despite di�erences in focus,

34

Raschid et al. will have to handle the same type of problems SIMS does. However,

at this time their system still assumes a relatively straightforward correspondence

between the data organization in the di�erent databases, and handles only relatively

simple queries.

The Carnot system [8], [14], similar to SIMS, integrates heterogeneous databases

using a knowledge representation system (CYC [20]). Carnot uses a knowledge base

to build a set of articulation axioms that describe how to map between the tables

and columns in the databases and the concepts in the domain model. Although

queries can be made against the domain concepts used in the axioms, as well as

the integrated columns and tables [32], the knowledge base itself is no longer used

in the processing. In contrast, the domain model in SIMS is an integral part of the

system, allowing SIMS to combine information sources dynamically and in novel

ways not anticipated at design time.

The Information Manifold [22], like SIMS, provides an approach to dynamically

integrating information sources. The system also uses a knowledge representation

system (Classic [5]) to integrate the various information sources. Their approach

provides an interesting alternative to the one presented in this paper. Instead of

using an object model (as in SIMS) for integrating the various information sources,

they use an object-relational model, which is essentially the relational model with

an object hierarchy on the relations. Their approach to integration is based on view

integration [21], and it provides functionality that is equivalent to the operators for

reformulating the minimal model in SIMS. However, without extending their mod-

eling and/or processing, they cannot perform the other operators for traversing the

augmented domain model (i.e., the substitution and infer-equivalence operators).

Another important di�erence between the Information Manifold and SIMS is that

the criterion used for selecting relevant sources in the InformationManifold is based

simply on minimizing the number of di�erent sources. In SIMS, source selection is

integrated into query access planning, so SIMS will attempt to minimize the overall

cost of a query and not just the number of sources accessed.

The Model-assisted Global Querying System (MGQS) [7] shares with SIMS the

goal of providing users with access to multiple heterogeneous databases while insu-

lating them from the details of the underlying sources of data. MGQS, like SIMS,

uses a model (a metadatabase in their terminology) to describe the contents, organi-

zation, and data management facilities of the data sources they access. There are,

however, signi�cant di�erences between the two systems in the modeling methodol-

ogy and the reformulation processes. The primary di�erence between the modeling

approaches taken is that SIMS supports a richer language for representing relation-

ships between the data contained in di�erent information sources. For example,

(assuming a relational model) one database may contain a Patient table with a

Diagnosis attribute, and another database may have separate tables for patients

with each di�ering diagnosis. The Diagnosis attribute is present, in principle, in

the second database as well, but not explicitly. MGQS, however, relies on such

explicit presence in order to perform joins between databases. The richer language

in SIMS motivates the more powerful set of reformulation operators presented in

35

this paper. To the extent that reformulations are performed in MGQS, they are

prede�ned, determined by relationships expressed in the domain model. They are

not dynamic in the sense of SIMS' reformulations.

The SIMS approach bears a super�cial similarity to equational rewriting, e.g., [9].

However, our rewrite rules are not equations in the sense used by such systems.

The SIMS equivalent of the right-hand side of an equation is not a formula in the

representation language we are using { it is a search strategy. While it is possible in

theory to enumerate all the equations one could get by applying the search strategy

in all cases, that would be contrary to the point of our work and would defeat its

purpose. It is precisely to avoid a priori speci�cation of all possible mappings

between query formulations that we developed the approach described here.

8. Discussion

In traditional approaches to integrating or federating databases, the user is re-

quired to build a global schema and provide speci�c mappings for each element in

the schema to a corresponding information source. Using this approach, if any of

the individual information sources change, the speci�c mappings must be updated

and the global schema must be reworked to re
ect this change. If a new informa-

tion source is added, it may require signi�cant e�ort to re�ne the global schema

appropriately to accommodate the new source.

As described in this paper, SIMS does not use a global schema, but rather uses a

domain or enterprise model to describe the information sources, and the integration

is performed dynamically for each query. The model is similar to a global schema

in that it provides the terminology for querying the information sources and is

used to integrate the diverse terminology in these information sources. However,

there is one very important di�erence: SIMS does not assume that the choice

of information sources to answer a domain-level query is �xed. This means that

a number of information sources can all be used to provide data about a speci�c

class. This places a greater burden on the system in deciding how to process queries.

However, this burden is outweighed by the bene�t of much greater
exibility and

extensibility.

Consider what is involved in adding a new information source to the system. If

we have an existing system with the corresponding domain model and a number of

information sources, adding a new information source within the existing domain

model simply requires providing the model for that information source and relating

that source model to the domain model. Since there is no requirement that there

be a single, unique mapping from every element of the domain model to a source

model, the amount of work required is proportional to the size of the information

source to be integrated. In some sense this is the minimal amount of work possible,

since there is no way to avoid modeling the contents of an information source if you

want to provide access to the data. If the contents of the new information source go

beyond what is modeled in the current domain model, the domain model must be

36

extended to cover the new aspects of this information source. However, this work

is also bounded by the size of the information source.

Similarly, changing an existing information source is also a fairly constrained

process. Since each information source is related only to the domain model, any

changes to the information source can be re
ected by simply changing the model

of the information source and the corresponding links to the domain model. If an

information source is deleted entirely, only the model of the information source and

its corresponding linksmust be removed. The rest of the system remains unchanged.

Thus, changes to the model to re
ect changes in the existing information sources

are also bounded by the size of the changes.

The extensibility of SIMS is made possible by two factors. First, the modeling

of each information source is independent of all of the other information sources.

Second, the query reformulation process dynamically selects the appropriate infor-

mation sources to handle a query. This makes it possible to add, change, and delete

information sources in SIMS with relative ease. Also, as the number of information

sources grows larger, the work required to add or change the information sources

does not increase.

Although we have made much progress with our approach, many more research

problems remain. For instance, we would like to improve our optimization process

to consider the reliability and availability of information sources. Thus, when a

domain query results in con
icting information, the user should be informed which

is more reliable; when a domain query can only be answered partially due to some

unavailable information sources, the user should be presented with the results along

with information about the nature of the incompleteness. We believe that our

model-based approach will give us a great deal of leverage in dealing with these

problems.

Notes

1. There is no requirement that every class have a key, but the systemwould be unable to combine
information from related classes unless they shared a key.

2. The construct in Loom is actually defrelation, but we wish to avoid use of the term relation in
this context to avoid confusion with its use in database terminology.

References

1. Ra� Ahmed, Philippe De Smedt, Weimin Du, William Kent, Mohammad A. Ketabchi,
Witold A. Litwin, Abbas Ra�i, and Ming Chien Shan. The Pegasus heterogenous multi-
database system. IEEE Computer, pages 19{27, 1991.

2. Yigal Arens, Chin Chee, Chun-Nan Hsu, Hoh In, and Craig A. Knoblock. Query processing in

an informationmediator. In Proceedings of the ARPA / Rome Laboratory Knowledge-Based
Planning and Scheduling Initiative, Tucson, AZ, 1994.

3. Yigal Arens, Chin Y. Chee, Chun-Nan Hsu, and Craig A. Knoblock. Retrieving and inte-
grating data from multiple information sources. International Journal on Intelligent and
Cooperative Information Systems, 2(2):127{158, 1993.

37

4. Anthony Barrett, Keith Golden, Scott Penberthy, and Daniel Weld. UCPOP user's manual
(version 2.0). Technical Report 93-09-06, Department of Computer Science and Engineering,
University of Washington, 1993.

5. R. J. Brachman, A. Borgida, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Resnick.
Living with classic: When and how to use a kl-one-like language. In John Sowa, editor,
Principles of Semantic Networks, pages 401{456. Morgan Kaufmann, San Mateo, CA, 1991.

6. R.J. Brachman and J.G. Schmolze. An overview of the kl-one knowledge representation
system. Cognitive Science, 9(2):171{216, 1985.

7. Waiman Cheung. The Model-assisted Global Query System. PhD thesis, Computer Science
Department, Rensselaer Polytechnic Institute, Troy, NY, 1991.

8. Christine Collet, Michael N. Huhns, and Wei-Min Shen. Resource integration using a large

knowledge base in Carnot. IEEE Computer, pages 55{62, December 1991.

9. Jean Gallier, Paliath Narendran, David Plaisted, Stan Raatz, and Wayne Synder. An algo-

rithm for �nding canonical sets of ground rewrite rules in polynomial time. Journal of the
ACM, 40(1):1{16, 1993.

10. Chun-Nan Hsu and Craig A. Knoblock. Reformulating query plans for multidatabase sys-
tems. In Proceedings of the Second International Conference on Information and Knowledge

Management, Washington, D.C., 1993. ACM.

11. Chun-Nan Hsu and Craig A. Knoblock. Rule induction for semantic query optimization. In
Proceedings of the Eleventh International Conference on Machine Learning, New Brunswick,
NJ, 1994.

12. Chun-Nan Hsu and Craig A. Knoblock. Estimating the robustness of discovered knowledge.

In Proceedings of the First International Conference on Knowledge Discovery and Data
Mining, Menlo Park, CA, 1995. AAAI Press.

13. Chun-Nan Hsu and Craig A. Knoblock. Using inductive learning to generate rules for seman-
tic query optimization. In Gregory Piatetsky-Shapiro and Usama Fayyad, editors, Advances

in Knowledge Discovery and Data Mining, chapter 17. MIT Press, 1995.

14. M.N. Huhns, N. Jacobs, T. Ksiezyk, W.M. Shen, M.P. Singh, and P.E. Cannata. Integrating
enterprise information models in Carnot. In Proceedings of 1993 International Conference
on Intelligent and Cooperative Information Systems, Rotterdam, Holland, May 1993.

15. InterSystems, Cambridge, MA. Open M/SQL Server User Guide, RDBMS E.3 edition, 1993.

16. Won Kim and Jungyun Seo. Classifying schematic and data heterogeneity in multidatabase
systems. IEEE Computer, pages 12{18, 1991.

17. Craig A. Knoblock. Generating parallel execution plans with a partial-order planner. In Pro-
ceedings of the Second International Conference on Arti�cial Intelligence Planning Systems,

Chicago, IL, 1994.

18. Craig A. Knoblock. Planning, executing, sensing, and replanning for information gathering.

In Proceedings of the Fourteenth International Joint Conference on Arti�cial Intelligence,
Montreal, Canada, 1995.

19. Terry Landers and Ronni L. Rosenberg. An overview of Multibase. In H.J. Schneider, editor,
Distributed Data Bases. North-Holland, 1982.

20. D. Lenat and R.V. Guha. Building Large Knowledge-Based Systems: Representation and
Inference in the Cyc Project. Addison-Wesley, Reading, MA, 1990.

21. Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answering
queries using views. In Proceedings of the 14th ACM Symposium on Principles of Database

Systems, San Jose, CA, 1995.

22. Alon Y. Levy, Divesh Srivastava, and Thomas Kirk. Data model and query evaluation in
global information systems. Journal of Intelligent Information Systems, 1995.

23. Robert MacGregor. The evolving technology of classi�cation-based knowledge representa-
tion systems. In John Sowa, editor, Principles of Semantic Networks: Explorations in the

Representation of Knowledge. Morgan Kaufmann, 1990.

24. Donald P. McKay, Timothy W. Finin, and Anthony O'Hare. The intelligent database inter-

face: IntegratingAI and database systems. In Proceedings of the Eighth National Conference
on Arti�cial Intelligence, Boston, MA, 1990.

38

25. Jon A. Pastor, Donald P. McKay, and Timothy W. Finin. View-concepts: Knowledge-based
access to databases. In Proceedings of the First International Conference on Information
and Knowledge Management, pages 84{91, Baltimore, MD, 1992.

26. Louiqa Raschid, Yahui Chang, and Bonnie J. Dorr. Query transformation techniques for
interoperable query processing in cooperative information systems. In Proceedings of the
2nd International Conference on Cooperative Information Systems (CoopIS-94), Toronto,

Canada, 1994.

27. M.P. Reddy, B.E. Prasad, and P.G. Reddy. Query processing in heterogeneous distributed

database management systems. In Amar Gupta, editor, Integration of Information Systems:
Bridging Heterogeneous Databases, pages 264{277. IEEE Press, NY, 1989.

28. P. Gri�ths Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, and T.G. Price. Access
path selection in a relational database management system. In Arti�cial Intelligence and
Databases, pages 511{522. Morgan Kaufmann, Los Altos, CA, 1988.

29. Amit P. Sheth and James A. Larson. Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3):183{236, 1990.

30. Michael Siegel. A metadata approach to resolving semantic con
icts. In Proceedings of the
17th International Conference on Very Large Data Bases, pages 133{145, Barcelona, Spain,

1991.

31. Sheila Tejada and Craig A. Knoblock. Mapping a relational query language into a knowledge

representation query language. Technical report, Information Sciences Institute, University
of Southern California, 1995.

32. D. Woelk, W.M. Shen, M.N. Huhns, and P. Cannata. Model driven enterprise informa-
tion management in Carnot. In Enterprise Integration Modeling: Proceedings of the First
International Conference, 1992.

