
A Dataflow Approach to Agent-based Information Management

Greg Barish, Daniel DiPasquo, Craig A. Knoblock, and Steven Minton
Information Sciences Institute, Integrated Media Systems Center, and Department of Computer Science

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292

ABSTRACT
Recent research has made it possible to build information
agents that retrieve and integrate information from the
World Wide Web. Although there now exist solutions for
modeling Web sources, query planning, and information
extraction, less attention has been given to the problem of
optimizing agent execution. In this paper, we describe
Theseus, an efficient plan execution system for information
agents. Through its pipelined, dataflow-style architecture,
Theseus offers a high degree of parallelism and
asynchronous information routing during execution.
Theseus differs from prior work in reactive planning
systems and parallel databases because it gathers
information from the Web, a domain where information
retrieval is a problem that is network-bound and is often
based on interleaved data gathering and navigation. The
Theseus plan language and architecture directly address
these issues, resulting in an efficient execution system.

Keywords: plan execution, dataflow, data integration

1. INTRODUCTION
Gathering information from the World Wide Web is a
research problem that has received substantial
attention in recent years. There now exist a number
of systems [7, 10, 13] and approaches towards
automating this process, including work on data
extraction [11, 14], query planning [1, 12], data
materialization [2], and methods for handling data
inconsistency [4]. Today, it is possible to construct
useful agents built on these technologies to perform
automatic and intelligent data integration [3].

Although these individual technologies may each
be efficient, overall end-to-end agent execution
performance is often sub-optimal. This is primarily
because Web-based data integration is a process that
is network-bound and masks the efficiencies of
individual technologies (such as data extraction).
Complicating matters is the fact that building useful
agents often requires larger, more complex plans. For
example, consider how people commonly use the
Web to locate houses for sale that meet a particular
set of criteria (e.g., price and location). This process

means more than simply executing a particular query
once and then returning a long list of data. Typically,
searching for a house means executing the same or
similar queries periodically, perhaps on a daily basis,
over the course of a few weeks or months.
Furthermore, a “useful” search process means
gathering only new or updated listings (meeting the
specified criteria) for each query execution. Users are
rarely interested in being reminded of houses they
were previously notified about. Also, with the
explosive growth in mobile networking, there are
many users who would prefer to have their query
results distributed through different messaging means
(i.e., e-mail, cellular phone, fax) and reported using a
variety of formats (i.e., XML, HTML, text, voice).
Finally, in addition to message notification, it is often
desirable to have newly gathered information trigger a
variety of other actions. For example, if a search for a
house yields a result, a user may want to immediately
send an automated e-mail to the corresponding real-
estate agent suggesting a meeting time (based on the
user’s personal schedule, also kept online).

Thus, while gathering data is unquestionably an
important task, there are also challenges related to
useful processing of this data. We believe that
information gathering is a piece of a larger puzzle
called information management, a problem that
involves conditional plan execution, continuous
querying, query result accumulation, local persistent
storage, and the linking of other actions to the results
of queries. This problem encompasses issues that are
at the heart of how users query the Web today to
retrieve meaningful information and the way such
data is put to practical use. Searching for a new house
is merely one type of application. There are numerous
other instances where such automation is not only
useful, but perhaps essential: newswire tracking,
online auction participation, and stock/portfolio
management, to name a few. In these scenarios, users
want more than to just query and retrieve data once -
they want to be able to monitor Web sites. The
dynamic nature of the Internet invites this approach.

However, a means for building high-performance
agents for this type of information management
remains a relatively open issue.

1.1. Contributions of This Paper
The main contribution of this paper is to describe the
benefits of combining features found in both parallel
databases and general plan execution systems,
marrying the efficiency found in former with the
generality and flexibility found in the latter, to
improve the performance of dynamic information
management. Parallel database research [5, 8, 16] has
shown that it is possible to build highly efficient
query execution systems for local databases. Existing
plan execution systems [6, 15] have proven to be
more generally applicable to a wide-range of planning
problems and often provide more flexibility in terms
of plan control flow (i.e., support for loops and
conditionals).

We have implemented the combination of these
features in Theseus, an efficient plan execution
system for information agents. At the heart of
Theseus is a parallel, dataflow-style executor.
Furthermore, its plan language supports loops,
conditionals, and synchronization primitives.
Through its language and execution system, Theseus
enables agents to perform useful information
management tasks, such as periodic execution, query
result aggregation, and flexible result communication,
as a means for addressing practical ways in which
users interact with the Web. Most importantly,
through properties of its architecture, Theseus reduces
the overall effect of network latencies on data
integration, providing increased parallelism and
asynchrony during execution, so that the overall end-
to-end agent execution process is substantially faster.

Theseus has evolved from research related to the
Ariadne information mediator project [10]. Ariadne

facilitates the integration of multiple heterogeneous
data sources, including local databases, web sources,
and knowledge bases, so that the combined data can
be accessed from a single, logical model. To extract
data from the Web, Ariadne uses data source
wrappers to query web sites as if they were SQL-
capable databases. Ariadne provides a framework
from which to build information integration
applications. We believe Theseus is a logical next
step: it builds on the integration Ariadne enables,
allowing users to do something useful with
information that is gathered.

2. MOTIVATING EXAMPLE
To understand the motivations behind the design of
Theseus more clearly, it is useful to consider an
example of a realistic information integration plan.
The example presented here involves CyberHomes, a
web site that allows users to locate available houses
for sale throughout the United States. The goal of this
example is to monitor the CyberHomes site for the
ongoing availability of houses that match a particular
set of location and price constraints.

The initial CyberHomes web page consists of a
form-based query interface, shown in Figure 1a.
Submitting this form returns a page containing up to
five houses, as in Figure 1b. At the bottom of this
page, there may also be a "Next Listings" URL that
leads to another page of five houses, and so on - until
all of the houses that match this query are shown.
Notice that a further complication arises because, in
order to retrieve detailed information from these
listings, a user must follow an additional URL for
each house. The detail page is shown in Figure 1c.

By simply examining the layout of the
CyberHomes site, it becomes fairly obvious that any
automatic monitoring would require a plan that
included loops and conditionals. For example, notice

Figure 1: The query page (a), results page (b), and detail page (c) from CyberHomes

(a) (b) (c)

in Figure 1b, the listings page, that users can only
view five houses at a time before needing to click on
the Next Listings link. At some point, users will have
reached the last page of results and there will be no
such link. Thus, support for conditional execution is
necessary. Furthermore, extracting the results means
collecting the list of URLs on each page. Later, or in
an interleaved fashion, the details of each house will
need to be extracted. This requires either iterating
through each set of five houses or eventually looping
through the entire accumulation.

Another observation that can be made about the
CyberHomes example is that multiple data retrievals
are necessary. For example, the information to be
gathered includes house listings as well as details
about each house. The cost of retrieving this
information is high: separate retrievals are required
for each group of listings as well as for each page of
details about a particular house. Since network access
for remote data retrievals plays such a large role in the
example, it would be preferable to parallelize as much
of the remote retrievals as possible. For example,
once the listings of the houses are retrieved, it would
be optimal to obtain details about houses which meet
the criteria specified – but to gather that data in
parallel.

A related optimization involves the queuing of
data retrieved. As mentioned earlier, each page of
house listings may include a Next Listings link. To
“monitor” the CyberHomes site, it is desirable to have
the agent analyze each set of listings to identify
houses that are both (a) new and (b) meet the search
criteria specified. This analysis process may not take
long, but it will not be instantaneous either. In the
meantime, it may be possible to follow the Next
Listings link and gather the next set of houses to be

analyzed. In short, it would be optimal to queue the
sets of listings for analysis, without having to wait for
the completion of analysis on the previous listings.
Specifically, a higher degree of asynchrony through
queuing is desirable.

Figure 2 shows a Theseus plan for monitoring the
CyberHomes site. Essentially, an agent executing this
plan can notify a user when it becomes aware of new
houses which meet a set of specified criteria. The
plan is invoked with a location and price limit from
the user. The Retrieve operator (which gathers data
from web sites via a wrapper) takes these initial
constraints, posts them to the initial CyberHomes
query form, and extracts a relation with house_id,
house_url, and next_link attributes. Retrieve then
passes this relation to two different loops. One loop,
shown at the top of Figure 2 has the purpose of
following the Next Listings links at the bottom of each
listings page, and passing these links to a second loop,
shown near the bottom of Figure 2. This next loop
iterates through the listings sent from the first loop,
comparing each with those stored in a local database,
to determine which houses are new. Finally, the plan
specifies the extraction of more detailed information
for each new house.

3. EXECUTION SYSTEM
The design of the Theseus execution system is
centered around efficiency. Where possible,
opportunities for asynchrony and parallelism have
been exploited, both properties significantly
improving overall agent performance. These features
are realized through the Theseus plan language and its
dataflow architecture.

3.1 Plan Language
As shown in Figure 3, plans in Theseus are dataflow
graphs, where graph nodes are operators and edges

��� ����� � ����� 	
 � �
 � �
 � � �
�
 ��� �
 � � � 	�
 � � � �
��
 � ���

��� � ��� � ��� � �!�
� 	
 � � � � �
 � �
 � �
 �
" � �
 " # ���

 � �

$ ��%�& � ' �(� �
 � �
) � # *�
 � �
) � � � �

& %!� +,� #
 �
 � ��� �
�� �
-
�� " .
��

 ��� � � ��
 � �
 �
 �
 �
 �

��� � � +0/ � � �1� � �
 �

�
 -�2 � � # " �
 # �
 � �
 �� ���
 � � � � �
 � � � �
 �
 �

$ �3%�& � ' �
� �
 � �
) � � � �

$ ��%�& � ' �(� �
 4 �) � � � 5 �

'�%!61$ 73���� �
 4 �) � � � 5 8 8 9�:!; ; �

��� ����� � ����� 	
 ��
 � �
 � � � � � � � 5 � � 	
 ��9�< = >0� " 	
 � � � 5 �

��� ����� � �!���
 4 � � " � �#
 � " � � � " �
 � �
 " � ���
 � �
 �

'�%!61$ 73���
� �
 - � 8 8 ? � +0%!� � @ A(�
 B � " � �
 � �
 -
 �

� � # " �
 # �
 � �
 � �
 � � # �

op operator

TRUE non-persistent enablement

FALSE non-persistent enablement

logical enablement goes to (or comes
from) multiple operators

TRUE persistent enablement

Legend

location, price

(no data, just
initially enabled)

� � � ��73� �
� � � �
 � 	 ��� � � �
 �

�
 � �
 � �
plan input

Figure 2: The Theseus CyberHomes plan

are enablements. Operators in Theseus act just as
they do in many other planning systems: they perform
some action when activated. Enablements are similar
to pre-conditions and post-conditions in other
planning systems. Just as the fulfillment of pre-
conditions triggers an operator to execute, sets of
enablements in Theseus activate its operators to
execute. However, enablements perform this
activation at run-time, whereas pre/post-conditions in
other planning systems affect operators at the time of
planning. Furthermore, the assertion of post-
conditions and fulfillment of pre-conditions in most
planning systems is a synchronous process. In
contrast, enablements in Theseus can be
communicated asynchronously because operators
have input queues.

For example, Figure 3 shows a Retrieve operator
that provides an enablement for the Select operator
(performing the same function as the relational
algebra operator of the same name). The purpose of
combining these operators is to filter out data that has
been retrieved from the Web based on some criteria.
So, in some sense, the enablement that Retrieve
provides Select is a means for asserting a post-
condition indicating “Has-Data,” as well as a means
for routing that data. Notice also that Select is only
partially enabled by Retrieve. There is another
enablement which is associated with the data about
the filtering criteria itself.

Plans in Theseus are associated with a set of initial
enablements, just as plans in other systems specify a
set of initial conditions. When a Theseus plan first

starts executing, these initial enablements activate one
or more operators in the plan, which execute in
parallel. After those operators perform their action,
they can each produce a set of resulting enablements.
Those enablements, in turn, may activate other
operators, which can generate new enablements, and
so on. Processing continues until no more operators
are enabled.

3.1.1 Operators
An operator can be thought of simply as a processing
engine. Usually, operators take some input data,
perform some computation, and produce a set of
output data. For example, the Theseus Select operator
takes a set of selection criteria and a relation on which
to apply that criteria, and then produces a resulting
relation which obeys that criteria. Since Theseus is
an execution system for information agents, the most
common type of data routed is a relation.

As a result of execution, operators return either
true, false, or an error. This differs from operators in
parallel database systems [7, 13, 24], which usually
return true or (it is assumed) generate some form of
exception. However, in Theseus, the ability for an
operator to return a boolean result allows for an
important property: conditional execution. The result
of an operator can thus determine which output
enablements are produced; in effect, which path(s)
remaining plan execution follows.

For example, consider the behavior of the
Compare operator in Figure 3. The prior operator,
Aggregate, determines how many tuples have been
selected out of the retrieved data. If Compare finds
that there is at least one tuple, it returns true,
otherwise it returns false. It is this result that will
determine which enablement is asserted, thus whether
DB-Export or Print is executed. This is a simple
example of how operators and enablements can be
combined to provide conditional execution.

Table 1 summarizes most of the Theseus
operators. Notice that they fall into three groups: data
manipulation, control, and communication. The first

Control
Iterate
Compare
Fork
Wait
Queue
Null

Communication
Retrieve
Notify

Db-Retrieve
Db-Store
Db-Insert
Db-Delete

Data Manipulation
Select
Project
Join

SetDifference
Union

Aggregate
Sort

Concat

Table 1: Theseus operator classifications

Figure 3: Operators and enablements

C�D E D F G

H D G H I D J D

CriteriaQuery

F�K!L!M N H D
O P Q R3S�T�U V

M H I W G
O X Y N I E Z H D X V

[3\] ^ _�` a b c b d `]�d�e a f `

_�` a b c b d `]�d e a f `

[3\] ^ _�` a b c b d `]�d g h i b `

N�j3j H D j�N G D
O F�K3Z W G�k V

l�m n D o�M K H G

type focus on more traditional, relational-style
operators for processing data. The second group
provides support for conditional execution, loops, and
synchronization. The third type enables external
input and output of data, including operators for
extracting data, interacting with external databases,
and notifying users via e-mail or pager. This last
group of operators essentially provides the
mechanisms for specifying input and output to
Theseus plans.

3.1.2 Enablements
As described earlier, enablements can simply be
thought of as pre/post-conditions which are
required/established during plan execution. They may
or may not carry data. For example, the Aggregate
operator in Figure 3 asserts an enablement that routes
a scalar value (the number of tuples) to Compare. In
contrast, Compare does not route any data when it
generates its true or false enablement.

Enablements can either be persistent or non-
persistent. These two types permit more flexible and
useful plan declarations as well as making plan
execution more efficient. Persistent enablements
improve the declarative power of Theseus plans,
giving the plan author a mechanism for specifying a
constant or static data, such as a query string or
selection criteria.

In terms of efficiency, persistent enablements
reduce the amount of signaling and data routing
required during execution. Consider Figure 3, where
the Select operator has two enablements: a non-
persistent relation (from Retrieve) and a persistent set
of criteria (enabled at the start of plan execution).
Now suppose that this plan fragment was executed
multiple times, as if it were part of a loop. It would
be wasteful to continually route the same criteria to
the Select operator because it would never change
during the loop. In contrast, the relation obtained
from Retrieve could very well change, since it
represents data from a remote, dynamic web site.

Persistent enablements remain active for the
duration of plan execution. Furthermore, if they carry
data, that data remains available for the operator to
use upon every invocation. If, as execution
progresses, another operator generates the same
persistent enablement, but with new data, that new
data is henceforth used for all future invocations.

Non-persistent enablements, on the other hand, are
simply those that exist until they are consumed. Thus,
once an operator executes based on some enablements

E1 and E2, those enablements no longer exist in the
system and must be regenerated in order for the
operator to execute again. However, unlike persistent
enablements, non-persistent enablements (and their
data) can be queued. Since Theseus is a parallel
execution environment, it is often possible to have
data queuing at multiple operators that accept non-
persistent enablements. This creates the effect of
asynchronous data pipelining during plan execution.

3.1.2.1 Uses of Enablements
Enablements have three functions in the Theseus plan
language: to act as a mechanism for control flow, to
provide synchronization during execution, and to
provide a way to pass data between operators.

In terms of control flow, enablements are the basis
for how a plan is executed. Operators execute when
they receive their input enablements, and this
execution may trigger other operators, and so on,
defining program flow. Enablements can also be used
to implement plan loops. For example, notice that the
Iterate operator in the CyberHomes plan enables itself
upon returning true. To understand what is happening
here, and how this is not an infinite loop, we need to
briefly describe the semantics of Iterate. Upon
execution, Iterate attempts to remove the first tuple
from a relation. If this was possible (i.e., the relation
contained at least one tuple), Iterate returns true and
produces at least two new enablements: one
containing the tuple extracted and the other
containing the input relation minus that tuple. In our
example plan, the latter object is sent back to Iterate.
Obviously, at some point, all tuples in the relation
will have been removed, at which point Iterate will
return false.

In a similar fashion, enablements can be used to
provide synchronization during execution. For
example, if the plan author wants operator OP3 to
execute after both OP1 and OP2 complete their
execution, he simply adds an enablement E1 to the set
of output enablements for OP1, an enablement E2 to
the set of output enablements for OP2, and E1 and E2
to the set of input enablements for OP3. Thus, OP3
will not execute until both OP1 and OP2 have
completed their execution.

A third and final purpose of enablements is to
route data. By definition, dataflow systems are
defined by arcs between actors that route tokens. In
Theseus, enablements serve as the arcs, operators are
the actors, and the data are the tokens. The notion of
persistent enablement, wherein an enablement and its

data are continually available once activated, is a
special modification of traditional dataflow to capture
a declarative need in plan specification, as well as for
efficiency purposes in Theseus.

3.2 Efficiency of Execution
The most important aspect of Theseus is its execution
efficiency. By implementing Theseus as an dataflow-
style system, we were able to realize high degrees of
parallelism and asynchrony, well-known attributes of
high performance systems.

3.2.1 Operator Parallelism
Maximizing concurrency is a key requirement for
Theseus. Historically, information integration for
heterogeneous remote data sources has been a
problem that is network-bound. Such systems can
only execute as fast as their most latent sources.
Motivated by the desire for concurrency found in both
parallel database systems and reactive plan execution
systems, we built Theseus as a dataflow-style
execution machine, to support a high degree of
operator parallelism.

In Theseus, operators are implemented as threads
(lightweight processes). The system is efficient
because the scheduling for these threads is handled by
the operating system. Care was taken to limit the
amount of synchronization between threads required
at run-time. For example, operators are not required
to engage in a request-reply style of communication in
order to exchange data. Rather, operators can
accomplish this process by asynchronously writing to
the input queue of another operator. The only
synchronization required is that needed when posting
the actual enablements corresponding to that data.
However, since this posting is a very quick process,
the time necessary to lock any global data structures is
minimal.

In the CyberHomes plan, operator parallelism is
exploited when gathering the details for a particular
house. For example, suppose ten houses in a given set
of house listings successfully met the search criteria.
Since no data dependencies exist between them and
because each operator instance is implemented as
separate thread of execution, retrieval of details for
each can be executed in parallel.

3.2.2 Pipelining
When analyzing a typical data integration plan, such
as the one described in Section 2, we can make two
important observations. One is that these plans often
require loops. For example, in the CyberHomes plan,

there is a need to iteratively gather sets of houses until
the page that does not have a Next Listings link is
encountered. The nature of gathering data on the
Web is such that iteratively retrieving groups of data
is a fairly common occurrence.

Another observation is that the execution time of
the various plan operators can vary widely.
Specifically, for Web-based data integration, the
execution time for a Retrieve operator can be several
orders of magnitude slower than the rest of the
operators in the plan (such as Project or even Join).
This is mainly due to the fact that Retrieve suffers
from the latency involved in the access of a remote
data source over the network.

Next, consider what is involved in actually
collecting the entire set of house listings from
CyberHomes. Typically, a plan to do this would
involve gathering the current set of houses and
waiting for that set to be processed before gathering
the next set. The processing of each set is not trivial:
a join against those houses already seen (to determine
the truly new houses) is required, as well as the
network-based retrievals of details for each new
house. Even if the retrieval of details for multiple
houses can be parallelized, a plan having a loop
containing slow operators is something which can
substantially affect overall performance.

To improve the efficiency of execution in such
cases, Theseus implements data pipelining. This
feature allows sets of houses to be staged in a
pipeline, immediately following retrieval. After the
staging of a particular set, the next set can be
retrieved, staged, and so on – independent of how
much progress has been made in the
processing/analysis phase. Eventually, all houses will
be retrieved and processed, and the final accumulated
set can be returned.

Pipelining in Theseus is realized through
enablement queuing. When one operator produces an
output enablement, that enablement can be either (a)
immediately consumed or (b) queued, along with any
data it carries. Operators continue execution
independent of this process, de-queuing accumulated
input enablements as soon as possible, per their rate
of execution. It is both the buffering and asynchrony
aspects provided by the queuing process that
facilitates pipelining during execution.

4. RELATED WORK
As described earlier, Theseus can be viewed as a
cross between general plan executors and parallel

database systems. The key differences are that (a)
unlike general plan executors, Theseus is optimized
for the information processing domain and that (b)
unlike parallel databases, standard techniques for
achieving high-performance (such as the shared-
nothing approach) are simply not applicable to
information management on the Internet, which
consists of heterogeneous and distributed data
sources, beyond the administrative domain of the
execution engine.

Theseus can also be compared with Tukwila [9],
which supports efficient query execution on remote,
heterogeneous data sources. Like Theseus, Tukwila is
interested in data integration, especially the ability to
query web sites as if they were databases. The main
difference between Theseus and Tukwila is that
Theseus uses a hybrid dataflow model of execution
while Tukwila uses standard (von-Neumann) control
flow model. Key in understanding this difference is
in the tradeoffs between dataflow and control flow
systems. The former enables automatic, on-demand
parallelism with minimal synchronization, while the
latter requires manual management of parallelism,
often with more frequent points of synchronization.

5. DISCUSSION
In this paper, we have presented the Theseus
execution system. We have demonstrated that
Theseus is a useful tool for building efficient
information management agents. Because our
planning language allows complex information
management plans to be easily specified, users can
build powerful agents. Furthermore, a dataflow-style
execution architecture enables these agents to reach a
high level of performance. While our system is very
useful in its current state, we are exploring additional
plan optimization and efficient execution strategies to
further improve performance and scalability.

One such effort is related improving the
performance of individual plans. Any single plan
(user defined or automatically generated by the user-
interface) may be sub-optimal. In future work, we
would like to explore the improvement of these sub-
optimal plans. In previous work on Ariadne, a highly
efficient and scalable approach to plan optimization
was demonstrated using Planning-By-Rewriting
(PBR) [1], a local-search approach to anytime plan
refinement. We are investigating the applicability of
PBR to our optimization needs.

We are also exploring ways to improve the
scalability and throughput of Theseus in a global

context. Specifically, we would like to be able to
deploy Theseus as an application service and allow
multiple users to periodically execute information
gathering plans for a particular domain. This may
allow users to share the results of a popular query to a
dynamic source and may also present other profitable
plan merging opportunities.

6. ACKNOWLEDGEMENTS
This work was supported in part by the United States
Air Force under contract number F49620-98-1-0046,
by the Rome Laboratory of the Air Force Systems
Command and the Defense Advanced Research
Projects Agency (DARPA) under contract F30602-98-
2-0109, and by the Integrated Media Systems Center
(an NSF Engineering Research Center). The views
and conclusions contained in this article are the
authors’ and should not be interpreted as representing
the official opinion or policy of any of the above
organizations or any person connected with them.

REFERENCES
 [1] Ambite, J.L. and Knoblock, C.A. 1997. Planning by Rewriting:

Efficiently Generating High-Quality Plans. AAAI-97.
 [2] Ashish, N.; Knoblock, C.A.; and Shahabi, C. 1999. Selective

materializing data in mediators by analyzing user queries.COOPS-99.
 [3] Barish, G.; Knoblock, C.A.; Chen, Y-S.; Minton, S.; Philpot, A.;

Shahabi, C. 1999. TheaterLoc: A Case Study in Information
Integration. IJCAI-99 Workshop on Information Integration.

 [4] Cohen, W. W. 1998. Integration of Heterogeneous Databases Without
Common Domains Using Queries Based on Textual Similarity.
SIGMOD Conference 1998: 201-212

 [5] DeWitt, D.J.; Ghandeharizadeh, S.; Schneider, D.A.; Bricker, A.;
Hsiao, H.; and Rasmussen, R. 1990. The Gamma Database Machine
Project. IEEE Transactions on Knowledge and Data Eng 2(1).

 [6] Firby, R.J. 1994. Task Networks for Controlling Continuous
Processes. Procs of the 2nd Intl Conference on AI Planning Systems.

 [7] Genesereth, M.R.; Keller, A.M.; and Duschka, O.M. 1997.
Infomaster: An information integration system. Proc of SIGMOD-97.

 [8] Graefe, G. 1994. Volcano - An Extensible and Parallel Query
Evaluation System. IEEE Tran on Knowledge and Data Eng 6(1).

 [9] Ives, Z; Florescu, D.; Friedman, M.; Levy, A.; Weld , D. 1999. An
Adaptive Query Execution Engine for Data Integration. SIGMOD-99.

[10] Knoblock, C.A.; Minton, S; Ambite, J.L.; Ashish, N.; Modi, J.;
Muslea, I.; Philpot, A. and Tejada, S. 1998. Modeling Web Sources
for Information Integration. AAAI-1998.

[11] Kushmerick, N. 1997. Wrapper Induction for Information
Extraction. PhD Thesis, CS Dept. University of Washington.

[12] Kwok, C.T and Weld, D.S. 1996. Planning to gather information. In
Proceedings of AAAI-96.

[13] Levy, A.Y.; Rajaraman, A; Ordille, J.J. 1996. Querying
Heterogeneous Information Sources Using Source Descriptions.
VLDB-1996.

[14] Muslea, I.; Minton, S.; and Knoblock, C.A. 1998. STALKER:
Learning Extraction Rules for Semistructured, Web-based
Information Sources. AAAI-98 AI & Information Integration Wkshp

[15] Myers, K. 1996. A Procedural Knowledge Approach to Task-Level
Control. In Procs of the Third Intl Conf on AI Planning Systems.

[16] Wilschut, A.N. and Alpers, P.M.G. 1991. Dataflow query execution
in a main memory environment. In Proc. Conf. On Parallel and
Distributed Information Systems

