
Semi-automatic Wrapper Generation for
Internet Information Sources �

Naveen Ashish and Craig Knoblock
Information Sciences Institute and
Department of Computer Science
University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292
fashish,knoblockg@isi.edu

http://www.isi.edu/sims/fnaveen,knoblockg

Abstract

To simplify the task of obtaining information from the
vast number of information sources that are available on
the World Wide Web (WWW), we are building tools to build
information mediators for extracting and integrating data
from multiple Web sources. In a mediator based approach,
wrappers are built around individual information sources,
that provide translation between the mediator query lan-
guage and the individual source. We present an approach
for semi-automatically generating wrappers for structured
internet sources. The key idea is to exploit formatting in-
formation in Web pages from the source to hypothesize the
underlying structure of a page. From this structure the sys-
tem generates a wrapper that facilitatesquerying of a source
and possibly integrating it with other sources. We demon-
strate the ease with which we are able to build wrappers for
a number of Web sources using our implemented wrapper
generation toolkit.

1. Introduction

We are building information agents or mediators to
gather and integrate information from multiple World Wide
Web sources. The mediator [18, 3] approach has been

�This work is supported in part by the University of Southern Califor-
nia Integrated Media Systems Center (IMSC) - a National Science Founda-
tion EngineeringResearch Center, by the Rome Laboratory of the Air Force
Systems Command and the Defense Advanced Research Projects Agency
(DARPA) under contract number F30602-94-C-0210, by the National Sci-
ence Foundation under grant number IRI-9313993and by the DARPA Fort
Huachuca Contract DABT63-96-C-0066. The views and conclusions con-
tained in this paper are the authors’ and should not be interpreted as repre-
senting the official opinion or policy of DARPA, RL, NSF or any person or
agency connected with them.

used to integrate information from distributed heteroge-
neous database systems, where a mediator insulates the user
from problems caused by different locations, query lan-
guages and protocols of the different databases. We are ex-
tending the mediator approach to integrate information from
multiple Web sources. Our approach is to take several re-
lated Web sources in a particular domain of interest (e.g.,
finance, government, or real-estate) and provide integrated
access to multiple Web sources through a mediator.

For example, we can use a mediator to provide integrated
access to multiple Web sources that provide information
on countries in the world. An excellent Web source is the
CIA World Fact Book 1, which provides information on the
geography, economy, government, etc., of every country.
Other interesting sources include the Yahoo listing of
countries by region from where we can obtain information
such as what countries are in Europe, the Pacific Rim, etc.
Another interesting source is the on-line listing of country
corruption rankings. A user could query a mediator that pro-
vides access to the above sources to answer queries such as
‘‘Find the Economic Overview, Telephone
System and Corruption Rankings of all
countries in the Pacific Rim’’. The medi-
ator would determine what sources can be used to answer
the query, retrieve information from these sources, and
present the integrated result to the user. There are several
other research projects that are working on integrating
Web-based sources, The most prominent ones include In-
foSleuth [4], the OBSERVER project [14], the Information
Manifold [10] and the Internet Softbot [6].

An essential component in a mediator architecture is a
wrapper around each individual data source (see Figure 1),
which accepts queries from the mediator, translates the
query into the appropriate query for the individual source,

1http://www.odci.gov/cia/publications/nsolo/wfb-all.htm

1

performs any additional processing if necessary, and returns
the results to the mediator. To make the integration of Web
sources using the mediator approach feasible, wrappers are
needed for all of the Web sources to be accessed. Wrap-
pers for Web sources would accept a query from the media-
tor, fetch the relevant pages from that source, extract the re-
quested information from the retrieved pages and return the
results to the mediator. Essentially the wrappers make the
Web sources look like databases that can be queried through
the mediator’s query language. The basic techniques ap-
plied in database integration using mediators can then be ap-
plied to Web sources integration. It is however impractical
to construct wrappers for Web sources by hand for a number
of reasons:

� The number of information sources of interest is very
large, even within a particular domain.

� Newer sources of interest are added quite frequently on
the Web.

� The format of existing sources often changes.

We report on the development of an implemented wrap-
per generation toolkit that provides a semi-automatic, inter-
active wrapper generation facility for Web sources. It should
be noted that building wrappers is just one of the challenges
in building the kinds of information mediators for the Web,
that we envision. Problems lie in several other areas such
as modeling the information sources, resolving semantic
heterogeneity amongst different sources, query planning to
gather the requested information from different sites, and in-
telligently caching retrieved data, to name a few. The focus
of this paper is solely on wrapper generation.

The rest of this paper is organized as follows. Section
2 provides an overview of the different kinds of informa-
tion sources on the Web. Section 3 describes how we semi-
automatically generate wrappers. Section 4 presents exper-
imental results to demonstrate the effectiveness of our tech-
niques for wrapper generation. Section 5 describes related
work. Section 6 presents future directions and conclusions.

2. Types of Web Information Sources

We categorize the types of pages from Web sources into
three classes: multiple-instance sources, single-instance
sources, and loosely-structured sources. Certain sources
provide information in multiple pages, all conforming to
the same format. We call such sources multiple instance
sources. Consider a source such as the CIA World Fact
Book. This source provides information on each of the
269 countries in the world, with information for each
country presented on a separate page for that country. The
information on each page is presented in a semi-structured

manner since each page can be clearly sub-divided into
distinct sections with headings labeling the beginning of
each section. Also, the information on all pages is presented
in exactly the same format. A page for one country is shown
in Figure 2. There are clearly identifiable sections such as
Geography, Area, Land boundaries etc., on each page. For
each individual page we would like the wrapper to able
to handle queries about one or more sections in the page.
For example ‘‘Find the Land boundaries and
Area of France’’. This wrapper will in turn
allow a mediator to handle aggregate queries (spanning
multiple countries) such as ‘‘Find the National
Product, and Defense Expenditures of
all countries in Europe.’’

There are a number of sources on the Web that fall in
the multiple instance category, such as the National Science
Foundation (NSF) Grants database 2, the General Services
Administration (GSA) On-line Shopping database 3, the
NSF Funding Opportunities database, Genetics databases
such as OMIM 4, or the Air Force Fact Sheets 5 to name a
few. It might be argued that for this category of sources, the
information that is put on-line often comes from a database
itself. Thus we should query the databases directly. Unfor-
tunately for most of these sources, access to the underlying
databases is simply not permitted or might be allowed only
with a license fee to query the database. However the in-
formation put on-line is readily and freely accessible, which
makes a case for building wrappers in order to query these
sources.

Another category is that of semi-structured single in-
stance pages. There are numerous sources on the Web that
contain useful information in a semi-structured form, but
on a single page. To name a few, consider the CoopIS
96 proceedings page, list of AAAI Fellows or the Yahoo
list of countries by region. Consider the CoopIS 96 pro-
ceedings page 6. The page is organized into clearly iden-
tifiable sections, with a heading for each section (such
as Classification and Ontologies, or Data Integration etc.).
Each section starts with the Chair of that section followed
by papers presented in that section. From such a page
we would like a wrapper to be able to answer queries
such as ‘‘Find the names of all people who
chaired a session in CoopIS 96’’ and expect
the wrapper to extract and return the list of chairs i.e.,
“Witold Litwin, James Geller, Klemens Bohm ...”.

Finally there are pages that are more loosely structured,
such as a personal homepage. For such cases, i.e., in the ab-
sence of clearly identifiable sections with headings, the ex-

2http://cos.gdb.org/best/fedfund/nsf-intro.html
3http://www.fss.gsa.gov/cgi-bin/advantage!?38
4http://www3.ncbi.nlm.nih.gov/Omim
5http://www.af.mil/pa/indexpages/fs index.html
6http://sunsite.informatik.rwth-aachen.de/dblp/db/

conf/coopis/coopis96.html#ScheuermannLC96

2

COUNTRIES
INFORMATION
MEDIATOR

USER

CIA World
Fact Book

Corruption
Rankings of
Countries

YAHOO −
Listing of
Countries by
Region

WRAPPER WRAPPER

WRAPPER

Figure 1. Role of wrappers in providing integrated access to multiple information sources

Figure 2. Snapshot of a page from the CIA World Fact Book

3

traction task becomes much harder. Also the use of fancy
graphics or images for information presentation makes the
task of building a wrapper for that source more difficult.

In this paper we focus on semi-automatically building
wrappers for semi-structured sources, in both the multiple-
instance and single-instance categories. For loosely struc-
tured sources or sources with complicated graphics we have
to build wrappers manually. However it is the large number
of sources in the semi-structured category, and the wealth of
information that can be obtained from them that has moti-
vated us to automate the task of wrapper generation for such
sources.

3. Approach for Automated Wrapper Genera-
tion

This section describes our approach for generating wrap-
pers for Web sources. We have attempted to automate the
process of building wrappers as much as possible. The fol-
lowing steps are involved in generating a wrapper for a new
Web source:

� Structuring the source. This involves identifying sec-
tions and sub-sections of interest on a page.

� Building a parser for the source pages. After struc-
turing the source we build a parser that can extract se-
lected sections from a page from the source.

� Adding communication capabilities between the wrap-
per, mediator and web sources. The mediator that in-
tegrates several sources must be able to communicate
with the wrappers for these sources. Also, the wrappers
must communicate with Web sources to retrieve data in
order to answer queries.

We describe these steps in detail below.

3.1. Structuring the Source

In specifying the structure of a page on the Web, two
things need to be clearly identified.

1. Tokens of interest on a page. By tokens we mean words
or phrases that indicate the heading of a section, such
as Geography, Economy, or Total Area on the
CIA World Fact Book page. A heading indicates the
beginning of a new section; thus identifying headings
identifies the sections on a page.

2. The nesting hierarchy within sections. Once a page
has been decomposed into various sections, we have to
identify the nesting structure of the sections. For in-
stance a CIA World Fact Book page comprises of the

sections Geography, People, Economy, Govern-
ment and Transportation. The Geography section
in turn is broken down into the sections Area, Land
boundaries, etc., while Area contains land area, to-
tal area, etc.

The structuring task can be done automatically or with
minimal user interaction. The key idea here is that a pro-
gram analyses the HTML and other formatting information
in a sample page from the source and guesses the interest-
ing tokens on that page. The system also uses the formatting
information to guess the nesting structure of the page. The
heuristics used for identifying important tokens on a page
and the algorithm used to organize sections into a nested hi-
erarchy are an important contribution of this work. We de-
scribe them in more detail below.

3.1.1 Identifying Tokens

Tokens identifying the beginning of a section are often pre-
sented in bold font in HTML. They may also be written en-
tirely in upper case words, or may end with a colon. We can
generate a lexical analyzer that searches a page for such to-
kens using LEX [13], a lexical analyzer generator. In Ta-
ble 1 we list the regular expressions given as specifications
to LEX to identify tokens indicating headings on a page.
From these specifications we generate a lexical analyzer that
identifies words or phrases conforming to the regular ex-
pressions. When structuring any page, the system is able to
identify headings that are formatted in any of the ways listed
in Table 1. For instance, given a page from the CIA World
Fact Book the system is able to identify the tokens of inter-
est such as Geography, Land boundaries, Area etc.
Since each token marks the beginning of a section on a page,
at the end of the above tokenizing step all the different sec-
tions on a page have been identified.

3.1.2 Determining the Hierarchical Structure

The next step is to obtain the nesting hierarchy of sections
on the page, i.e., what sections comprise the page at the top
level, what sub-sections comprise other sections in the page,
etc. As with the tokenizingstep, the nesting hierarchy can be
obtained in a semi-automatic fashion for a large number of
pages. We have developed an algorithm that, given a page
with all sections and headings correctly identified, outputs a
hierarchy of sections. The following two simple heuristics
are used:

1. Font Size -The font of the heading of a sub-section is
generally smaller than that of its parent section.

2. Indentation - Indentation spaces (which can be detected
from raw text or HTML tags) are often used to indicate
that one section is a subsection of another.

4

Regular Expression given as LEX Specification Description Example Heading

‘‘<’’[bB][ˆ<>]*‘‘>’’[ˆ\n]+‘‘<’’/[bB]‘‘>’’ Headings in
bold tags

Chair

‘‘<’’[hH][0-6][ˆ<>]*‘‘>’’[ˆ\n]+‘‘<’’/[hH][0-6]‘‘>’’ Headings with
font size

<h3>Geography</h3>

‘‘’’[ˆ\n]+‘‘’’ Headings in
Strong Tags

Area

‘‘’’[ˆ\n]+ ‘‘’’ Strong tags in
different case

Population

‘‘’’[ˆ\n]+‘‘’’ Strong tags in
lower case

Deadlines

[A-Za-z0-9\-_]+[:] Words ending
in colon

IRS NUMBER:

‘‘<’’[iI][ˆ<>]*‘‘>’’[ˆ\n]+‘‘</’’[iI]‘‘>’’ Italicized
words

<i>total area:</i>

Table 1. Heuristics for identifying tokens when structuring a page

current_node= make_new_tree(); /* returns a node that is the root of a new tree */
while(more_headings){

new_node=construct_node(heading); /* makes a new node for the new section */
while ((size_of(current_node) <= size_of(new_node)) or

(indentation_of(current_node) >= indentation_of(new_node))){
/* search for the immediate parent section of the new section */

current_node=parent_of(current_node);
}

make_rightmost_child(current_node,new_node);
/* make the new section the rightmost child of its immediate parent */

current_node=new_node;
}

generate_grammar();
/ * a procedure that from the tree constructed above, for each node N with ordered children
C1, C2 ... , Cm outputs a grammar rule of the form N --> C1 C2 Cm */

Figure 3. Algorithm to obtain nesting hierarchy

5

Using the procedure shown in Figure 3, the system out-
puts a grammar describing the nesting hierarchy of sections
in a page. This procedure first builds a tree that reflects the
nesting hierarchy of sections. We construct a node for each
heading that identifies a new section, and make this node a
child of the section that should be its immediate parent based
on the font size and indentation of the section headings. The
children of each node are ordered, i.e., they appear in the
same order in which the corresponding sections appear on
the page. When all nodes for all sections have been placed in
the tree, the procedure outputs grammar rules for each node
in the tree, essentially stating that the section at each node
has as sub-sections all its immediate children in the tree (and
in the order in which they appear in the tree). For instance,
for pages from the CIA World Fact Book the grammar output
is shown in Figure 4.

It is possible for the system to make mistakes when try-
ing to identify the structure of a new page. Based on the
heuristics listed in Table 1, the system can highlight tokens
erroneously (that is identifysome words or phrases as tokens
when they are not, or fail to identify phrases that are head-
ings or tokens, but do not conform to any of the regular ex-
pressions in Table 1). We have provided a facility for the
user to interactively correct the system’s guesses. Through
a graphical interface the user can highlight tokens that the
system misses, or delete tokens that the system erroneously
chooses. The user can similarly correct errors in the system-
generated grammar that describes the structure of the page.

3.2. Building a Parser for the Source Pages

The next step is to generate a parser for pages from the
source. Given a page from the source, such a parser can
extract any selected section(s) from the page. For instance
a parser for pages from the CIA World Fact Book can ex-
tract sections such as Geography.Area (the “.” indicates
that Area is a subsection of Geography in the spirit of com-
plex objects) i.e., the Area sub-section within the Geogra-
phy section from the page for any country.

<h3>Geography<h3> {return(GEO_HEADING);}
Location: {return(LOC_HEADING);}
Map references: {return(MAP_HEADING);}
Area: {return(AREA_HEADING);}
<i>total area:</i> {return(TOT_HEADING);}
...

. {return(TEXT);}
\n {return{TEXT);}

Figure 5. LEX Specifications for CIA Page

Such a parser can be automatically generated, since all of
the grammatical and lexical information needed to parse the
page is obtained at the structuring step. The compiler gen-
erator YACC [9] and the tool LEX are used for this purpose.
The tokens identified in the structuring step are directly in-
put as specifications to LEX to generate a lexical analyzer
for a page from the source. For instance the tokens identi-
fied in the CIA World Fact Book page are Geography, Loca-
tion:, Map references:, Area:, total area: etc., and the spec-
ifications given to LEX to generate a lexical analyzer for a
page from the CIA World Fact Book are shown in Figure 5.

The tool YACC can generate a parser for a language
given grammar rules that specify valid sentences in the lan-
guage. We directly translate the grammar rules describ-
ing the overall structure of the page, obtained at the end of
the structuring step, into a YACC specification. The parser
generated can parse valid “sentences” i.e., pages from the
source. Figure 6 shows what the rules specified to YACC
to parse pages from the CIA World Fact Book look like. For
instance the first part of the first rule states that a single page
is comprised of the Geography section, People section etc.
The second part of the rule shows YACC code for storing
and manipulating parsed data. With these specifications we
use LEX and YACC to generate a parser for pages from the
source.

3.3. Adding Communication Capabilities between
the Wrapper, Mediator and Web Sources

Given a query, a wrapper for a Web source should be
able to fetch the pages containing the requested informa-
tion from the Web source. Also some mechansim is needed
for communication between the mediator and the wrapper
as they are separate processes, possibly running at different
locations. The following communication functionality thus
needs to be added to the wrapper.

1. Identifying network locations of page(s) needed to an-
swer a query. For sources with just a single page this is
straightforward i.e., the URL for that page is known to
the wrapper. For sources with multiple pages, a map-
ping between a query and the URL of the relevant page
might be required. For instance for the CIA World Fact
Book there is a one to one mapping between the coun-
try name and the URL of the page for that country. This
mapping can be obtained from the index page for the
CIA source. For the GSA database the part number ap-
pears at the end of the URL for that source to point to
the page for that part.

To provide the capability of determining the network
location of the page relevant to a query, the user spec-
ifies a mapping function which takes necessary argu-
ments from a query (eg. country name from a query on

6

CIApage –> Geography People Government Economy Transportation

Geography –> Location Map references Area Land boundaries Coastline ..

Area –> total area land area comparative area
...

Figure 4. Nesting Hierarchy for CIA Page

CIApage :Geographysection Peoplesection Governmentsection Economysection Transportsection
fstrcpy($$,$1); strcat($$,$2); strcat($$, $3); strcat($$,$4); g

Geographysection : Locationsection Maprefsection Areasection Landboundariessection...
fstrcpy($$, $1); ... g

Areasection :totalareasection landareasection compareasection
fstrcpy($$,$1); strcat($$,$2); strcat($$,$3); g

Locationsection : Locationheading Text
fstrcpy($$, $1); strcat($$,$2); g

Maprefsection : Maprefheading Text
fstrcpy($$, $1); strcat($$,$2); g

Locationheading : LOC HEADING
f strcpy($$, yytext); g

Maprefheading : MAP HEADING
f strcpy($$, yytext); g

...

Figure 6. YACC specifications for CIA page

the CIA source) and constructs a URL pointing to the
page to be fetched.

2. Capability to retrieve data over the network. Currently
we are using PERL scripts for the purpose of making
HTTP connections to the Web information sources and
retrieving data from them.

3. Communication between the mediator and wrapper.
We are using the agent communication language
KQML [7] for the purpose of providing interprocess
communication between the mediator and a wrapper.

Adding the above functionality is the final step in gener-
ating a wrapper for a new source. The parser for pages from
a Web source plus the above communication functionality
results in a complete wrapper for that Web source.

4. Results

We have applied the wrapper generator to the task of
generating wrappers for a variety of internet sources. We
present experimental results to provide an idea of the effort

required to generate a wrapper for a new source. The step
that is most difficult to automate when generating a wrapper
is the first step where we obtain the structure of a page or
sample pages from the source. Generating the parser is then
done automatically and defining a mapping function from
queries to URLs of relevant for sources with multiple pages
requires comparatively little effort on part of the user. It is
thus the structuring step that dominates the time and effort
needed to build a wrapper for a new source.

We used the wrapper generator to build wrappers for sev-
eral internet sources and to evaluate the effectiveness of the
heuristics we use for structuring a new page automatically.
To provide a quantitative measure of the effectiveness of the
heuristics, we define what we call correction steps. During
structuring a page, each time the user has to manually cor-
rect a token (i.e., add or delete a token) or correct a rule in
the grammar describing the nesting hierarchy of sections, it
is counted as one correction step. The total number of cor-
rection steps made before the page is completely structured
provides an estimate of how hard it is to automatically struc-
ture that page. We also provide the time taken to generate the
wrapper for each source. This would of course vary from

7

Multiple instance sources Correc-
tion
steps

Time
in
min

Single instance sources Correc-
tion
steps

Time
in
min

1. The CIA World Fact Book. 0 2 1. CoopIS 96 Proceedings page 1 3

2. GSA On-line Shopping database. 2 5 2. AAAI-97 conference homepage 3 3

3. The NSF database. 0 5 3. List of US Universities by state 6 4

4. The OMIM Genetics database 4 4 4. List of AAAI Fellows by year 0 1

5. Hoover Company Profiles 2 4 5. Computer Science Job Listings 6 5

6. The Internet Movie Database 3 6 6. SIGMOD Record page 4 3

7. The Air Force Library Fact Sheets 0 2 7. US Air Force Organization page 0 1

Table 2. Experimental Results showing the effort and time to build wrappers for different sources

user to user. Nevertheless, the results give a sense for ap-
proximately how long it might take to generate wrappers us-
ing this toolkit.

Table 2 demonstrates the ease with which we built
sources for a dozen internet sites, from both the multiple in-
stance and single instance categories. We provide the num-
ber of correction steps to structure a sample page from each
source as well as the total time (in minutes) taken to build a
wrapper for that source. The results are extremely encourag-
ing. Several sources require almost none or very few correc-
tion steps to structure them, thus showing that the heuristics
for structuring pages are quite successful. Also, it takes only
a few minutes to generate a wrapper for most new sources.
Such a toolkit is thus extremely useful as it provides a conve-
nient and quick way to generate wrappers for new sources of
information on the Web and then integrate them via a medi-
ator. We successfully integrated several sources in the coun-
tries information domain, such as the CIA World Fact Book,
Yahoo listings of countries by region etc. using the Ariadne
system, which is a descendant of the SIMS [3] informa-
tion mediator that addresses the problem of integrating Web
sources. We were then able to pose queries to Ariadne such
as “ Find the External debt and Defense expenditures
of all countries in EEC.” The answer given by the mediator
is shown in Figure 7.

5. Related work

The work of [8] is on wrapper generation, although the
techniques discussed are for specifying wrappers for vari-
ous kinds of sources such as relational databases and legacy
systems besides Web sources. A template based approach

is used where a user provides actions that execute when a
query matches a certain template or format. Wrapper gen-
eration for Web sources is also discussed in [12]. The fo-
cus of their work is very similar to ours i.e., building wrap-
pers for Web sources to be integrated by a software agent.
However, they follow a very different approach since they
are working on building an Internet shopping agent and they
focus on pages that contain items for sale. As a result they
make much stronger assumptions about the type of informa-
tion they are looking for and use that information to hypoth-
esize the underlying structure. Their approach cannot gen-
erate wrappers for more general types of pages, such as the
CIA World Fact Book.

Several researchers are also investigating the topic of
querying semi-structured data, with a particular focus on
data in Web pages. The work of [1] focuses on isolating
the essential aspects of semi-structured data, and also sur-
veys some proposals for models and query languages for
such data. The work in [5] proposes a language for query-
ing data that has a tree like structure and also discusses op-
timization issues for such a language. Lorel [2] is a query
language for semi-structured data. It is based on the OEM
data model and has been implemented on top of the O2
object-oriented database system. Another effort on using
an object-oriented database to manage SGML data is de-
scribed in [17]. W3QS [11] is a system for SQL like query-
ing for the Web. The system interfaces to user programs and
UNIX services for analyzing and filtering semi-structured
information from Web servers. The work in [15] describes
a query language WebSQL for querying Web sources by
exploiting the structure and topology of the document net-
works. Most of the above efforts are concerned with issues
such as the development of data models and query languages

8

Figure 7. Answer to query involving multiple Web sources

for semi-structured data, defining formal semantics for the
proposed languages and implementation issues. However,
the Web is the largest and ever growing source of semi-
structured data. The focus of our work is on the genera-
tion of wrappers which can facilitate database-like querying
of semi-structured data retrieved directly from Web servers
as opposed to efforts that address the management of semi-
structured data stored locally. The main contribution of our
work is the development of heuristics by which the system
can hypothesize the structure implicit from the formatting
information in the source pages. Once the correct structure
is obtained a wrapper for the source can be generated with-
out much effort or time.

6. Future work and conclusions

We have presented the ideas and results of our approach
for automatically generating wrappers for Web sources. We
have clearly separated the tasks in buildingwrappers that are
specific to a particular Web source such as structuring the
source, and tasks which are repetitive for any source (and
can thus be done by the system) such as generating a parser
from the structure of a page and adding communication ca-
pabilities. The main contribution of our work is automating
the structuring step, through the use of heuristics for deter-
mining the structure by exploiting formatting information in
pages from the source. Our ideas appear to be effective for
many semi-structured kinds of sources. However we need
more advanced wrappers to be able to broaden the scope of
sources we can generate wrappers for and also to be able to
handle more finer grained queries. Currently we are work-
ing on enhancing the wrappers with the following capabili-
ties:

� Learning new tokens by examples: It is possible that
while structuring a page, the system is unable to iden-
tify tokens on the page if they do not conform to any
of the regular expressions in Table 1. We are work-
ing an adding capabilities to the system to quickly learn

the structure of a new kind of heading from a few user
examples. We are applying techniques from inducing
Hidden Markov models (HMMs), describing the to-
kens, from corpora of positive examples. The basic
idea, described in [16] is to start with an HMM accept-
ing only the initial tokens marked by the user. Then,
states in the HMM are merged to yield a generalized
model that can be used to identify the remaining tokens
in the page. The system can then identify the remaining
tokens in the page automatically.

� HandlingTables: A challengingproblem is to automat-
ically build parsers for information in tables. The hard
problem here is to determine exactly what is contained
in the different rows and columns of the table and then
build a parser to extract information from it.

� Handling finer grained queries: Consider the Land
boundaries section on a CIA World Fact Book page.
Currently the wrapper cannot handle queries such
as ‘‘Find the names of all countries
bordering France.’’ as the parser does not
have enough knowledge of the structure within the
Land boundaries field to decompose that field into
pairs of countries and corresponding border lengths.
We are currently investigating using machine learning
techniques where the user gives a few examples
highlighting items of interest within a field and the
system is eventually able to learn the structure within
that field.

We are using the wrapper generator system to gener-
ate wrappers for semi-structured sources and are working
on making the system more advanced and capable of han-
dling more kinds of Web sources. Generation of wrappers is
very useful in meeting our broader goal of integrating Web
sources via a mediator, by which we hope to simplify the
task of obtaining information from the already numerous
and ever growing information sources on the Web.

9

7. Acknowledgements

We would like to thank Steve Minton and other members
of the SIMS and Ariadne projects for their helpful contribu-
tions to this work. We also wish to thank Vipul Kashyap of
the InfoSleuth project at MCC for suggestions on future en-
hancements.

References

[1] S. Abiteboul. Querying semi-structured data. In ICDT (in-
vited talk), 1997.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Weiner.
The Lorel query language for semistructured data. Journal
on Digital Libraries, To appear.

[3] Y. Arens, C. A. Knoblock, and W.-M. Shen. Query reformu-
lation for dynamic information integration. Journal of Intel-
ligent Information Systems, Special Issue on Intelligent In-
formation Integration, 6(2/3):99–130, 1996.

[4] R. Bayardo, W. Bohrer, R. Brice, A. Cichocki, G. Fowler,
A. Helal, V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine,
M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikrishnan,
A. Unruh, and D. Woelk. Semantic integration of informa-
tion in open and dynamic environments. Technical Report
MCC-INSL-088-96, MCC, Austin, Texas, 1996.

[5] P. Buneman, S. Davidson, and G. H. D. Suciu. A query lan-
guage and optimization techniques for unstructured data. In
Proceedingsof the ACM SIGMOD International Conference
on Management of Data, Montreal, Canada, 1996.

[6] O. Etzioni and D. S. Weld. A softbot-based interface to the
Internet. Communications of the ACM, 37(7), 1994.

[7] T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent
communication language. In J. Bradshaw, editor, Software
Agents. AAAI/MIT Press, Menlo Park, CA, in press.

[8] J. Hammer, M. Brennig, H. Garcia-Molina, S. Nesterov,
V. Vassalos, and R. Yerneni. Template-based wrappers in
the tsimmis system. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (Demon-
stration Track), Tucson, AZ, 1997.

[9] S. C. Johnson. Yacc: Yet another compiler compiler. Tech-
nical Report CSTR 32, AT&T Bell Laboratories, 1978.

[10] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The infor-
mation manifold. In Working Notes of the AAAI Spring Sym-
posium on Information Gathering in Heterogeneous, Dis-
tributed Environments, Technical Report SS-95-08, AAAI
Press, Menlo Park, CA, 1995.

[11] D. Konopnicki and O. Shemueli. W3QS: A query system
for the World Wide Web. In Proceedings of the 21st In-
ternational Conference on Very Large Databases, Zurich,
Switzerland, 1995.

[12] N. Kushmerick, D. S. Weld, and R. Doorenbos. Wrap-
per induction for information extraction. In International
Joint Conference on Artificial Intelligence (IJCAI), Nagoya,
Japan, 1997.

[13] M. E. Lesk. Lex - a lexical analyzer generator. Technical Re-
port CSTR 39, AT&T Bell Laboratories, Murray Hill, New
Jersey, 1975.

[14] E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi. Ob-
server:an approach for query processing in global informa-
tion systems based on interoperation across pre-existing on-
tologies. In Proceedings of the First IFCIS International
Conference on Cooperative Information Systems (CoopIS
’96), June, 1996.

[15] A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying the
world wide web. In Symposium on Parallel and Distributed
Information Systems, Miami, Florida, 1996.

[16] A. Stolcke and S. Omohundro. Inducing probabilistic gram-
mars by bayesian model merging. In R.C.Carrasco and
J. Oncina, editors, Grammatical Inference and Applications,
pages 106–118. Springer, 1994.

[17] V.Christophides, S.Abiteboul, S.Cluet, and M.Scholl. From
structured documents to novel query facilities. In Pro-
ceedings of the ACM SIGMOD International Conference on
Management of Data, Minneapolis, Minnesota, 1994.

[18] G. Wiederhold. Mediators in the architecture of future infor-
mation systems. IEEE Computer, March 1992.

10

