
Selectively Materializing Data in Mediators by Analyzing

Source Structure, Query Distribution and Maintenance Cost

Naveen Ashish, Craig A. Knoblock and Cyrus Shahabi

Information Sciences Institute, Integrated Media Systems Center and

Department of Computer Science

University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292

fnashish,knoblock,cshahabig@cs.usc.edu

Abstract

We present an approach to selecting data to material-

ize in Web based information mediators by analyzing

multiple factors. An issue in building Web based infor-

mation mediators is how to improve the query response

time given the high response time for retrieving data

from remote Web sources. We had earlier presented

a framework for optimizing the performance of infor-

mation mediators by selectively materializing data. In

this paper we describe our approach for automatically

selecting the portion of data that must be materialized

by analyzing a combination of several factors, namely

the distribution of user queries, the structure of sources

and the update cost.

1 Introduction

There are several projects focusing on building infor-

mation mediators, the representative systems include

tsimmis [8], InformationManifold [9], The Internet Soft-

bot [6], InfoSleuth [5], Infomaster [7], disco [12], her-

mes [1], sims [2] and Ariadne [10]. Many of these sys-

tems allow database like querying of semi-structured

Web sources through wrappers around pre-speci�ed Web

sources, and they also provide integrated access to mul-

tiple data sources. The query response time for infor-

mation mediators, particularly Web based mediators is

often very high, mainly because to answer most queries

a large number of Web pages must be fetched over the

network. For instance consider a mediator that pro-

vides integrated access to Web sources of information

about countries in the world. For all mediator applica-

tions the set of Web sources from which the mediator

will extract and integrate information is pre-speci�ed

and �xed. For the country mediator the set of sources

is:

� The CIA World Factbook1 which provides inter-

esting information about the geography, people,

government, economy etc. of each country in the

world.

� The NATO homepage2 from which we can get a

list of NATO member countries.

� The InfoNation3 source which provides statistical

data about UN member countries.

Without any kind of optimization i.e., assuming that

all data must be fetched from the Web sources in real

time, a typical query to this mediator such as \Find

the defense expenditure and spending on education of

all countries that have a national product greater than

500 billion dollars" can take several minutes to return

an answer. This is because for this particular query

the mediator must retrieve the pages of all countries

in the CIA World Factbook to determine which ones

have a national product greater than $500 billion, which

takes a large amount of time. The query response time

can be greatly improved if frequently accessed data is

materialized at the mediator side.

We presented an approach to improving performance

in mediators by selectively materializing data in [3].

There are two key issues that must be addressed in

designing a performance optimization system based on

materialization. They are:

� Designing the overall materialization framework.

This addresses the issue of how we represent and

use the materialized data. We describe our ap-

proach in [3] and will briey review it in the fol-

lowing section.

1http://www.odci.gov/cia/publications/factbook/country.html
2http://www.nato.int/family/countries.htm
3http://www.un.org/Pubs/CyberSchoolBus/infonation/e infonation.htm

� Selecting data to materialize. In [4] we also stress

the need to materialize data in a selective fashion.

This leaves us with the issue of how to select the

portion of data that is most useful to materialize.

Our approach to the issue of selecting what data

to materialize is the primary focus of this paper.

2 Overall Materialization Framework

In [3] we presented a framework for representing and us-

ing materialized data in an information mediator. The

basic idea is to locally materialize useful data and de-

�ne it as another information source for the mediator.

The mediator then also considers using the materialized

data instead of retrieving data from remote sources to

answer user queries. The reader is referred to [3] and [4]

for details.

3 Selecting Data to Materialize

We mentioned in [4] the need for materializing data in

a selective manner. The brute force approach of simply

materializing all the data in all the Web sources being

integrated is impractical for two main reasons. First,

the sheer amount of space needed to store the data could

be very large. The other reason is that data can get

updated at the Web sources and the maintenance cost

for the materialized data becomes very high. There is

thus the issue of how to identify the portion of data that

must be materialized. We present an approach where

we consider primarily the following three factors:

� The distribution of user queries. From the query

distribution we can identify what classes of data

are frequently queried by users.

� Structure of sources. We may be able to prede-

termine expensive classes of queries that could be

asked of a source and prefetch and materialize data

to improve response time for those queries.

� Updates at Web sources. The maintenance cost

for the materialized data is also taken into consid-

eration when materializing data.

We now describe our work in progress on analyzing

each of the above factors and also how we propose to

combine various factors in deciding what data to mate-

rialize.

3.1 Analyzing the Distribution of User Queries

In [4] we describe in detail our work on analyzing one

of the above factors, namely the distribution of user

queries to select what data to materialize. We have de-

veloped an algorithm known as the CM (Cluster and

Merge) algorithm which identi�es useful classes of in-

formation to materialize, by extracting patterns in user

queries. A key feature of this algorithm is that it out-

puts a compact description of the patterns extracted.

A compact description is necessary from a query plan-

ning perspective. We de�ne a new information source

in the mediator for each class of data materialized. A

fragmented description of the patterns extracted will re-

sult in a large number of new sources created. Now the

problem of query planning in a mediator is combinato-

rially hard and having a very large number of sources

will cause performance problems for the planner. With

a compact description of the patterns we need to ma-

terialize fewer classes of data and thus de�ne just few

new information sources.

The CM algorithm �rst classi�es queries by analyz-

ing constraints in the queries to determine what classes

of data the user is interested in. We construct an on-

tology of such classes that users are interested in. For

instance users may be interested in European Countries

or Democratic Countries etc. For each such class we

then determine what groups of attributes are frequently

queried. For instance for European Countries users may

be primarily interested in say the economy and national

product. We try to merge together attribute groups

queried with approximately the same frequency to make

the description more compact. Finally we can further

make the description more compact by merging classes

based on class covering relationships. This algorithm

thus tries to compactly describe classes of data that are

of interest to users given a query distribution. For in-

stance the algorithmmay extract patterns such as users

are interested in "the national product and economy of

all European countries".

3.2 Analyzing the Structure of Sources

In Web based mediators we provide database like query-

ing access to semistructured Web sources by building

wrappers around the sources. Often the Web sources

have limited querying capabilities. As a result, cer-

tain kinds of queries can be very expensive as the query

functionality not provided by the source is provided by

the wrapper. It would thus be useful if in a media-

tor application for each Web source being integrated

we could determine in advance what could be the ex-

pensive classes of queries that could be asked in the

application. We can then materialize data that could

improve the response time for the expensive kinds of

queries.

In our approach, we start with a speci�cation of the

query interface to a mediator application that de�nes

exactly the kinds of queries a user could ever ask of

that mediator application. We then estimate the costs

of all di�erent classes of queries using a cost estimator

which is part of the mediator. The purpose is to identify

in advance the expensive kinds of queries that could be

asked in a particular mediator application. Then using

heuristics based on the kind of query, source or sources

used to answer the query and also the di�erent data

processing operations that are performed to answer the

query, we prefetch and materialize data that can im-

prove the response time for the expensive query.

For instance consider a mediator application that in-

cludes amongst other sources an online geocoder that ac-

cepts street addresses and returns the latitude and lon-

gitude of the place. Now geocoding (converting street

addresses to latitudes and longitudes) a set of addresses

using this source is an expensive query since the source

is structured such that we can only geocode one address

at a time. Further the mediator application might be

such that we can only geocode a �xed set of places ev-

ery time (for instance the set of restaurants in LA). In

such a case we should materialize the result of geocod-

ing this set of places even before analyzing any set of

user queries to the mediator.

3.3 Updates

Finally we must address the issue of updates at Web

sources. First the materialized data must be kept con-

sistent with that in the Web sources. It may be that the

user is willing to accept data that is not the most recent

in exchange for a fast response to his query (using data

that is materialized). Thus we need to determine the

frequency with which each class of data materialized

needs to be refreshed from the original sources. Next

the total maintenance cost for all the classes of data

materialized must be kept within a limit that can be

handled by the system.

We have developed a language for describing the up-

date characteristics and frequency of updates for various

source classes and attributes and also the user's require-

ments for freshness of each domain class and attributes.

We illustrate the kinds of characteristics we can specify

using an example. Consider an information source for

movies which we model as a source relation movie src

having attributes such as theatre, showtimes, actors,

director, review etc. Table 1 shows the update speci�-

cation for the movies relation and some attributes, the

speci�cation is implemented as a database relation.

It states that for the movie src source class, the

membership= `A' i.e., arbitrary (instances of the class

can be added or deleted), change = `Y' i.e, yes (values

of objects or class members can change), time period

is 1 week so the data changes once every week and the

time of change is every friday. The attributes change,

time period and time also characterize each attribute

of a source class. By default for each attribute in a

source class the values of the update characterization

attributes are propagated from the source relation they

are part of. So for instance the attribute `theatre' has

the characteristics change= `Y', time period= 1 week

etc. These defaults can be overridden by explicitly stat-

ing the new values. So for instance we could specify the

characteristics for the `actors' attribute as shown in Ta-

ble 2 since the value of actors for movie src does not

change.

For each domain class we also specify for each at-

tribute the user's requirements for currency of data,

actually stated in terms of how stale he can tolerate

the data to be. Consider a domain class called movie

where we integrate information from several sources

about movies.

Table 3 shows the user's tolerance for various at-

tributes of the domain class movie. It states that the

value of attributes such as `theatre' and `showtimes'

must be current (having a tolerance of 0) whereas the

`review' can be upto 6 weeks old.

We have developed an algorithm that using the above

speci�cations can determine the frequency with which

attributes in each materialized class must be updated

to be consistent with the user's requirements and thus

the maintenance cost for that class. The maintenance

cost is considered in two ways. First, for each individ-

ual class if the maintenance cost is very high we may

decide not to materialize it. For instance a class having

a stock quote as one of its attributes which is updated

every 5 minutes has a very high maintenance cost and it

is better not to materialize such a class at all. Second,

the total maintenance cost for all the classes of mate-

rialized data should be kept within a limit that can be

handled by the system.

3.4 Considering Multiple Factors for Materialization

The decision of what classes to materialize is based on

a combination of the di�erent factors mentioned above

i.e., distribution of queries, structure of sources and

maintenance cost. We are working on developing a solu-

tion to the problem of how to combine di�erent factors

when deciding to materialize data. We have identi�ed

some of the issues that need to be addressed. For in-

stance one issue is in what order (if any) should the

various factors be analyzed ? The maintenance cost

must always be taken into account for any class of data

materialized. In fact the maintenance the cost for a

particular data item may be very high and thus we may

decide not to materialize any class containing that data

item. Thus the update costs should be analyzed be-

fore the source structure or query distribution. Based

on source structure analysis and with estimates of up-

date costs we may decide to materialize a particular

class even before looking at the user query distribu-

tion. Thus source structure should be analyzed before

the query distribution. We are developing a systematic

framework that de�nes exactly how various factors are

analyzed, how they a�ect one another and how various

CLASS MEMBERSHIP CHANGE TIME PERIOD TIME
MOVIE SRC A Y 1 week week:friday

Table 1: Characteristics of updates for a source class

ATTRIBUTE CHANGE TIME PERIOD TIME
actors N - -

Table 2: Characteristics of updates for an attribute

factors are combined to determine what classes of data

are to be materialized.

4 Admitting and Replacing Materialized Classes

Finally there is the issue of having a policy for admitting

and replacing classes of materialized data. Each class of

materialized data uses two resources, space needed for

local storage and maintenance cost in case of updates.

For any mediator application it is reasonable to assume

that we would have a �xed limited space for storing

all the materialized classes and also a maximum total

maintenance cost that can be borne for keeping the ma-

terialized data consistent. We are developing a strategy

similar to the one described for data warehouse cache

management in [11] where the execution cost of queries

in a class, space occupied by the class and maintenance

cost are taken into account for deciding in what order

of priority classes of data are to be materialized.

5 Initial Results

We have implemented an optimization system for the

Ariadne information mediator using the approach of

de�ning the materialized data as another information

source described above. In this initial implementation

the query distribution is analyzed using the CM al-

gorithm to decide what classes of data to materialize.

Source structure analysis and the update issue were not

addressed in this initial implementation. The primary

objectives of this set of experiments were:

� To determine whether the CM algorithm is in-

deed successful in extracting patterns that may be

present in queries.

� Performance improvement (measured by reduction

in average query response time) provided by our

optimization scheme. We compare the performance

improvement with Ariadne without any kind of

optimization and also with Ariadne with an opti-

mization system based on existing schemes such as

page level caching.

5.1 Experimental Results

The experiments were conducted for the countries in-

formation mediator, an Ariadne application that inte-

grates information from multiple sources of information

about countries in the world and that we had made

available online. We measured the total query response

time against two query sets to the mediator without

any optimization system, with our optimization system

and with an optimization system based on page level

caching. The �rst query set Q1 is one that we gener-

ated and in which we introduced some distinct query

patterns (detailed description of query set omitted for

lack of space). The second query set Q2 is the set of

actual user queries to the countries mediator that we

had made available online.

Table 4 shows the response time (total time for the

entire query set) without any optimization, with page

level caching and with our system for both query sets.

First, the CM algorithm does appear to be e�ective in

extracting patterns from user queries. It successfully ex-

tracted the patterns that were deliberately introduced

in the query distribution Q1 and also extracted pat-

terns from the actual user query set Q2. We material-

ized these frequently queried classes of data to improve

performance. Also our system appears to be e�ective

in improving performance. For Q1 (200 queries) with

a limited space for materialized data our system sys-

tem not only provides signi�cant improvement in query

response time but also the optimization is an order of

magnitude better than with page level caching with the

same local space. We also show query response against

the set of actual user queries Q2 (182 queries). Again

with our optimization system the performance is much

better than no optimization or with page level caching.

6 Conclusions

We have presented an approach to automatically se-

lecting data to materialize in information mediators.

We reviewed our overall approach for optimizing per-

formance in information mediators by selectively mate-

rializing data and de�ning it as an auxiliary information

source. We presented an approach where multiple fac-

tors are taken into account to select data to materialize

in an optimal fashion. Our approach has been devel-

oped with a particular focus on semistructured Web

sources. As certain kinds of queries can be very expen-

sive given the limited query capabilities of Web sources

we have presented an approach for prefetching data to

ATTRIBUTE TOLERANCE
theatre 0
showtimes 0
actors 0
director 0
review 6 weeks

Table 3: Staleness tolerances for attributes of a domain class

Query set Response Time Response Time Response Time %improvement %improvement
(No optimization) (Page level) (Our system) (Page level) (Our system)

Q1 9661 sec 8695 sec 1536 sec 10 % 84 %
Q2 3742 sec 3255sec 2245 sec 13 % 40 %

Table 4: Query response times

improve response time for such queries. Also we take

into account the fact that Web sources can get updated

and that the user needs to be provided data consistent

with his requirements for freshness. We expect that this

work will ultimately provide an e�ective solution to the

performance issue in Web based information mediators.

References

[1] S. Adali, K. S. Candan, Y. Papakonstantinou, and
V.S.Subrahmanian. Query caching and optimization in dis-
tributedmediator systems. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data,
Tucson, AZ, 1997.

[2] Y. Arens, C. A. Knoblock, and W.-M. Shen. Query refor-
mulation for dynamic information integration. Journal of
Intelligent Information Systems, Special Issue on Intelli-
gent Information Integration, 6(2/3):99{130, 1996.

[3] N. Ashish, C. A. Knoblock, and C. Shahabi. Intelligent
caching for informationmediators: A kr based approach. In
Knowledge Representation meets Databases (KRDB), Seat-
tle, WA, 1998.

[4] N. Ashish, C. A. Knoblock, and C. Shahabi. Selectively
materializing data in mediators by analyzing user queries.
In Fourth International Conference on Cooperative Infor-
mation Systems (CoopIS), Edinburgh, Scotland, September
1999.

[5] R. Bayardo, W. Bohrer, R. Brice, A. Cichocki, G. Fowler,
A. Helal, V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine,
M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikrishnan,
A. Unruh, and D. Woelk. Semantic integration of informa-
tion in open and dynamic environments. Technical Report
MCC-INSL-088-96, MCC, Austin, Texas, 1996.

[6] O. Etzioni and D. S. Weld. A softbot-based interface to the
Internet. Communications of the ACM, 37(7), 1994.

[7] M. Genesereth, A. Keller, and O. Duschka. Infomaster:
An information integration system. In Proceedings of the
ACM SIGMOD International Conference on Management
of Data, Tucson, AZ, 1997.

[8] J. Hammer, H. Garcia-Molina, K. Ireland, Y. Papakon-
stantinou, J. Ullman, and J. Widom. Information transla-
tion, mediation, and mosaic-based browsing in the tsimmis
system. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, San Jose, CA, 1995.

[9] Z. Ives, D. Florescu, M. Friedman, A. Levy, and D. Weld.
An adaptive query execution engine for data integration.
In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, Philadelphia, PA, June
1999.

[10] C. A. Knoblock, S. Minton, J.-L. Ambite, N. Ashish, P. J.
Modi, I. Muslea, A. Philpot, and S. Tejada. Modeling
web sources for information integration. In Proceedings of
the Fifteenth National Conference on Arti�cial Intelligence
(AAAI), Madison, WI, 1998.

[11] P. Scheuermann, J. Shim, and R. Vingralek. Watchman: A
data warehouse intelligent cache manager. In Proceedings
of the 22nd VLDB Conference, Mumbai(Bombay), India,
1996.

[12] A. Tomasic, L. Raschid, and P. Valduriez. A data model
and query processing techniques for scaling access to dis-
tributed heterogeneous databases in disco. In Invited paper
in the IEEE Transactions on Computers, special issue on
Distributed Computing Systems, 1997.

A COUNTRY Relation

Relation: COUNTRY

Attributes: (geography location map references region

area total area land area comparative area land boundaries

coastline maritime claims international disputes climate

terrain natural resources land use irrigated land envi-

ronment note people population age structure popula-

tion growth rate birth rate death rate net migration rate

infant mortality rate life expectancy at birth total fertility rate

nationality ethnic divisions religions languages literacy

labor force government names digraph type capital ad-

ministrative divisions independence national holiday con-

stitution legal system su�rage executive branch legisla-

tive branch judicial branch political parties and leaders

other political or pressure groups diplomatic representation in US

us diplomatic representation organization ag economy

overview national product national product real growth rate

national product per capita ination rate consumer prices

unemployment rate budget exports imports external debt

industrial production electricity industries agriculture

illicit drugs economic aid currency exchange rates �s-

cal year transportation railroads highways inland waterways

pipelines ports merchant marine airports communica-

tions telephone system radio television defense Forces

branches manpower availability defense expenditures)

