
March 18, 2002 9:9 WSPC/111-IJCIS 00053

International Journal of Cooperative Information Systems
Vol. 11, Nos. 1 & 2 (2002) 119–144
c© World Scientific Publishing Company

SELECTIVELY MATERIALIZING DATA IN MEDIATORS BY

ANALYZING USER QUERIES∗

NAVEEN ASHISH†

IBM Almaden Research Center
650 Harry Road, San Jose CA 95120-6099

ashish@us.ibm.com

CRAIG KNOBLOCK AND CYRUS SHAHABI

Information Sciences Institute
Integrated Media System Center and Department of Computer Science

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292

knoblock@usc.edu
shahabi@usc.edu

There is currently great interest in building information mediators that can integrate
information from multiple data sources such as databases or Web sources. The query
response time for such mediators is typically quite high, mainly due to the time spent
in retrieving data from remote sources. We present an approach for optimizing the per-
formance of information mediators by selectively materializing data. We first present
our overall framework for materialization in a mediator environment. The data is ma-
terialized selectively. We outline the factors that are considered in selecting data to
materialize. We present an algorithm for identifying classes of data to materialize by
analyzing one of the factors which is the distribution of user queries. We present results
with an implemented version of our optimization system for the Ariadne information me-
diator, which show the effectiveness of our algorithm in extracting patterns of frequently
accessed classes from user queries. We also demonstrate the effectiveness of approach in
optimizing mediator performance by materializing such classes.

1. Introduction

Several “information mediator” systems have been built to provide integrated and

structured query access to multiple information sources. The representative systems

include tsimmis,10 Information Manifold,11 The Internet Softbot,6 InfoSleuth,12

∗The research reported here was supported in part by the Integrated Media Systems Center, an
NSF Engineering Research Center, in part by the United States Air Force under contract number
F49620-98-1-0046, in part by the Jet Propulsion Laboratory (JPL) of the National Aeronautics
and Space Administration, NASA, under contract number 961518, and in part by research grants
from NCR and General Dynamics Information Systems. The views and conclusions contained in
this article are the authors’ and should not be interpreted as representing the official opinion or
policy of any of the above organizations or any person connected with them.
†Work done when the author was a graduate student at the University of Southern California.

119

March 18, 2002 9:9 WSPC/111-IJCIS 00053

120 N. Ashish, C. Knoblock & C. Shahabi

Infomaster,9 disco,13
hermes,14

sims
15 and Ariadne.16 Most of the systems are

based on a mediator-wrapper7 architecture, where database like querying of semi-

structured Web sources through wrappers around pre-specified Web sources and

integrated access to multiple sources is provided by a mediator.

The query response time for information mediators, particularly Web based

mediators is often very high, mainly because the speed of the resulting mediator

application is heavily dependent on the Web sources being accessed. A large amount

of time is spent in retrieving data from the Web source when answering a user query.

We presented an approach to optimizing the performance of information mediators

by locally materializing data in Ref. 17.

To answer most queries a large number of Web pages must be fetched over

the network. For instance, consider a mediator that provides integrated access to

Web sources of information about countries in the world. For all mediator appli-

cations the set of Web sources from which the mediator will extract and integrate

information is prespecified and fixed. For the countries mediator, the set of sources

is:

• The CIA World Factbooka which provides interesting information about the ge-

ography, people, government, economy etc. of each country in the world.

• The NATO homepageb from which we can get a list of NATO member countries.

• The InfoNationc source which provides statistical data about UN member

countries.

Without any kind of optimization i.e. assuming that all data must be fetched

from the Web sources in real time, a typical query to this mediator such as “Find the

defense expenditure and spending on education of all countries that have a national

product greater than 500 billion dollars” can take several minutes to return an

answer. This is because for this particular query the mediator must retrieve the

pages of all countries in the CIA World Factbook to determine which ones have

a national product greater than $500 billion, which takes a large amount of time.

The query response time can be greatly improved if frequently accessed data is

materialized at the mediator side.

We present a performance optimization approach for information mediators

based on selectively materializing data. Our work is different from Web caching

systems18 where caching or materialization is done at the level of individual Web

pages. Our work is aimed at optimizing mediators that extract and integrate infor-

mation from pre-specified semi-structured Web sources rather than retrieving entire

Web pages from arbitrary sites. In our approach there are two primary issues that

must be addressed. First we must design the overall framework for materialization

i.e. how do we represent and use the materialized data. Then there is the issue of

ahttp://www.odci.gov/cia/publications/factbook/country.html
bhttp://www.nato.int/family/countries.htm
chttp://www.un.org/Pubs/CyberSchoolBus/infonation/e infonation.htm

March 18, 2002 9:9 WSPC/111-IJCIS 00053

Selectively Materializing Data 121

what data should be materialized. We describe our overall approach in Sec. 2. In

Sec. 3, we describe an approach for selecting data to materialize by analyzing the

distribution of user queries. In Sec. 4, we present experimental results demonstrat-

ing the effectiveness of our approach. Section 5 contains a complexity analysis of

this algorithm. In Sec. 6, we describe related work followed by a conclusion and

directions for future work in Sec. 7.

2. Overall Approach

We now present a description of our approach to performance optimization by

materialization. We first provide a brief overview of the sims information mediator,

in fact the sims architecture is typical of many of the other information mediator

systems we mentioned. The Ariadne architecture also borrows heavily from that

of sims. sims is used to integrate information from primarily database systems

whereas Ariadne integrates information from semi-structured Web sources. We then

provide a description of our framework for materializing data in mediators. Finally,

we outline the factors in selecting data to materialize and the portion focused on

in this paper.

2.1. SIMS architecture

In the sims system we use the loom
1 knowledge representation language (we can

also view this as a data modeling language) for modeling data. The user is presented

with an integrated view of the information in several different sources, which is

known as the domain model. We describe the contents of the individual information

sources in terms of the domain model. A simple example is shown in Fig. 1(a). The

white circle labeled country represents a domain concept (equivalent of a class

in an object-oriented model) and the shaded circles represent sources. The small

lines on the circles represent attributes of the concepts. In this example, the domain

concept country provides an integrated view over two sources of information about

countries — factbook-country and infonation-country. The user queries the

integrated view i.e. concepts in the domain model and the query planner in the

mediator generates plans to retrieve the requested information from one or more

sources. Please refer to Ref. 15 for a more detailed description of sims.

2.2. Materializing data in mediators

Our approach to optimization is based on an idea19 where we identify useful classes

of information to materialize, materialize the data in these classes in a database

local to the mediator and define these classes as auxiliary information sources that

the mediator can access. For instance, in the countries applicationd suppose we

dThe model showing the attributes of the COUNTRY concept in the countries application is given
in the appendix. We will be using this model in examples throughout the paper.

March 18, 2002 9:9 WSPC/111-IJCIS 00053

122 N. Ashish, C. Knoblock & C. Shahabi

National_product

Population
Area

Continent
Name

Education

Environment

Education
Population

National_productCOUNTRY

INFONATION
COUNTRY

FACTBOOK
COUNTRY

(a)

Population

National_product

Population

National_product

Education
Population

National_product

EUROPEAN
COUNTRY

COUNTRY

INFONATION
COUNTRY

FACTBOOK
COUNTRY

EUROPEAN
COUNTRY
CACHE

(b)

Fig. 1. Information modeling in SIMS.

determined that the class of information — the population and national product of

all European countries was frequently queried and thus useful to materialize. We

materialize this data and define it as an additional information source as shown in

Fig. 1(b). Given a query the mediator prefers to use the materialized data instead

of the original Web source(s) to answer the query.

Defining the materialized data as another information source has two advan-

tages. First, we can provide a semantic description of the contents of the mate-

rialized data (in loom). Second, the query planner in the mediator considers the

materialized data source when generating plans to retrieve data to answer a user

query. The sims query planner is designed to generate high quality plans and will

generate plans that attempt to use the materialized data sources whenever they

reduce the cost of processing a query. We use the materialized data in essentially

the same manner as in a semantic caching20 system. Our approach of defining the

March 18, 2002 9:9 WSPC/111-IJCIS 00053

Selectively Materializing Data 123

materialized data as another information source allows us to use the information

mediator’s knowledge representation system and query planner to address two im-

portant problems that arise in any semantic caching system, namely providing a

description of the materialized or cached data and doing containment checking i.e.

determining if all or some portion of data in a query has already been cached.

2.3. Selecting data to materialize

The key problem that remains to be addressed is how to determine what classes of

information are useful to materialize. Note that we wish to only selectively materi-

alize data that is useful. The brute force approach of materializing all the data in

all the Web sources being integrated is impractical for the following reasons:

• The sheer amount of space needed to store all the data could be very large.

• Data gets updated at the original Web sources and the maintenance cost of

keeping the materialized data consistent could be very high.

It is clear that data must be materialized selectively. This leaves us with the

question of how do we automatically identify the portion of data that is most

useful to materialize. We propose an approach where we consider several factors in

combination to identify data to materialize. The factors considered are:

• User Query Distribution: By analyzing the user query distribution we can iden-

tify the classes of data that are queried most frequently by users and consider

materializing such classes. In addition to the materialization framework, an algo-

rithm to identify such frequently accessed classes is the other major contribution

of this paper.

• Application and Source Structure: Since we are gathering and integrating data

from Web sources that were not designed to support database like querying,

certain kinds of queries can be very expensive. For many such queries we can

materialize data that will improve response time for those queries. Consider again

the country mediator. Assume we have an interface that allows us to ask queries

with a selection condition on the GDP. Now such a query is expensive as the

source for this information — the CIA World Factbook source does not support

selections by GDP and we have to retrieve pages of all the 270 countries in the

CIA World Factbook to determine which ones have GDP > $500 billion. We

can prefetch and materialize the primary key (country name) and the selection

attribute (GDP) which will improve the response time for selection queries on

GDP as the selection can now be done locally. We are developing an approach

where we first identify the kinds of queries that can ever be asked of the domain

classes in a particular mediator application. In many cases the user can query

the mediator application only through a user interface that might further restrict

the kinds of queries that can be asked of the domain classes. We have developed

a language for providing the specification of the user interface so that it may be

used in determining the kinds of queries that can be asked. We then estimate the

March 18, 2002 9:9 WSPC/111-IJCIS 00053

124 N. Ashish, C. Knoblock & C. Shahabi

costs of the various classes of queries using a cost estimator which is part of the

mediator. The purpose is to identify in advance the expensive kinds of queries

that could be asked in a particular mediator application. Then using heuristics

based on the kind of query, source or sources used to answer the query and also

the different data processing operations that are performed to answer the query

we prefetch and materialize data that can improve the response time for the

expensive queries.

• Update Characteristics and Frequency: We integrate data from Web sources that

may get updated. The materialized data must be kept consistent with the original

sources and also the maintenance cost for the materialized data must be taken

into account. We have developed an approach to automatically estimating the

maintenance cost for each proposed materialized class of data from specifications

about the update characteristics of the sources and the user’s requirements for

freshness of data. The maintenance cost is also considered when deciding what

classes of data to materialize. There is also the problem of knowing when data

in a source has changed. For certain sources we may know exactly at what time

and with what frequency the source is updated. For other sources we propose to

use techniques for change detection such as those developed in Ref. 21.

In this paper our focus is on the first factor i.e. the analysis of the distribution of

user queries to decide what classes of data to materialize. In the following section, we

describe how we extract patterns of frequently accessed classes of data from a user

query distribution. We present experimental results demonstrating the effectiveness

of our approach in extracting patterns from queries. We also present experimental

results demonstrating the effectiveness of materializing frequently accessed classes

of data in optimizing a mediator application.

3. Analyzing the Distribution of User Queries

One of the hypotheses of our approach is that there will be patterns present in

user queries i.e. some classes of data would be queried more frequently than others.

It would be very useful if we could extract such patterns by analyzing previous

user queries as we could consider materializing those. We provide a description of

the CM (Cluster and Merge) algorithm which we have developed which identifies

useful classes of data to materialize by extracting patterns from user queries. The

algorithm takes as input a distribution of user queries and outputs a compact de-

scription of patterns that it can extract from the query distribution in the form

of classes of data. A compact description of frequently accessed classes is neces-

sary from a performance point of view. For each class of data we materialize we

define a new information source for the mediator. The general problem of query

planning to gather information from many sources is combinatorially hard and

having a large number of sources will create performance problems for the query

planner.

March 18, 2002 9:9 WSPC/111-IJCIS 00053

Selectively Materializing Data 125

3.1. CM algorithm

The pseudo code for the CM() algorithm is given in Fig. 2. There are three main

steps in the algorithm:

• Classifying queries (classify queries()). This is to determine what classes of

data the user is interested in.

• Clustering attribute groups

(cluster attribute groups()). To determine attribute groups of interest for

each class.

• Merging classes (merge classes()). This is to try and merge classes of data to

make the description more compact.

We now describe the steps in the algorithm in more detail.

3.1.1. Classifying queries

We first analyze queries to determine what classes of information users are interested

in (procedure classify queries()). For instance queries of the form:

SELECT A

FROM country

WHERE region= “Europe”

indicate that the user is interested in the class of European countries. We maintain

an ontology in loom of classes of information that are queried by users. Initially the

ontology contains only the classes in the domain model. We then add sub-classes

of these existing classes to the ontology, the sub-classes are generated by analyzing

constraints in the user queries. Assuming an SQL syntax for the queries, a query

to a domain class has the following general form:

SELECT A

FROM S

WHERE P

where A is the set of attributes queried for the domain class S and P = P1 and

P2 and. . .Pn are predicates specifying the query constraints (we restrict ourselves

to conjunctive queries). We denote as SP the “query sub-class” which is the sub-

class of S satisfying P . We denote as {SP1, SP 2, . . . , SPn} the set of “sub-classes

of interest” where the Pi s are the individual predicates comprising P and SP i is

the sub-class of S satisfying Pi. For instance consider a query such as:

SELECT population, area

FROM country

WHERE (region = “Europe”) AND (government = “Republic”);

In the above query the query sub-class is that of European Republic Countries

and the sub-classes of interest are European Country and Republic Country. In the

March 18, 2002 9:9 WSPC/111-IJCIS 00053

126 N. Ashish, C. Knoblock & C. Shahabi

+ , . 0 2 4 6 8 : 0 2 = ? ? B C D E F ? B H I F B H = B ? : 8
M N P Q S T T U W Y Z [] _ a] c d e f g h j k l m n o p q r p n p s t u p x y n z { { | {

p x m q r | } | { r j h
~ � [c �] _ � � � �

¡ � ¢ � £ � � ¤ � � � ¦ � � � � � � �
¨ � � � � � � � ¢ ¬ � � � ¤ ¡ � � ® ¯ ° � � ¤ � � ²

³ ´ � � ´ µ ¶ · ¸ ¸ ¹ ¸ º » ¼ ½ ¾ ¿ À Á Â Ã Ä Â Å Æ Ç È È Â È À ¿
É

É

Ê Ë Ì Í Í Ï Ð Ñ Ò Ó Ô Ö × Ô Ù Ú Û Ü Ý
Þ ß á â ã Ú ä å æ ç è é ç æ ê ç ì Ú Û Ü Ý Ý í

î ï ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ
þ � � � ù � � 	 � � � � � � � � � � � � �
� " $ & (* + , - . 0 1 2 1 3 0 4 5 6 7 8 9 4 4 ; 4 < = >

? @ 4 5 6 7 8 9 4 4 ; 4 6 9 4 ; A B D E D A E G E A 5 9 8 H J ; A E 7 9 K ; 4 @ ?
5 H A 9 K ; L M N L O L P Q R T V W

Y Z \ ^ ` b
d e f g N h i j j k l m n j o p q r s t u v w x z

| } ~ � } �
s � p q r s t u � � � � | z
� � � � � � t q s � � r � � � t � � � � � � � � � � � � � � ¡ ¢ ¤ ¥ ¦ ¨ ©

� « ¬ ® ¯ ° ± ¯ ² ¯ ³ ´ µ ¶ · ¸
º

» ¼ ½ ¾ À Á Â Ã Ä Ä Æ Ç É Ê Ä Ë Ì Í Î Ï Ð Ñ Ò Ô Õ ×
Ø Ù Ú Û Ü Ý Þ ß à á Þ Þ à â ã Ü Þ ß ä à å Ü æ Ý ç å à ß á Ú é Ú Û á Ý Ý â ë Ô ì â Þ é Ý â î â Û á à ç à ß ð Ü ß ë Ú ñ Ù Ø
ó

ô õ Í Ì õ ö ÷ ø ù ù û ù ü ý þ ÿ �
� � �
� � �
 � � � � � � � � � � � � � � " # % ' �) * � + , � � � " ' %
1 2 1 5 6 7 9 ; < = ? % ' � B C D � + D D F B) � H I K � C � D M) � P P Q + F B � ' %
7 < < S = P � � T U U V W X Y Z \ ^ _ ` a b c d c e e f ` g h e U i f j h _ k f j l m ` ^ \

p q s t v W w x x z {| } Z �
� � � � � Y � � | i U e �
� ¢ ¤ � � � � � � � � � � � � � � � � � � ¦ § � � � � � � �

¨ © « � � ¬ ® � ¯ ° © ±
� � ² ³ � ´ ¯ � ¶ · ¸ ¹ º » ¼ ½ ½ ¾ ¿ À Á Â Ã Ä Å Æ Ç È Ê Ë ¸ ¶ · ¸ ¹ º Ì Æ Í Í Î Ï Ð Ñ Ò Ï Î

¼ ½ ½ ¾ Ì Æ Ô Ì Ä Ã
¼ Á Ö ½ × Í Ê ¸ Ù Ú Û Ü Ý Þ ß à á â
Þ ä Þ å æ ç è é ß ê ë ç è é ß ì î ï ð ï ñ ò Ù Ú Û Ü ð ô õ ñ ï ö ÷ Ú ø ù ù ú ð û ü Ù î ì

ý
þ ÿ Ý Þ ä Þ å æ ç è é ß � Þ ä Þ å æ ç ß ß � ç è é ß â � � �
 � � � �
 � � � � � � �

ì î õ Ü ú ù Ú ø ù ö ú Ú ï Ü ú Ú ñ Ù ñ ï Ú Ù � Ü î ì
ú Ü õ ð " Ü Ý ç ß ß � # % â ì î ú Ü õ ð " Ü ñ ï ï ú Ú ' û ï Ü Ù Ú ø ç ß ß � ô ú ð õ ñ ò ò ö ò ñ Ù Ù Ü Ù î ì
ñ + , . / 0 1 3 4 5 6 6 7 8 9 ; < . , > + , . / 0 A C 5 / 0 6 , F G H 5 5 ; 9

I
J K 3 J L

> H , N O P Q R S T U U W X Y Z [] _ ` P a b c a a b d ` c e d T U U W g ` R P a h b P ` d R c j c g R _]
m

g n S g q s [e P O S R [] _ h b P ` d R d w a h y c ` ` g R Y h { h y g h c y y { _]
T U U W n j d a �
�

Fig. 2. The cm algorithm for extracting patterns in queries.

March 18, 2002 9:9 WSPC/111-IJCIS 00053

Selectively Materializing Data 127

COUNTRY

REPUBLIC−COUNTRY

EUROPEAN−REPUBLIC−COUNTRY

COMMUNIST−COUNTRY
ASIAN−COUNTRY

EUROPEAN−COUNTRY AUSTRALIAN−COUNTRY

Fig. 3. Ontology of subclasses of COUNTRY.

classify queries() procedure for each query we first determine the query sub-

classes and set of sub-classes of interest and insert them into the ontology if they

are not already present. For instance for a set of queries on the concept country

in which the where clauses have constraints on the attributes region (bound to a

value such as Europe, Asia etc.) or government (bound to a value such as Republic,

Monarchy, Communist etc.) or both, we would create an ontology such as shown

in Fig. 3. (The arcs in the figure represent coverings of groups of subclasses for the

superclass country).

We also update the query count for the query sub-class SP for the attribute

group A. This is to maintain a record for each sub-class of what attribute groups

have been queried and how many times.

3.1.2. Clustering attribute groups

After the step of classifying queries we have an ontology of classes of interest and

also for each class what attribute groups have been queried and with what frequency.

We attempt to merge together attribute groups with similar frequencies in order to

reduce the number of groups for each class that we have to consider. This makes the

description of classes more compact. Attribute groups are merged together if the

relative difference of their frequencies is within a preset limit known as cluster-

difference. This is done in the procedure cluster attribute groups(). It is

a straightforward procedure where we sort the attribute groups by the number of

queries and merge together groups with number of queries that differ relatively by

no more than cluster-difference.

3.1.3. Merging classes

We mentioned earlier that it is important to keep the number of classes of informa-

tion materialized small from a query processing perspective. Consider the following

classes of information, each of which is essentially a group of attributes in a class:

March 18, 2002 9:9 WSPC/111-IJCIS 00053

128 N. Ashish, C. Knoblock & C. Shahabi

(i) (european-country,{population, area})
(ii) (asian-country,{population, area})
(iii) (african-country,{population, area})
(iv) (n.american-country,{population, area})
(v) (s.american-country,{population, area}) and

(vi) (australian-country,{population, area}).

We could replace the above six classes by just one class (country,{population,

area}) which represents exactly the same data. In general thus a group of classes of

information of the form (C1, A), (C2, A), . . . , (Cn, A)e may be replaced by one class

i.e. (S,A) if C1, C2, . . . , Cn are direct subclasses of S and form a covering of S. As

the ontology of classes is maintained in loom, we use loom to determine groups

of classes we can merge based on class/subclass relationships.

In fact we also allow for a kind of “relaxed” merge where we may merge a set of

classes such as (C1, A1), . . . , (Cn, An) to (S,A) where the Cis are direct subclasses

of S as above. However A1, . . . , An need not be exactly equal groups rather they

just need to overlap, and A is the union of A1, . . . , An. The disadvantage in this

case is that the merged class of information will contain some extra data i.e. data

not present in any of the classes of information merged to form the merged class.

There is a tradeoff between space wasted to store the extra data and the time gained

(in query planning) in reducing the number of classes materialized. The amount of

space that can be wasted by extra data is limited by a parameter known as the

merge–threshold.

The procedure merge classes() shows how we do exact or relaxed merging of

classes. The procedure takes as input a superclass S and a set of subclasses C of

S that form a covering of S. For each class in C we also have the set of groups of

attributes queried. The basic idea is to take an attribute group A in a class Ci in

C and see if we can merge with other groups in other classes in C to the group A

in the superclass S. We describe the steps in the procedure merge classes() by

stepping through the procedure with an example as shown in Table 1. It shows the

the various classes in C along with their attribute groups. The asterisk(*) next to

the {imports, exports} group of the first class i.e. european–country indicates

that we will choose that group as a seed for merging with other classes. This seed

group is chosen randomly. The next step is to find matching groups for the seed

in all other classes. This is done by the find match() procedure which given a seed

and a class returns the largest subset of attributes of the seed that it can find in

any group in the class. The results of find match() for each of the classes in C are

shown in Table 2. The next step is to find the ratio of the space occupied by the

matching groups in the classes of C to the space needed to store the group A for

the superclass S. The ratio should be higher than the merge–threshold to allow

merging the matching clusters to the cluster A in S . Intuitively this is to ensure

eCis are classes and A is an attribute group.

March 18, 2002 9:9 WSPC/111-IJCIS 00053

Selectively Materializing Data 129

Table 1. Merging across classes.

set of subclasses C with attribute groups

(european-country,{*imports, exports},{area, gdp, economy})
(asian-country,{imports, exports, climate},{debt, economy})
(african-country,{imports}, {population, languages})
(n.american-country,{climate, terrain},{government},{literacy})
(s.american-country,{area, coastline},{imports, exports}
(australian-country,{imports, exports, debt},{gdp, defense})

Table 2. Merging across classes (matching classes).

matching groups size

{imports, exports} 2

{imports, exports} 2

{imports} 1

{} 0

{imports, exports} 2

{imports, exports} 2

Table 3. Classes after one merging step.

set of subclasses C with attribute groups

(european-country,{area, gdp, economy})
(asian-country,{*climate},{debt, economy})
(african-country,{population, languages})
(n.american-country,{climate, terrain},{government},{literacy})
(s.american-country,{area, coastline}
(australian-country,{debt},{gdp, defense})

that the attributes in A occur sufficiently through the classes in C to justify merging

the matching groups to the group A in S. In this example totalsize i.e. the space

occupied by the matching groups is (2+2+1+0+2+2) = 9 units. The totalseedsize

i.e. the space that should be occupied in case of an exact merge is 2*6= 12. Thus

the ratio is 9/12 = 0.75 and we do merge to the group {imports, exports} for the

superclass country (assume that merge–threshold is 0.7). Table 3 shows the

same set of classes after the merging step when the attributes in A= {imports,

exports} have been removed from the classes in C. In case we do not merge the

groups we do not remove the attributes from the classes. However we mark the seed

group as “down” so that it is not picked again as a seed. We then pick a seed from

the next class asian–country and repeat the above procedure.

March 18, 2002 9:9 WSPC/111-IJCIS 00053

130 N. Ashish, C. Knoblock & C. Shahabi

The main motivation behind the steps of merging attribute groups for a single

class and also merging classes based on class/subclass relationships is to keep the

description of the classes of data extracted as patterns compact. Finally we also

keep count of how many queries each class of data supports i.e. how many queries

can be answered using that class. From this we can calculate the ratio of supported

queries by each class to the total number of queries in the distribution. A class is

finally output as a pattern by the CM algorithm only if this ratio is greater than a

threshold known as the query ratio threshold (q).

3.2. Language learned by CM

What CM extracts from queries are essentially classes of data. Such classes if mate-

rialized get mapped to (possibly new) concepts in the domain model. We must thus

see what exactly is the language of such concepts learned by CM. In CM we analyze

the queries that are asked of each individual domain concept. To review what we

described above, for each domain concept we may further create subclasses (in the

ontology of classes of interest) based on constraints in the query. The subclasses

are created based on either equality constraints or numeric constraints. We further

merge attribute groups in each class and also merge across class coverings. It is easy

to see that CM extracts patterns of the form:

SELECT A1, A2, . . . An

FROM C

where Ais are attributes and C is either a domain concept or some subclass of a

domain concept (say) where C is the subclass of D such that D satisfies the con-

straint P . P is a conjunction of predicates that may be equality predicates (numeric

or string) or a numeric range predicate.

If required, we could extend CM further to learn more general descriptions than

at present. For instance one extension would to be able to have more types of

constraints in the queries (and the language learned) such as including negation

constraints. Also CM currently analyzes queries on single domain classes (or indi-

vidual subclasses of domain classes). In case of having a large number of join queries

across various domain classes it would be interesting to extract patterns that were

joins across 2 or more classes (if present in the distribution). One interesting ex-

tension to CM would be to also analyze join queries in the distribution and extract

join patterns by generalizing the join queries present.

4. Experimental Evaluation

The experimental evaluation consists of two parts. First we evaluate how effective

the CM algorithm is in extracting patterns from a query distribution. Next we

evaluate the effectiveness of a performance optimization system that we built for

Ariadne which materializes data based on just the user query distribution.

March 18, 2002 9:9 WSPC/111-IJCIS 00053

Selectively Materializing Data 131

4.1. Evaluating the CM algorithm

We set up an experiment to evaluate the effectiveness of the CM algorithm in

extracting patterns from a query distribution. The experiment is based on standard

precision and recall measurements for evaluating information retrieval systems. This

is because we are trying to estimate how effective CM is in extracting patterns that

are present and also to what extent it extracts extraneous data as patterns.

We first defined a schema for an imaginary mediator application against

which we can pose queries. The schema consists of a class S with 50 at-

tributes A1, A2, . . . , A50. The class S is further partitioned into 5 disjoint sub-

classes S1, S2, S3, S4 and S5. Each subclass has 10 instances, S1 has instances

E1, E2, . . . , E10, S2 has instances E11, . . . , E20 etc. We then defined a “pattern”

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on

Percentage of queries in pattern P

q=0.5
q=0.4
q=0.3
q=0.2
q=0.1

q=0

(a) Precision

0

20

40

60

80

100

0 20 40 60 80 100

R
ec

al
l

Percentage of queries in pattern P

q=0.5
q=0.4
q=0.3
q=0.2
q=0.1

q=0

(b) Recall

Fig. 4. Effectiveness of CM Algorithm.

March 18, 2002 9:9 WSPC/111-IJCIS 00053

132 N. Ashish, C. Knoblock & C. Shahabi

P which is the class S3 with attributes A25, . . .A30. We then generated different

query distributions against this schema varying the percentage of queries that fall

within the pattern. We input each distribution to the CM algorithm to see what

patterns it would extract from the distribution. We use standard precision and re-

call measurements from information retrieval to measure the effectiveness of CM

in extracting the predefined pattern P . The precision is the percentage of data ex-

tracted that is relevant whereas recall is the percentage of relevant data extracted.

In our experiment the predefined pattern P is the relevant data, while for each time

we run the CM algorithm over a query distribution the patterns extracted from the

distribution is the data retrieved. Finally since the query ratio threshold (q) affects

what patterns are ultimately output by the CM algorithm we present precision and

recall measures for varying threshold values.

Figures 4(a) and (b) show the precision and recall values respectively against

varying percentages of queries that fall within the predefined pattern P in a query

distribution. For each we present precision and recall values for different query ratio

thresholds (q). The CM algorithm does indeed prove to be efficient in extracting

the predefined pattern P as the recall values are very high (100%) for most of

the threshold range for moderate or high percentages of queries in the pattern P .

For extraneous data extracted along with P we must analyze the precision values

graph. For high threshold values (q = 0.4–0.5), the precision is very high when a

high percentage of queries are in P (> 50%) but very low for lower percentages.

This is because even if queries in the pattern P are present, they need to be in a very

high proportion for the CM algorithm to extract them at all. For lower threshold

(q = 0–0.1), the precision is quite low even when a high percentage of queries is in

P . This is because of a low threshold the CM algorithm extracts a lot of random

classes as patterns in addition to the pattern P . It is best to keep the threshold

at an intermediate value (0.2–0.3) where the precision is high for moderate or high

percentage of queries in P . The recall remains quite high (100%) for most of the

threshold range for moderate or high percentages of queries in the pattern P .

4.2. Evaluating the performance improvement

We have implemented a materialization system for the Ariadne mediator based on

the overall approach to materialization described at the beginning of this paper.

The focus of this paper is on the analysis of the distribution of user queries. In

the previous subsection we experimentally demonstrated the effectiveness of our

algorithm in extracting patterns of frequently accessed data. We now present results

demonstrating the effectiveness of materializing patterns of frequently accessed data

in optimizing the performance of an application.

The experimental hypotheses states that the materialization system is able to

successfully extract patterns of frequently accessed data from a user query dis-

tribution. Such frequently accessed patterns when materialized will improve the

performance of an application. In this set of experiments we present experimental

March 18, 2002 9:9 WSPC/111-IJCIS 00053

Selectively Materializing Data 133

results to validate the second part of this hypothesis. Note that the materializa-

tion system also uses the other factors of source structure and update analysis to

materialize data. For these experiments, however, we do not do any kind of source

structure analysis and also assume that the data does not change at the original

sources.

4.2.1. Admission and replacement

While we do not describe the details of the design of the materialization system, it

is important to briefly describe the admission and replacement policy for classes of

materialized data. In the general case, classes of data to materialize are proposed by

analyzing both the structure of sources and the distribution of user queries. Indeed

it would be beneficial to materialize all such classes for optimizing performance.

However, there may be constraints on the total space available for storing the

materialized data locally, the total maintenance cost for keeping it consistent or

both. To be able to optimally choose a subset of classes (in case all classes cannot

be materialized) we rank the classes in order of a profit similar to that used in data

warehouse cache management.22 While the general approach uses query cost, hits,

space occupied by a class and the maintenance cost for a class to compute this

profit, for this set of experiments we simply ranked classes in order of the ratio

Q ∗H/S where Q is the query cost, H is the number of hits to a class and S is the

space occupied. Classes of data are materialized locally in this order till all available

local space for materialized data is used up.

4.2.2. Experimental setup

The materialization system is essentially a complete and separate software system

that can be augmented to a mediator (Ariadne in our case) to optimize its per-

formance. It has various modules for tasks such as source structure analysis, query

distribution analysis, analyzing updates etc. and also includes a database system as

the materialized data store. We will describe the various Ariadne applications used

for the experiments when we present the actual results. The modules of the mate-

rialization system were implemented primarily in C. For the implementation of the

CM algorithm we used Powerloom3 as the knowledge representation system. The

Informix Universal Server2 was used as the database for storing the materialized

data. The materialization system and Ariadne were run on a Sun Ultra 1 running

Solaris for obtaining the results. We now describe the applications and present the

results.

4.2.3. Results

We tested the effectiveness of materializing patterns extracted from user queries

using three different Ariadne applications that we have developed. These applica-

tions are in different domains and integrate information from a variety of different

Web sources. We describe the applications and results below.

March 18, 2002 9:9 WSPC/111-IJCIS 00053

134 N. Ashish, C. Knoblock & C. Shahabi

Table 4. Effectiveness of extracting patterns in countries mediator.

Query set Response Time Response Time %improvement

(No optimization) (With Materialization)

Q1 9671 sec 1549 sec 84%

Q2 3739 sec 2174 sec 40%

(i) Information about Countries

As described in the Introduction, the information about countries mediator is an

Ariadne application integrating information from the following Web sources:

• The CIA World Factbook (http://www.odci.gov/cia/publications/factbook/

country.html) which provides interesting information about the geography, peo-

ple, government, economy etc. of each country in the world.

• The NATO homepage (http://www.nato.int/family/countries.htm) from which

we can get a list of NATO member countries.

• The InfoNation (http://www.un.org/Pubs/CyberSchoolBus/infonation/

e infonation.htm) source which provides statistical data about UN member coun-

tries.

For each of the applications, we demonstrate effectiveness of materializing pat-

terns by measuring response time against a query set, both with and without any

materialization. We use generated query sets for all the applications. We also intro-

duce some distinct query patterns in these query sets. This is because the goal here

is to demonstrate that materializing patterns of frequently accessed data (if any)

does improve performance. For the countries mediator, we measured total query

response time both with and without materializing frequently accessed classes We

used 2 query sets Q1 (of 200 generated queries) and Q2 (of 185 actual user queries).

In the query set Q1, we introduced some distinct patterns in the query distribution.

It is described in the appendix. Table 4 shows the query response times for query

sets Q1 and Q2 both with and without materialization. There is a significant overall

improvement in performance compared to the case where we do not materialize any

data for both query sets Q1 and Q2. The performance improvement is greater in

the case of Q1 as we introduced some distinct patterns in the distribution that the

system was able to successfully extract and materialize. Thus, a majority of the

queries for query set Q1 could be answered using the materialized data store and

not having to access the remote Web sources at all. This accounts for the impressive

improvement in performance over no materialization.

(ii) TheaterLoc

TheaterLoc23 is another Ariadne mediator application which provides integrated ac-

cess to Web sources about movies and theatres, an interactive map server depicting

their various locations and a video server from which users can see video trailers

March 18, 2002 9:9 WSPC/111-IJCIS 00053

Selectively Materializing Data 135

Table 5. Effectiveness of extracting patterns in theaterloc.

Query set Response Time Response Time %improvement

(No optimization) (With Materialization)

Q1 22013 sec 1644 sec 93%

of movies playing at the selected theatres. This application is available online at

http://www.isi.edu/ariadne.

Integrated access is provided to the following Web sources:

• Cuisinet (http://www.cuisinenet.com). Web source providing information about

restaurants in various US cities.

• Yahoo Movies (http://movies.yahoo.com/movies/). Provides theater and movie

showtime information.

• Hollywood.com (http://www.hollywood.com). Movie previews source.

• E-TAK Geocoder (http://www.geocode.com). Geocodes street addresses.

• US Census Map Server (http://tiger.census.gov/cgi-bin/mapbrowse-tbl). Online

interactive map server.

The results for the effectiveness of materializing frequently accessed classes of

data for TheaterLoc are shown in Table 5. As for the countries application, in this

case too we measured response times with and without materialization against of

generated query set Q1 of 200 queries. We introduced some distinct patterns of

frequently accessed classes in the TheaterLoc domain in the query set Q1. In this

application as well, materializing data provides a significant performance improve-

ment over the case when no data is materialized.

(iii) Flight Delay Predictor

Finally we have the Flight Delay Predictor application for performing flight delay

predictions given information about a particular flight’s departure and arrival times

and airports, airline name, weather predictions from the Yahoo weather service

(http://weather.yahoo.com) and historical flight and weather data. A demo of this

application is available at http://www.isi.edu/ariadne/demo/tw/.

Table 6 shows the improvement in performance due to materializing frequently

accessed classes in the Flight Delay Predictor. Query set Q1 is a set of 200 generated

queries having patterns of frequently accessed classes in the Flight Delay Predictor

domain. The performance gain of 34% (over no materialization) is substantial.

However it is significantly less than the performance improvement achieved for the

countries and TheaterLoc applications. This is because all queries for the Flight

Delay Predictor require fetching just 2 pages from one Web source (retrieving the

weather predictions from the Yahoo! weather service). As a result the queries to

the Delay Predictor even without any materialization do not take a very long time

to execute.

March 18, 2002 9:9 WSPC/111-IJCIS 00053

136 N. Ashish, C. Knoblock & C. Shahabi

Table 6. Effectiveness of extracting patterns in flight delay predictor.

Query set Response Time Response Time %improvement

(No optimization) (With Materialization)

Q1 2399 sec 1603 sec 34%

To summarize, the above results do indeed validate our claim that materializing

data extracted as frequently accessed classes in user queries is effective in optimiz-

ing the performance of a mediator application. The degree to which performance

is improved varies across applications depending on the patterns in the query dis-

tribution and also the time spent in answering queries using only the original Web

sources in the different applications.

5. Complexity

As CM has been designed to take as input a large number of previous user queries (a

typical number might be say 1000 queries) for extracting patterns, the complexity

of running CM is also a matter of concern. We present below a complexity analysis

of the algorithm with some reasonable assumptions about the query distribution.

For a particular domain class:

Number of queries = N .

Number of attributes of domain class = M .

Number of attributes on which constraints may be specified = K.

We analyze the complexity by analyzing each step of the CM algorithm:

(i) Creating the ontology of subclasses of interest. For each query

SELECT A1, A2, . . . An

FROM C

WHERE P

Suppose P consists of a single predicate. In case of string equality constraints (of

the form Ai = V) we form subclasses of P based on the value of Ai. We assume

that the number of such subclasses is a small constant t. The assumption is valid as

we will not form subclasses of C based on an attribute Ai that may be the primary

key of C (thus resulting in several subclasses). Also for numeric constraints, both

equality and range we partition into subclasses based on ranges for the value of Ai
and we can assume that the number of such subclasses is again a small constant t.

Since we can specify constraints on at most K attributes and the number of

subclasses for a single attribute value can be at most t, it is easy to see that in an

ontology (see Fig. 5) the number of subclasses is at most (1 + t)K . This is because

for each of the K attributes for which we can specify a constraint we may either

not specify a constraint or the constraint will be one of the t possible values for

the attribute in case of string constraints. In case of numeric constraints it will be

March 18, 2002 9:9 WSPC/111-IJCIS 00053

Selectively Materializing Data 137

C (Domain Concept)

Depth 1

Depth 2

Depth n

Fig. 5. Ontology of subclasses of interest.

in one of the t possible ranges. However for N queries the number of subclasses

that can be created will be much less than what (1 + t)K could be. In the ontology

at depth 1, we have at most tK subclasses. Now for each query we will create

subclasses at depth 1 in the ontology (unless they already exist) and 1 subclass at

depth n if the query constraint has n predicates and N � 1. Thus for N queries

the number of subclasses created can be at most (tk + N). For each query we

may create up to (nt + 1) new subclasses where n is the number of predicates

in the query constraint. This is because we could have up to nt new subclasses

at depth 1 and 1 new subclass at depth n. For each of these new subclasses we

need to ensure that either the subclasses are already present in the ontology or

place them at appropriate places in the ontology. A linear search on the ontology is

required which takes time at most (Kt+ 1)(tK +N) for each query as at most K

predicates can be present in the query constraint. As the number of queries is N ,

the entire first step of creating the ontology takes time N(Kt+ 1)(Kt+N) which

is O(N2K +K2N).

(ii) The second step is for each subclass, to cluster together the groups of attributes

based on similarity of cluster and similarity of frequency with which they have been

queried. As mentioned earlier we use an approximate 2D clustering algorithm and

it has a running time that is quadratic in the number of queries. Assuming an even

distribution of the N queries in the (tk + N) subclasses, we have on an average

of N/(tk + N) queries in each subclass. Also to measure “similarity” of attribute

clusters in each subclass, we compare clusters pairwise and each comparison takes

time at most M2 as M is the total number of attributes for the domain concept. The

clustering of attribute groups in each subclass thus takes time = c M2(N/(tk+N))2

where c is a constant. As we have at most (tK+N) subclasses the entire clustering

March 18, 2002 9:9 WSPC/111-IJCIS 00053

138 N. Ashish, C. Knoblock & C. Shahabi

step takes time = c (tK + N)M2(N/(tk + N))2 = c M2N2/(tK + N) which is

O(M2N) (assuming M < N).

(iii) The final step is to cluster based on coverings. The number of coverings is

obviously less than (tK +N), the total number of subclasses in the ontology. Now

when we consider a covering we merge across at most t subclasses. This is because

we merge across the direct subclasses of a particular class and this can be at most

t. Recall that we start with a seed cluster and compare with other clusters to see if

there is a good overlap. Each comparison (of the seed cluster with another) takes

time M2.Again assuming an even distribution of queries among the subclasses in

the ontology we have an average of N/(tK +N) queries in any subclass. As there

are at most t subclasses in a covering, the total number of attribute clusters is

at most tN/(tK + N). If each cluster is compared with every other cluster in the

covering (in the course of searching for overlapping clusters), the number of such

comparisons is (tN/(tK+N))2. The actual number of comparisons while searching

for overlapping clusters to merge will be less than (tN/(tK+N))2 as we will go on

removing clusters on merging them. Merging across each covering thus takes time

at most M2(tn/(tK + N))2. As there are at most (tK + N) coverings, the entire

third step takes time M2(tN)2/(tK +N) which is O(M2N/K). As the 3 different

steps have complexity O(N2K+K2N), O(M2N) and O(M2N/K) respectively, the

complexity for the overall algorithm is O(N2K2 +M2N/K) . As K can range from

1 to M (number of attributes in the domain concept) this can be further simplified

to O(M2N +N2M).

O(M2N + N2M) seems satisfactory as the complexity is polynomial in the

number of attributes in a domain concept and the number of queries analyzed. The

time for running CM will thus be acceptable even for large values of M and N . The

purpose of analyzing the complexity of CM was to ensure that there are no sources

of complexity that would make the running time of CM a matter of concern. For

instance if it were say exponential in the number of queries or attributes. However

with reasonable assumptions about the query distribution, we have shown that CM

is a polynomial time algorithm and thus the running time will not be an issue.

6. Related Work

There is a whole body of work on optimizing performance by caching or material-

izing data in database, operating system or Web server environments and we now

describe how our work relates to these approaches. We materialize data in a manner

similar to a semantic caching20 or predicate based24 caching system. A problem with

the semantic caching approach is that the containment checking problem is hard

and having a large number of semantic regions creates performance problems. A

solution proposed in Ref. 24 is to reduce the number of semantic regions by merg-

ing them whenever possible. This is in fact an idea we have built on. In the CM

algorithm we have presented an approach for systematically creating new semantic

March 18, 2002 9:9 WSPC/111-IJCIS 00053

Selectively Materializing Data 139

regions to consider for materializing and merging them when possible. We have also

proposed a relaxed merging of semantic regions in addition to exact merging.

For the mediator environment an approach to caching is described in Ref. 14.

The focus of this work however is caching for a mediator environment where infor-

mation is integrated from sources that may not be traditional database systems.

The contribution is a caching approach based on first estimating the cost of access-

ing various sources based on statistics of costs of actually fetching data from the

sources. In this approach reasoning about cache contents is done through the notion

of invariants which are expressions that show possible substitutions or rewritings of

queries. This approach provides very limited semantic reasoning capabilities about

the contents of the cached data as compared to our approach in which we are able to

perform more powerful reasoning of the materialized data contents through loom.

Another approach to caching for federated databases is described in Ref. 25.

This is also a semantic caching approach where the data cached is described by

queries. They also define some criteria for choosing an optimal set of queries to

cache. Finding the optimal set is an NP-complete problem and an A∗ algorithm is

used to obtain a near optimal solution. A limitation of this approach is that the

cached classes can only be in terms of classes in a predefined hierarchy of classes

of information for a particular application. Our approach is much more flexible in

that we dynamically construct classes of information to materialize.

There is some research on materializing the Web described in Ref. 8. The focus

of this work however is to build a fully materialized view over Web data for data

in a user specified generic domain of interest. Our goal is different in that we wish

to just partially materialize data to improve performance for mediators that would

otherwise access data from remote sources.

Our work is also related to recent work on view selection in a data warehousing

environment. One of the most important decisions in designing a data warehouse

is selecting what views to materialize so that the total query response time is min-

imized with a constraint such as limited storage space and/or cost of maintaining

the views. Yang et al.26,27 show that this is an intractable problem and present

heuristic algorithms for near optimal solutions. However the warehousing problem

differs from our problem in several aspects. In warehousing there is a fixed set

of views and a decision is to be made for each view whether to materialize it or

not, in the mediator environment, however, we dynamically propose new “views”

(classes of data to materialize) with the additional constraint that the number of

such classes be small. The warehouse design approach described in Ref. 4 does

not start with a fixed set of views. Instead they start with the set of all queries

(of interest) materialized as views and then produce alternative view selections for

materialization by modifying views, decomposing views, eliminating views or gen-

erating auxiliary views. In this case, however, a rewriting of any query over the set

of views is already available. In our system the “rewriting” involves generating a

query plan over the materialized and remote sources which is combinatorially hard.

Also in warehousing, the cost that we are trying to minimize is that of reading

March 18, 2002 9:9 WSPC/111-IJCIS 00053

140 N. Ashish, C. Knoblock & C. Shahabi

large relation tables from disk into main memory, and main memory operations on

these tables. In the mediator environment the dominant cost is that of retrieving

data from the remote Web sources which is what we attempt to minimize. Work on

mediators that support views that integrate data from multiple sources is described

in Ref. 28. The views could be materialized (i.e. the data is materialized locally),

virtual (i.e. the data is obtained from the remote sources at run time) or hybrids of

both. However, specifying exactly which views are materialized, virtual or hybrid

is done using annotations. They do not address the problem of how to optimally

annotate views in a mediator. In our approach, we automate the process of choosing

what to materialize based on many factors.

The problem of Web sources having limitations in terms of query processing

has been looked at by work in the area of wrappers.29,30 Query planning in these

systems is done using capabilities based rewriting (CBR) where the limitations of

query processing of wrappers are taken into account. If a wrapper cannot support a

certain type of query, the query (plan) is rewritten including additional operations

above the operations that the wrapper can support. Our approach is different from

CBR in that first, any additional operations (not supported by the source) are

performed by the wrapper itself. Next, as performing such additional operations

causes processing the queries to be expensive, we identify and materialize locally

information that will speed up the processing of the expensive queries.

Finally, the problem of extracting patterns from queries is somewhat similar

to the problem of data mining, particularly that of mining association rules.31

The problem of mining association rules is that of extracting implications of the

form X ⇒ Y from a database where X ⊂ I and Y ⊂ I and X ∩ Y = φ, where

I = {i1, i2, . . . im} is a set of data items. The patterns that we extract from queries

can also be looked upon as implications. For instance a pattern such as “economy

and population of European Countries” is an implication European Countries ⇒
(economy, population). Extracting patterns however differs from mining association

rules in several respects. First, when mining association rules, the antecedent X

in an implication X ⇒ Y could be any X ⊂ I where at least a certain minimum

percentage of transactions in the database contain X∪Y . In extracting patterns the

antecedents are just the individual classes and subclasses of data queried. Second,

we do not cluster data items in the consequents in the implication rules whereas

in extracting patterns we do try and group together data items in consequents

(for the same antecedent) that overlap well. Third, when extracting patterns we

can extract patterns when the antecedents (classes and subclasses) are organized

in a class/subclass hierarchy. This hierarchy is dynamically generated. In mining

association rules however the hierarchy in which antecedents may be organized is

predefined and fixed.5 Finally mining association rules is often done for databases of

very large size and the optimizations focus on issues like minimizing the disk scans of

the relations for data mining. In extracting patterns the entire query distribution

being analyzed can fit into main memory and the optimizations for minimizing

disk scans are not required. For all the above reasons the algorithms for mining

March 18, 2002 9:9 WSPC/111-IJCIS 00053

Selectively Materializing Data 141

association rules cannot be directly applied to the problem of extracting patterns

which is why we developed the CM algorithm for this task.

7. Future Work and Conclusion

We have described an approach for optimizing the performance of information me-

diators. The major contributions of this paper can be summarized as follows:

• We described an approach for selecting data to materialize based on a combina-

tion of user query distribution, source structure analysis and update cost.

• We presented an algorithm for extracting patterns from a distribution of user

queries in a compact manner.

• We demonstrated the effectiveness of our algorithm in extracting patterns and

also the effectiveness of materializing frequently accessed classes in optimizing

mediator performance.

The extraction of patterns from a query distribution can be viewed as “query

mining” on a query distribution. Extracting such patterns from user queries could

be of interest in areas besides materialization. One example is E-commerce where

sellers may be interested in analyzing online user queries and request to find classes

of items (data) that users are most interested in. The user profile may also be

analyzed in addition to the queries. An example of a useful pattern extracted for

an online book store may be “college student customers interested in humor/fiction

mostly buy books by PG Wodehouse or Evelyn Waugh”. It would thus be useful

to investigate how an algorithm like CM may be enhanced or modified to satisfy

the needs of query mining in applications like E-commerce. For instance being able

to learn a more sophisticated description and augmenting the analysis of the user

query distribution with customer profiles are some of the enhancements that may

be needed.

The described work is part of a completed effort to optimizing mediator per-

formance by materializing data, that also takes other factors of source structure

analysis and update aspects into account. A description of these other components

is however beyond the scope of this paper.

A. COUNTRY Relation

Attributes of COUNTRY relation.

Relation: COUNTRY

Attributes: (geography location map references region area total area land area

comparative area land boundaries coastline maritime claims international disputes

climate terrain natural resources land use irrigated land environment note

people population age structure population growth rate birth rate death rate

net migration rate infant mortality rate life expectancy at birth total fertility rate

nationality ethnic divisions religions languages literacy labor force government

March 18, 2002 9:9 WSPC/111-IJCIS 00053

142 N. Ashish, C. Knoblock & C. Shahabi

names digraph type capital administrative divisions independence national holiday

constitution legal system suffrage executive branch legislative branch

judicial branch political parties and leaders other political or pressure groups

diplomatic representation in US us diplomatic representation organization flag

economy overview national product national product real growth rate

national product per capita inflation rate consumer prices unemployment rate

budget exports imports external debt industrial production electricity industries

agriculture illicit drugs economic aid currency exchange rates fiscal year trans-

portation railroads highways inland waterways pipelines ports merchant marine

airports communications telephone system radio television defense Forces branches

manpower availability defense expenditures)

B. Query Set Q1

Details of distribution:

1. 30% of the queries are of the form:

SELECT A

FROM country

WHERE name= C;

where A is a set of attributes and C is a country name. A and C are generated for

each query of this form. In 80% of the instances of A all the attributes in set A

lie within a set of 3 predefined “favourite” attributes. The remainder 20% contain

randomly selected attributes. We chose the favourite set to be {imports, exports,

economy}. For C, we randomly selected a country name from the set of all country

names. The names were picked with approximately equal probabilities.

2. 20% of the queries are of the form:

SELECT A

FROM country

WHERE region = “asia”;

80% of the instances of A are within a set of 4 favourite attributes that we chose

to be {location, map references, area, climate}.

3. Another 20% of the queries are of the form:

SELECT A

FROM country

WHERE region = “asia” and organization = “nato”;

As above 80% of the instances of A are within a set of 2 favourite attributes that

in this case we chose to be {defense expenditure, external debt}.

4. Finally the remaining 30% queries are of the form

SELECT A

FROM country

March 18, 2002 9:9 WSPC/111-IJCIS 00053

Selectively Materializing Data 143

WHERE region = X;

where X is a region such as asia, europe etc. The queries are uniformly distributed

amongst the (six) possible values of region. Again, 80% of the instances of A are

within a set of 4 favourite attributes that in this case we chose to be {economy,

currency, religions, literacy} .

References

1. R. MacGregor, A deductive pattern matcher, Proc. AAAI-88, Nat. Conf. Artif. Intell.,
St. Paul, MN, 1988.

2. Informix universal server, version 9.1. Technical Report, Informix Press, Menlo Park,
CA, March, 1997.

3. R. MacGregor, H. Chalupsky and E. Melz, Powerloom manual, Available online at
http://www.isi.edu/isd/LOOM/PowerLoon/documentation/manual.html

4. D. Theodoratos and T. K. Sellis, Designing data warehouses, Data Knowledge Eng.
(DKE) 31, 3 (1999) 279–301.

5. R. Srikant and R. Agrawal, Mining generalized association rules, Proc. 21st Int. Conf.
Very Large Databases, Zurich, Switzerland, 1995.

6. O. Etzioni and D. S. Weld, A softbot-based interface to the Internet, Comm. ACM,
37, 7 1994.

7. G. Wiederhold, Mediators in the architecture of future information systems, IEEE
Comput., March 1992.

8. M. D. Rosa, T. Catarci, L. Iocchi, D. Nardi and G. Santucci, Materializing the web,
Proc. Third IFCIS Int. Conf. Coop. Inf. Syst. (CoopIS ’98), New York, 1998.

9. M. Genesereth, A. Keller and O. Duschka, Infomaster: An information integration
system, Proc. ACM SIGMOD Int. Conf. Management Data, Tucson, AZ, 1997.

10. J. Hammer, H. Garcia-Molina, K. Ireland, Y. Papakonstantinou, J. Ullman and J.
Widom, Information translation, mediation, and mosaic-based browsing in the tsim-
mis system, Proc. ACM SIGMOD Int. Conf. Management Data, San Jose, CA, 1995.

11. Z. Ives, D. Florescu, M. Friedman, A. Levy and D. Weld, An adaptive query execution
engine for data integration, Proc. ACM SIGMOD Int. Conf. Management of Data,
Philadelphia, PA, June 1999.

12. R. Bayardo, W. Bohrer, R. Brice, A. Cichocki, G. Fowler, A. Helal. V. Kashyap,
T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikr-
ishnan, A. Unruh and D. Woelk, Semantic integration of information in open and
dynamic environments, Technical Report MCC-INSL-088-96, MCC, Austin, Texas,
1996.

13. A. Tomasic, L. Raschid and P. Valduriez, A data model and query processing tech-
niques for scaling access to distributed heterogeneous databases in disco, Invited paper
in the IEEE Transaction Computers, Special Issue on Distributed Computing System
1997.

14. A. Adali, K. S. Candon, Y. Papakonstantinou and V. S. Subrahmanian, Query caching
and optimization in distributed mediator systems, Proc. ACM SIGMOD Intelligent
Conf. Management Data, Tucson, AZ, 1997.

15. Y. Arens, C. A. Knoblock and W.-M. Shen, Query reformulation for dynamic in-
formation integration, J. Intell. Inf. Syst., Special Issue on Intelligent Information
Integration 6, 3 (1996) 99–130.

March 18, 2002 9:9 WSPC/111-IJCIS 00053

144 N. Ashish, C. Knoblock & C. Shahabi

16. C. A. Knoblock, S. Minton, J.-L. Ambite, N. Ashish, P. J. Modi, I. Muslea, A. Philpot
and S. Tejada, Modeling web sources for information integration, Proc. Fifteenth Natl.
Conf. Artif. Intell. (AAAI), Madison, WI, 1998.

17. N. Ashish, C. A. Knoblock and C. Shahabi, Selectively materializing data in mediators
by analyzing user queries, Fourth Int. Conf. Coop. Inf. Syst. (CoopIS), Edinburgh,
Scotland, September 1999.

18. A. Chankunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz and K. J. Worrell,
A hierarchical internet object cache, Technical Report 95–611, Computer Science
Department, University of Southern California, Los Angeles, CA, 1995.

19. Y. Arens and C. A. Knoblock, Intelligent caching: Selecting, representing and reusing
data in an information server, Proc. Third Int. Conf. Inf. Knowledge Management,
Gaithersburg, MD, 1994.

20. S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava and M. Tan, Semantic data
caching and replacement, Proc. 22nd VLDB Conf. Mumbai (Bombay), India, 1996.

21. S. Chawathe, A. Rajaraman, H. Garcia-Molina and J. Widom, Change detection
in Hierarchically structured information, Proc. ACM Int. Conf. Management Data
(SIGMOD), Montreal, Quebec, Canada, 1996.

22. P. Scheuermann, J. Shim and R. Vingralek, Watchman: A data warehouse intelligent
cache manager, Proc. 22nd VLDB Conf., Mumbai (Bombay), India, 1996.

23. G. Barish, C. A. Knoblock, Y.-S. Chen, S. Minton, A. Philpot and C. Shahabi,
Theaterloc: A case study in information integration, IJCAI Workshop Intell. Inf.
Integration, Stockholm, Sweden, 1999.

24. A. M. Keller and J. Basu, A predicate-based caching scheme for client-server database
architectures, VLDB J. 5, 2 (1996) 35–47.

25. A. Goni, A. Illarramendi, E. Mena and J. M. Blanco, An optimal cache for a federated
database system, J. Intell. Inf. Syst. 1, 34, 1997.

26. J. Yang, K. Karlapalem and Q. Li, Algorithms for materialized view design in data
warehousing environment, Proc. 23 Int. Conf. Very large Databases, Athens, Greece,
1997.

27. H. Gupta and I. S. Mumick, Selection of views to materialize under a maintenance
cost constraint, submitted to VLDB-98, 1998.

28. R. Hull and G. Zhou, A framework for supporting data integration using the materi-
alized and virtual approaches, Proc. ACM Int. Coof. Management Data (SIGMOD),
Montreal, Quebec, Canada, 1996.

29. Y. Papakonstantinou, A. Gupta and L. Haas, Capabilities based query rewriting in
mediator systems, Distr. Par. Databases 6, 1 (1998) 73–110.

30. L. Bright, L. Raschid and M. E. Vidal, Optimization of wrappers and mediators
for web accessible data sources (websources), Workshop Web Inf. Data Management
(WIDM), Washington DC, 1998.

31. R. Agrawal, T. Imielinski and A. Swami, Mining associations between sets of items in
massive database, Proc. ACM SIGMOD Int. Conf. Management Data, Washington
D. C., 1993.

