
Abstract 
Speculative execution of information gathering 
plans can dramatically reduce the effect of 
source I/O latencies on overall performance.  
However, the uti l i ty of speculation is closely tied 
to how accurately data values are predicted at 
runtime.  While caching is one approach that can 
be used to issue future predictions, it scales 
poorly with large data sources and is unable to 
make intell igent predictions given previously 
unseen input data, even when there is an obvious 
general relationship between prior input and re-
sulting output.  In this paper, we describe a 
novel way to combine classification and trans-
duction for a more efficient and accurate value 
prediction strategy, one that capable of issuing 
predictions about previously unseen hints.  We 
show how our approach results in significant 
speedups for plans that query multiple sources or 
sources that require multi-page navigation.    

1 Introduction 
The performance of Web information gathering plans can 
suffer because of I/O latencies associated with the remote 
sources queried by these plans.  A single slow Web 
source can bottleneck an entire plan and lead to poor 
execution time.  When a plan requires multiple queries 
(either to the same source or to multiple sources), 
performance can be even worse, where the overhead is a 
function of the slowest sequence of sources queried. 

When multiple queries are required, speculative plan 
execution (Barish and Knoblock 2002) can be used to 
dramatically reduce the impact of aggregate source laten-
cies.  The idea involves using data seen early in plan exe-
cution as a basis for issuing predictions about data l ikely 
to be needed during later parts of execution.  This allows 
data dependency chains within the plan to be broken and 
parallelized, leading to significant speedups.  
 To maximize the uti l i ty of speculative execution, a 
good value prediction strategy is necessary.  The basic 
problem involves being able to use some hint h as the 
basis for issuing a predicted value v.  One approach in-
volves caching: we can note that particular hint hx corre-

sponds to a particular value vy so that future receipt of hx 
can lead to prediction of vy.  As a result, a plan that nor-
mally queries source S1 with hx and subsequently source 
S2 with vy can be parallelized so that both S1 and S2 are 
queried in parallel, the latter speculatively. Unfortu-
nately, caching has two major drawbacks.  First, it does 
not scale well when the domain of hints is large.   A sec-
ond drawback is the inabil ity to deal with novel (previ-
ously unseen) hints, even when an obvious relationship 
exists between hint and predicted value.   
 In this paper, we present an alternative to caching that 
involves automatically learning predictors that combine 
classification and transduction in order to generate pre-
dictions from hints.  Our approach succeeds where cach-
ing fails: the predictors learned usually consume less 
space than that demanded by caching and they are capa-
ble of making reasonable predictions when presented 
with novel hints, the latter leading to better speedups.  
Specifically, this paper contributes the following: 

� An algorithm that learns efficient transducers capa-
ble of variety of string transformations. 

� An algorithm that combines classification and trans-
duction to learn value predictors 

The rest of this paper is organized as follows.  The next 
section briefly reviews information gathering and pro-
vides a motivating example for speculative execution.  In 
Section 3, we describe how classification and transduc-
tion can be used to build efficient and intell igent predic-
tors. Section 4 describes our learning algorithms that 
combine both techniques. Section 5 describes experimen-
tal results of using our approach.  Finally, Section 6 de-
tails the related work.      

2 Preliminaries 
Web information gathering plans retrieve, combine, and 
manipulate data located in remote Web sources.  Such 
plans consist of a partially-ordered graph of operators 
O1..On connected in a producer/consumer fashion.  Each 
operator Oi consumes a set of inputs a1..ap, fetches data 
or performs a computation based on that input, and pro-
duces one or more outputs b1..bq.  The types of operators 
used in information gathering plans vary, but most either 
retrieve or perform computations on data.  
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To better i l lustrate a Web information gathering plan,   
we consider the example plan CarInfo, shown in Figure 
1. Given a car type and price wil l ing to be paid, CarInfo 
locates the make and model which has a median price 
closest to that specified and then retrieves the full review 
of that car from the Web site ConsumerGuide.com.  The 
plan is simple, consisting of four Wrapper operators that 
retrieve and extract data from various parts of the remote 
source.  Specifically, the plan involves: (a) querying 
CarsDirect.com for the car make and model having a me-
dian price closest to that specified, (b) querying Con-
sumerGuide.com for the resulting make and model, (c) 
retrieving the link to the summary page for that car (us-
ing the link provided in the search results), and (d) re-
trieving the full review of that car using the link provided 
on the summary page.  

For example, for the input (Sedan, $19000), the car re-
turned is (Honda Accord), the summary URL for this car 
is (http://cg.com/summ/2289.htm) and the full review 
URL (http://cg.com/full/2289.htm). Once at the full re-
view URL, the review text can be extracted.  

Notice that since steps (b), (c), and (d) are dependent 
on the steps that precede them, the plan must be executed 
sequentially. As a result, plan performance is the summa-
tion of the average time required for each remote query.  
For example, if the source has an average latency of 2s, 
than the average plan execution time is 4*2s = 8s. 

2.1 Speculative Plan Execution 
Speculative execution is one technique that can be used 
to overcome the effects of aggregate latencies in informa-
tion gathering plans that make queries dependent on 
value bindings from the answer to a prior query, such as 
those shown in Figure 1.  
 As described in (Barish and Knoblock 2002), a plan is 
transformed into one capable of speculative plan execu-
tion by the insertion of two additional operators – Specu-
late and Confirm – at various parts the plan, based on a 
recursive analysis of the most expensive path to execute 
within that plan.  For example, one possible result of 
transforming the plan in Figure 1 for speculative execu-
tion is shown in Figure 2.   

As shown, the Speculate operator receives copies of 
data sent to operators executing earlier in the plan.  
Based on the hints it receives, Speculate can generate 
predicted values for later operators that can be transmit-
ted immediately to those operators.  Thus, the earlier and 
later parts of the plan can be parallelized. After the ear-
l ier operators finish executing, Speculate can assess 
whether or not its initial predictions were correct and 
forward the results onto a Confirm operator, which en-

sures that speculative data does not prematurely exit the 
plan or cause some other irreversible action to occur.  
Finally, notice that Figure 2 shows that speculation can 
be cascading: speculation about one operator can drive 
the speculation of another operator, leading to greater 
degrees of parallelism and thus arbitrary speedups.     

As a result of the transformation shown in Figure 2, 
execution would then proceed as follows.  Input data, 
such as (Sedan, $19000), would result in the retrieval of 
the initial search results in parallel with the predicted 
make and model – which would drive the predictions of 
summary and full-review URLs so that all four retrievals 
(three speculative) were executed at once. If all predic-
tions are correct, the resulting execution time can be re-
duced to only 2s plus the overhead to speculate, a maxi-
mum speedup of about 4.  However, the average speedup 
depends on the average accuracy of prediction: the 
greater this accuracy, the higher the average speedup. 

3 Value Prediction Strategies  
Caching can be used to implement value prediction when 
speculatively executing plans such as CarInfo.  Unfortu-
nately, caching does not allow predictions to be issued 
for unseen hints.  As a result, the average accuracy of 
prediction can be low when the domain of possible hints 
is large.  Further, trying to achieve better accuracy under 
these conditions can require significant amounts of mem-
ory.  In this section, we describe how an integrated ap-
proach consisting of classification and transduction ad-
dresses both drawbacks of caching and results in a more 
intell igent and space-efficient prediction strategy.    

3.1 Classif ication 
Classification involves extracting knowledge from a set 
of data (instances) that describes how the attributes of 
those instances are associated with a set of target classes.  
Given a set of instances, classification rules can be 
learned so that future instances can be classified cor-
rectly.  Once learned, a classifier can also make reason-
able predictions about new instances – a combination of 
attribute values that had not previously been seen. The 
abil ity for classification to accommodate new instances is 
intriguing for the speculative execution of information 
gathering plans because, unlike with caching, it is possi-
ble to make predictions about novel hints.  

For example, consider the prediction of the make and 
model of a car in the CarInfo plan.  It turns out that 
CarsDirect.com returns the same answer (Honda Accord) 
for “Sedan”  as it does for other types (such as “All”  and 
“Coupe” ) in the same price range.  The association of the 

Figure 1: The CarInfo plan 
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same make and model to multiple criteria combinations 
occurs somewhat frequently on CarsDirect.com. 

To see why classification is a more effective technique 
than caching for the prediction of the make and model, 
consider what conclusions can be made by each tech-
nique about the following data: 

The data above is what a cache would contain. In con-
trast, a classifier l ike Id3 (Quinlan 1986) would induce 
the following decision tree: 

pr i  <= 18000 :  Sat ur n S Ser i es  ( 2. 0)  
pr i  > 18000 :  
 |   pr i  <= 19000 :  Honda Accor d ( 2. 0)  
 |   pr i  > 19000 :  VW Beet l e ( 2. 0)  

When presented with an instance previously seen, such 
as (Sedan, 19000), both the cache and the classifier 
would result in the same prediction: (Honda Accord).  
However, when presented with a new instance, such as 
(Coupe, 18500), the cache would be unable to make a 
prediction.  In contrast, the classifier would issue the cor-
rect prediction of (Honda Accord).  Any errors made by 
classification would be caught automatically later in exe-
cution by the Confirm operator.     

The decision tree above is also more space efficient 
than a cache for the same data.  The cache requires stor-
ing 6*3 = 18 values.  The decision tree above requires 
only storing 5 values (just those shown) plus the informa-
tion required to describe tree structure and attribute value 
conditions (i.e., pri <= 18000). 

In short, classifiers such as decision trees can function 
as better, more space-efficient predictors.  And in the 
worst case, where each instance corresponds to a unique 
class, a classifier simply emulates a cache. 

3.2 Transduction 
Transducers are finite state machines that transform input 
to output by using the former to iteratively proceed 
through a series of states that progressively produce the 
latter.  One type of transducer is a string-to-string se-
quential transducer, defined by (Mohri 1997) as T = (Q, 
i, F, 

�
, � , � , � ), where Q is the set of states, i � Q is the 

initial state, F � Q is the set of final states, 
�

 and �  are 
finite sets corresponding to input and output alphabets, �  
is the state-transition function that maps Q x 

�
 to Q, and 

�  is the output function that maps Q x �  to � * .  Our in-
terest is in a particular type of sequential transducer 
called a p-subsequential transducer that allows at most p 
output symbols to be appended to the output (i.e., exist 
on the final state transition arc).  

Value prediction by transduction makes sense for Web 
information gathering plans primarily because of how 
Web sources organize information and how Web requests 
(i.e., HTTP queries) are standardized.  In the case of the 
former, Web sources often use predictable hierarchies to 

catalog information.  For example, in the CarInfo exam-
ple, the summary URL for the 1999 Honda Accord was     
http://cg.com/summ/2289.htm and the full review was 
http://cg.com/full/2289.htm.  Notice that both URLs use 
the same piece of dynamic information (2289), but in 
different ways. By learning this transduction, we can then 
predict future full review URLs for corresponding sum-
mary URLs we have never previously seen. Transducers 
can also allow us to predict HTTP queries.  For example, 
an HTTP GET query for the IBM stock chart is 
http://finance.yahoo. com/q?s=ibm&d=c. By exploiting 
the regularity of this URL structure, the system can pre-
dict the URL for the Cisco Systems (CSCO) chart.   

In this paper, we define two new types of transducers 
that extend the traditional definition of p-subsequential 
transducers.  The first is a high-level transducer, called a 
value transducer that describes how to construct the a 
predicted value based on the regularity and transforma-
tions observed in a set of examples of past hints and val-
ues.  Value transducers build the predicted value through 
substring-level operations { Insert, Classify, and Trans-
duce} .  Insert constructs the static parts of predicted val-
ues.  Classify categorizes hint information into part of a 
predicted value.  Finally, Transduce transforms hint in-
formation into part of a predicted value.  Transduce uses 
a second type of special transducer, a hint transducer, in 
which the operations { Accept, Copy, Replace, Upper, 
Lower}  all function on individual characters of the hint 
and perform the same transformation as their name im-
plies, with respect to the predicted value.    

To il lustrate, consider the transducers shown in Figure 
3, for predicting the full-review URL in the CarInfo ex-
ample.  Figure 3 shows the value transducer performs 
high-level operations – the insertion of substrings and the 
call to a lower-level transduction.  The second transducer 
(in abbreviated form) uses the Accept and Copy opera-
tions to transform the part of the hint value into its proper 
point in the predicted value.  Thus, the first step builds 
the “http://cg.com/full/”  part, the second step copies the 
“2289”  part and the third step appends the “ .htm”  part. 

In short, transducers lend themselves to value predic-
tion because of the way information is stored by and que-
ried from Web sources.  They are a natural fit because 
URLs are strings that are often the result of simple trans-
formations based on earlier input.  Thus, for sources that 
provide content that cannot be queried directly (instead 
requiring an initial query and then further navigation), 
transducers serve as compact predictors that capitalize on 
the regularity of Web queries and source structure.         

Type Price Car
Sedan 18000 Saturn S Series
Sedan 19000 Honda Accord
Sedan 20000 VW Beetle
Coupe 18000 Saturn S Series
Coupe 19000 Honda Accord
Coupe 20000 VW Beetle

Figure 3: Value transducer for CarInfo 
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4 A Unifying Learning Algorithm 
In this section, we present a set of algorithms that de-
scribe how to combine classification and transduction in 
order to induce value transducers (VTs) for the specula-
tive execution of information gathering plans.  

To learn a VT, the general approach consists of: 

1. For each attribute of the answer tuple, identify an 
SD Template that distinguishes static from dynamic 
parts of the target string by analyzing the regularity 
between values of this attribute for all answers.  

2. For each static part, add an Insert arc to the VT. 

3. For each dynamic part, determine if transduction 
can be used; if so, add a Transduce arc to VT.  

4. If no transducer can be found, classify the dynamic 
part based on the relevant attributes of the hint and 
add a Classify arc to the VT. 

We implemented this in the algorithm LEARN-VALUE-
TRANSDUCER, shown below.  The algorithm takes a set of 
hints, a set of corresponding answers, and returns a VT 
that fits the data:  
  
1  Function LEARN-VALUE-TRANSDUCER  
         returns ValueTransducer 
2  Input: the set of hints H, the set of answers A 
3    VT �  �  
4    tmpl �  LEARN-SD-TEMPLATE (A); 
5    Foreach element e in tmpl 
6      If e is a static element 
7        Add Insert (e.value) arc to VT 
8      Else if e is a dynamic element 
9        DA �  the set of dynamic strings in A for this tmpl element 
10       HT �  LEARN-HINT-TRANSDUCER (H, DA) 
11        If HT  != �  
12          Add Transduce (HT) arc to VT 
13        else 
14          C �  LEARN-CLASSIFIER (H, DA) 
15          Add Classify (C) arc to VT 
16   Return VT 
17 End  /* LEARN-VALUE-TRANSDUCER */ 
 
In this algorithm, learning a classifier can be achieved by 
decision tree induction algorithms such as Id3 (Quinlan 
1986).  Learning the SD template and the hint transform-
ing transducer, however, require unique algorithms. 

4.1 Learning templates of  string sets 
Learning a VT requires first identifying a template for 
the target value that describes what parts of the target are 
static and what parts are dynamic.  After that, each static 
part of the template is replaced with Insert operations 
and a each dynamic part becomes a candidate for either 
transduction or classification. 

To identify an SD template, we use an approach based 
on the longest common subsequence (LCS) between a set 
of values. First, an LCS identification algorithm similar 
to the one described by (Hirschberg 1975) is applied to 
the set of answer values.  We then iterate through the 
LCS on each answer value to determine the set of possi-
ble static/dynamic templates that fit that answer.  Only 

those templates common to all are kept – from this, one 
of the set is returned (though all are valid).  The algo-
rithm that implements this, LEARN-SD-TEMPLATE, is 
shown below.    

 
1  Function LEARN-SD-TEMPLATE  returns Template 
2  Input: set of strings S 
3    tmpl �  �  
4    lcs �  GET-LCS(S) 
5    If seq != �  
6      tmplSet �  �  
7      Foreach string s in S 
8        curTmplSet �  EXTRACT-TEMPLATES (s, lcs) 
9        tmplSet �  tmplSet �  curTmplSet 
10     If tmplSet != �  
11      tmpl �  choose any member of tmplSet   /*  al l  are valid * / 
12   Return tmpl 
13 End  /* LEARN-SD-TEMPLATE */ 

4.2 Learning hint transducers 
To learn a hint transducer, we also make use of SD-
template identification.  However, instead of identifying 
a template that fits all answers, we identify templates that 
fit all hints.  Based on this template, we then construct a 
transducer that accepts the static parts of the hint string 
and performs the character-level transformation on the 
dynamic part.  A sketch of the algorithm that implements 
this, LEARN-HINT-TRANSDUCER, is shown below.     
 
1  Function LEARN-HINT-TRANSDUCER  returns HintTransducer 
2  Input: the set of hints H, the set of resulting strings S 
3    Use LCS to identify static parts between all H 
4   Foreach H,S pair (h, s)  
5    h �  �  extraction of h replacing static chars with the token ‘A’  
6    A �  Align (h � , s) based on string edit distance 
7    Annotate A with character level operations 
8   End 
9  RE �  Build a reg expr that fits all annotations (using LCS) 
10 If RE == �  
11   Return �  
12 Else 
13   Return general predictive transducer based on RE  
            that accepts static sequences of H where necessary  
            and transduces dynamic sequences.  
14  End /* LEARN-HINT-TRANSDUCER */ 
 
For example, suppose prior hints { Dr. Joe Smith, Dr. Jane 
Thomas}  had corresponding observed values { joe_s, 
jane_t} .  The algorithm would first identify the static part of 
the hints and rewrite the hints using the Accept operation, 
i.e., { AAAAJoe Smith, AAAAJane Thomas}  where A re-
fers to the operation Accept.  It would then align each hint 
and value based on string edit distance and annotate with 
character level operations that reflect the transformation to 
the observed values, resulting in { AAAAALCCRLDDDD, 
AAAAALCCCRLDDDDD} .  Next, it would use the LCS 
to build the regular expression { A*LC*RLD*}  fitting these 
examples and, from this, a general predictive transducer 
(partial form shown): 
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5 Experimental Results 
To evaluate our approach to value prediction, we com-
pared it with caching on three sample plans that can 
benefit from speculative execution.  These plans were 
chosen because all query multiple sources and/or multi-
ple times within a source in order to retrieve information 
that is not possible to query directly.  These plans nor-
mally require sequential execution; however, with specu-
lative execution, significant speedup is possible.     

These plans included CarInfo (which we have already 
described), RepInfo, and PhoneInfo.  RepInfo, based on 
the plan described in (Barish and Knoblock 2002), queries 
the site Vote-Smart.org for the issue positions of U.S. 
federal representatives for a particular nine-digit zip 
code. Its plan involves three queries: one for the l ist of 
representatives in the desired zip code, navigation to the 
profi le page for each member, and navigation to their 
corresponding issue positions page. PhoneInfo is a simi-
lar plan that takes a U.S. phone number, does a reverse 
lookup of that number (on SuperPages.com) to find the 
state of origin and then queries the US Census (Quick-
Facts.census.gov) about demographics for that state.  
When querying the Census, additional navigation is re-
quired to get from the initial summary page about the 
state to the corresponding demographics details page.   

All three were modified for speculative execution, with 
results similar to that shown in Figure 2.  We then 
learned predictors for each.  The CarInfo predictors, as 
described, involved classification (make/model/year to 
car summary page) and transduction (summary to full 
review page).  RepInfo required classification (nine-digit 
zip to political district page) and transduction (district to 
issue positions page).  Finally, PhoneInfo required classi-
fication (phone number to state) and transduction (initial 
state facts page to detailed demographics page). 

When learning the predictors, instances were drawn 
from typical distributions for that domain; for example, 
instances for RepInfo were drawn from a list of addresses 
of individuals that contributed to presidential campaigns 
(obtained from the FEC) – a distribution that closely ap-
proximates the U.S. geographic population distribution.  
Similarly, the phone numbers used in PhoneInfo came 
from a distribution of numbers for common last names.  

We implemented speculative execution in Theseus, a 
streaming dataflow system for Web information gather-
ing.  Since our tests involved thousands of requests, we 
ran our plans using Theseus on local copies of the rele-
vant data and simulated network latencies during re-
trieval.  In doing so, we assumed each source had a la-
tency of 2 seconds (note that the particular latency cho-
sen does not matter –speedups will be the same). 

Our results focus on three measurements.  The first, 
shown in Table 1, show the average number of examples 
required in order to learn the correct transducer required 
by each of the plans.  Notice, that RepInfo required more 
than PhoneInfo or CarInfo because there was a higher 
l ikelihood of the examples sharing some part of their dy-

namic data in common – and this was extracted by the 
LCS-based algorithm as a static element.     

 CarInfo 
(full-review 
URL) 

RepInfo 
(issue positions 
URL) 

PhoneInfo 
(demographics 
URL) 

Examples 6 11 7 

The second set of results, shown in Figure 4, focuses 
on the accuracy of classification, as measured over a 10-
fold cross-validation sample of the data (where no data in 
the test fold was in any of the training folds). As ex-
pected, domains with larger sets of discrete target classes 
(such as RepInfo) required many more examples than 
those with smaller numbers of classes (l ike PhoneInfo). 

The final set of results show how the learning we have 
described resulted in better average plan execution 
speedups than did caching.  Due to space constraints, we 
show results from only one of the plans – CarInfo – in 
Figure 5.  This figure shows that, while the benefit of 
caching degrades significantly as the composition of fu-
ture requests contains a greater number of unseen exam-
ples, the learning allows accurate predictions to be made 
– even for a mix containing entirely new requests.  Fur-
thermore, as the number of examples increases, speedup 
from learning increases and the accuracy of speculation 
(even on 100% unseen instances) gradually increases.  
Though omitted here, these same general trends hold for 
both RepInfo and PhoneInfo as well (although to different 
degrees). 

Figure 4: Accuracy of classification 
 

Figure 5: Learning vs. caching in CarInfo 
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6 Related Work 
Learning to speculatively execute programs has been 
well-studied in computer science.  Historically, computer 
architecture research has largely focused on branch pre-
diction – which involves predicting control, not data.  
While hardware-level value prediction is an active area 
of research, its goals are very different (predicting mem-
ory locations or loop iterations) that our goals here.     
 To the best of our knowledge, there has not been past 
work on value prediction for information gathering sys-
tems.  (Hull et al. 2000) proposed speculation in a deci-
sion flow framework, but one in which only control 
predictions were necessary.  There has also been past 
work on information gathering with partial results 
(Shanmugasundaram et al. 2000), but these systems do 
not predict data values and instead use approximate val-
ues from intermediate aggregate operators in order to 
obtain approximate final results.  
 Surprisingly, there has been little work on the learning 
of subsequential transducers.  One existing algorithm is 
OSTIA (Oncina et al. 1993), which is able to induce tra-
ditional subsequential transducers capable of automating 
translations of decimal to Roman numbers or English 
word spell ings of numbers to their decimal equivalents.   
Our work differs from OSTIA mainly in that the trans-
ducers we learn capture the general process of a regular 
class of string transformations.  After learning from only 
a few examples, our algorithm can achieve a high-degree 
of accuracy on such classes.  In contrast, while OSTIA 
can learn more complex types of subsequential transduc-
ers, it can require a very large number of examples before 
it can learn the proper rule (Gildea and Jurafsky 1996). 

The transducer learning algorithm suggested by (Hsu 
and Chang 1999) viewed transduction as a means for in-
formation extraction.  Our use is similar in that one part 
of our approach involves extracting dynamic values from 
hints.  However, the transducers we describe go beyond 
extraction – they  transform the source string so that it 
can be integrated into a predicted value.  In doing so, our 
transduction process also makes use of classification. 
 Finally, while our use of classification applies to pre-
dicting any type of data value in an information gathering 
plan, our typical use of transduction is for the prediction 
of URLs.  Other approaches have explored point-based 
(Zukerman et al. 1999) or path-based (Su et al. 2000) 
methods of URL prediction, attempting to understand 
request models based on either time, the order of re-
quests, or the associations between requests.   However, 
unlike our approach, these techniques do not try to un-
derstand very general patterns in request content and 
thus cannot predict previously unrequested URLs.                          

7 Conclusions 
Successful speculative execution of information gather-
ing plans is fundamentally l inked with the abil ity to make 
good predictions.  In this paper, we have described how 
two simple techniques – classification and transduction – 

can be combined and applied to the problem.  Our ex-
perimental results show that learning such predictors can 
allow for signficant speedups when gathering information 
that must be queried indirectly.  We believe that a bright 
future exists for data value prediction at the information 
gathering level, primarily because of the potential 
speedup enabled by speculative execution and because of 
the availabil ity of resources (i.e., memory) that exist at 
higher levels of execution, enabling more sophisticated 
machine learning techniques to be applied. 
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