
Abstract
Speculative execution of information gathering
plans can dramatically reduce the effect of
source I/O latencies on overall performance.
However, the uti l i ty of speculation is closely tied
to how accurately data values are predicted at
runtime. While caching is one approach that can
be used to issue future predictions, it scales
poorly with large data sources and is unable to
make intell igent predictions given previously
unseen input data, even when there is an obvious
general relationship between prior input and re-
sulting output. In this paper, we describe a
novel way to combine classification and trans-
duction for a more efficient and accurate value
prediction strategy, one that capable of issuing
predictions about previously unseen hints. We
show how our approach results in significant
speedups for plans that query multiple sources or
sources that require multi-page navigation.

1 Introduction
The performance of Web information gathering plans can
suffer because of I/O latencies associated with the remote
sources queried by these plans. A single slow Web
source can bottleneck an entire plan and lead to poor
execution time. When a plan requires multiple queries
(either to the same source or to multiple sources),
performance can be even worse, where the overhead is a
function of the slowest sequence of sources queried.

When multiple queries are required, speculative plan
execution (Barish and Knoblock 2002) can be used to
dramatically reduce the impact of aggregate source laten-
cies. The idea involves using data seen early in plan exe-
cution as a basis for issuing predictions about data l ikely
to be needed during later parts of execution. This allows
data dependency chains within the plan to be broken and
parallelized, leading to significant speedups.
 To maximize the uti l i ty of speculative execution, a
good value prediction strategy is necessary. The basic
problem involves being able to use some hint h as the
basis for issuing a predicted value v. One approach in-
volves caching: we can note that particular hint hx corre-

sponds to a particular value vy so that future receipt of hx
can lead to prediction of vy. As a result, a plan that nor-
mally queries source S1 with hx and subsequently source
S2 with vy can be parallelized so that both S1 and S2 are
queried in parallel, the latter speculatively. Unfortu-
nately, caching has two major drawbacks. First, it does
not scale well when the domain of hints is large. A sec-
ond drawback is the inabil ity to deal with novel (previ-
ously unseen) hints, even when an obvious relationship
exists between hint and predicted value.
 In this paper, we present an alternative to caching that
involves automatically learning predictors that combine
classification and transduction in order to generate pre-
dictions from hints. Our approach succeeds where cach-
ing fails: the predictors learned usually consume less
space than that demanded by caching and they are capa-
ble of making reasonable predictions when presented
with novel hints, the latter leading to better speedups.
Specifically, this paper contributes the following:

� An algorithm that learns efficient transducers capa-
ble of variety of string transformations.

� An algorithm that combines classification and trans-
duction to learn value predictors

The rest of this paper is organized as follows. The next
section briefly reviews information gathering and pro-
vides a motivating example for speculative execution. In
Section 3, we describe how classification and transduc-
tion can be used to build efficient and intell igent predic-
tors. Section 4 describes our learning algorithms that
combine both techniques. Section 5 describes experimen-
tal results of using our approach. Finally, Section 6 de-
tails the related work.

2 Preliminaries
Web information gathering plans retrieve, combine, and
manipulate data located in remote Web sources. Such
plans consist of a partially-ordered graph of operators
O1..On connected in a producer/consumer fashion. Each
operator Oi consumes a set of inputs a1..ap, fetches data
or performs a computation based on that input, and pro-
duces one or more outputs b1..bq. The types of operators
used in information gathering plans vary, but most either
retrieve or perform computations on data.

Combining Classification and Transduction for Value Prediction
in Speculative Plan Execution

Greg Barish and Craig A. Knoblock
University of Southern California / Information Sciences Institute

4676 Admiralty Way, Marina del Rey, CA 90292
{ barish, knoblock} @isi.edu

To better i l lustrate a Web information gathering plan,
we consider the example plan CarInfo, shown in Figure
1. Given a car type and price wil l ing to be paid, CarInfo
locates the make and model which has a median price
closest to that specified and then retrieves the full review
of that car from the Web site ConsumerGuide.com. The
plan is simple, consisting of four Wrapper operators that
retrieve and extract data from various parts of the remote
source. Specifically, the plan involves: (a) querying
CarsDirect.com for the car make and model having a me-
dian price closest to that specified, (b) querying Con-
sumerGuide.com for the resulting make and model, (c)
retrieving the link to the summary page for that car (us-
ing the link provided in the search results), and (d) re-
trieving the full review of that car using the link provided
on the summary page.

For example, for the input (Sedan, $19000), the car re-
turned is (Honda Accord), the summary URL for this car
is (http://cg.com/summ/2289.htm) and the full review
URL (http://cg.com/full/2289.htm). Once at the full re-
view URL, the review text can be extracted.

Notice that since steps (b), (c), and (d) are dependent
on the steps that precede them, the plan must be executed
sequentially. As a result, plan performance is the summa-
tion of the average time required for each remote query.
For example, if the source has an average latency of 2s,
than the average plan execution time is 4*2s = 8s.

2.1 Speculative Plan Execution
Speculative execution is one technique that can be used
to overcome the effects of aggregate latencies in informa-
tion gathering plans that make queries dependent on
value bindings from the answer to a prior query, such as
those shown in Figure 1.
 As described in (Barish and Knoblock 2002), a plan is
transformed into one capable of speculative plan execu-
tion by the insertion of two additional operators – Specu-
late and Confirm – at various parts the plan, based on a
recursive analysis of the most expensive path to execute
within that plan. For example, one possible result of
transforming the plan in Figure 1 for speculative execu-
tion is shown in Figure 2.

As shown, the Speculate operator receives copies of
data sent to operators executing earlier in the plan.
Based on the hints it receives, Speculate can generate
predicted values for later operators that can be transmit-
ted immediately to those operators. Thus, the earlier and
later parts of the plan can be parallelized. After the ear-
l ier operators finish executing, Speculate can assess
whether or not its initial predictions were correct and
forward the results onto a Confirm operator, which en-

sures that speculative data does not prematurely exit the
plan or cause some other irreversible action to occur.
Finally, notice that Figure 2 shows that speculation can
be cascading: speculation about one operator can drive
the speculation of another operator, leading to greater
degrees of parallelism and thus arbitrary speedups.

As a result of the transformation shown in Figure 2,
execution would then proceed as follows. Input data,
such as (Sedan, $19000), would result in the retrieval of
the initial search results in parallel with the predicted
make and model – which would drive the predictions of
summary and full-review URLs so that all four retrievals
(three speculative) were executed at once. If all predic-
tions are correct, the resulting execution time can be re-
duced to only 2s plus the overhead to speculate, a maxi-
mum speedup of about 4. However, the average speedup
depends on the average accuracy of prediction: the
greater this accuracy, the higher the average speedup.

3 Value Prediction Strategies
Caching can be used to implement value prediction when
speculatively executing plans such as CarInfo. Unfortu-
nately, caching does not allow predictions to be issued
for unseen hints. As a result, the average accuracy of
prediction can be low when the domain of possible hints
is large. Further, trying to achieve better accuracy under
these conditions can require significant amounts of mem-
ory. In this section, we describe how an integrated ap-
proach consisting of classification and transduction ad-
dresses both drawbacks of caching and results in a more
intell igent and space-efficient prediction strategy.

3.1 Classif ication
Classification involves extracting knowledge from a set
of data (instances) that describes how the attributes of
those instances are associated with a set of target classes.
Given a set of instances, classification rules can be
learned so that future instances can be classified cor-
rectly. Once learned, a classifier can also make reason-
able predictions about new instances – a combination of
attribute values that had not previously been seen. The
abil ity for classification to accommodate new instances is
intriguing for the speculative execution of information
gathering plans because, unlike with caching, it is possi-
ble to make predictions about novel hints.

For example, consider the prediction of the make and
model of a car in the CarInfo plan. It turns out that
CarsDirect.com returns the same answer (Honda Accord)
for “Sedan” as it does for other types (such as “All” and
“Coupe”) in the same price range. The association of the

Figure 1: The CarInfo plan

WRAPP ER
ConsumerGuide

Search

(Sedan, $19000) (http ://cg.com/summ/2289.h tm)

(http ://cg.com/full/2289.htm)

class,
price

WRAPPER
ConsumerGuide

Summary

WRAPP ER
ConsumerGuide

Full Review

car
review

WRAPP ER
CarsDirect

Search

(Honda Accord)

Figure 2: CarInfo transformed for speculative execution

W W

Spec Spec

hints

predictions/corrections

answers

confirmations

W W Confir m

Spec

same make and model to multiple criteria combinations
occurs somewhat frequently on CarsDirect.com.

To see why classification is a more effective technique
than caching for the prediction of the make and model,
consider what conclusions can be made by each tech-
nique about the following data:

The data above is what a cache would contain. In con-
trast, a classifier l ike Id3 (Quinlan 1986) would induce
the following decision tree:

pr i <= 18000 : Sat ur n S Ser i es (2. 0)
pr i > 18000 :
 | pr i <= 19000 : Honda Accor d (2. 0)
 | pr i > 19000 : VW Beet l e (2. 0)

When presented with an instance previously seen, such
as (Sedan, 19000), both the cache and the classifier
would result in the same prediction: (Honda Accord).
However, when presented with a new instance, such as
(Coupe, 18500), the cache would be unable to make a
prediction. In contrast, the classifier would issue the cor-
rect prediction of (Honda Accord). Any errors made by
classification would be caught automatically later in exe-
cution by the Confirm operator.

The decision tree above is also more space efficient
than a cache for the same data. The cache requires stor-
ing 6*3 = 18 values. The decision tree above requires
only storing 5 values (just those shown) plus the informa-
tion required to describe tree structure and attribute value
conditions (i.e., pri <= 18000).

In short, classifiers such as decision trees can function
as better, more space-efficient predictors. And in the
worst case, where each instance corresponds to a unique
class, a classifier simply emulates a cache.

3.2 Transduction
Transducers are finite state machines that transform input
to output by using the former to iteratively proceed
through a series of states that progressively produce the
latter. One type of transducer is a string-to-string se-
quential transducer, defined by (Mohri 1997) as T = (Q,
i, F,

�
, � , � , �), where Q is the set of states, i � Q is the

initial state, F � Q is the set of final states,
�

 and � are
finite sets corresponding to input and output alphabets, �
is the state-transition function that maps Q x

�
 to Q, and

� is the output function that maps Q x � to � * . Our in-
terest is in a particular type of sequential transducer
called a p-subsequential transducer that allows at most p
output symbols to be appended to the output (i.e., exist
on the final state transition arc).

Value prediction by transduction makes sense for Web
information gathering plans primarily because of how
Web sources organize information and how Web requests
(i.e., HTTP queries) are standardized. In the case of the
former, Web sources often use predictable hierarchies to

catalog information. For example, in the CarInfo exam-
ple, the summary URL for the 1999 Honda Accord was
http://cg.com/summ/2289.htm and the full review was
http://cg.com/full/2289.htm. Notice that both URLs use
the same piece of dynamic information (2289), but in
different ways. By learning this transduction, we can then
predict future full review URLs for corresponding sum-
mary URLs we have never previously seen. Transducers
can also allow us to predict HTTP queries. For example,
an HTTP GET query for the IBM stock chart is
http://finance.yahoo. com/q?s=ibm&d=c. By exploiting
the regularity of this URL structure, the system can pre-
dict the URL for the Cisco Systems (CSCO) chart.

In this paper, we define two new types of transducers
that extend the traditional definition of p-subsequential
transducers. The first is a high-level transducer, called a
value transducer that describes how to construct the a
predicted value based on the regularity and transforma-
tions observed in a set of examples of past hints and val-
ues. Value transducers build the predicted value through
substring-level operations { Insert, Classify, and Trans-
duce} . Insert constructs the static parts of predicted val-
ues. Classify categorizes hint information into part of a
predicted value. Finally, Transduce transforms hint in-
formation into part of a predicted value. Transduce uses
a second type of special transducer, a hint transducer, in
which the operations { Accept, Copy, Replace, Upper,
Lower} all function on individual characters of the hint
and perform the same transformation as their name im-
plies, with respect to the predicted value.

To il lustrate, consider the transducers shown in Figure
3, for predicting the full-review URL in the CarInfo ex-
ample. Figure 3 shows the value transducer performs
high-level operations – the insertion of substrings and the
call to a lower-level transduction. The second transducer
(in abbreviated form) uses the Accept and Copy opera-
tions to transform the part of the hint value into its proper
point in the predicted value. Thus, the first step builds
the “http://cg.com/full/” part, the second step copies the
“2289” part and the third step appends the “ .htm” part.

In short, transducers lend themselves to value predic-
tion because of the way information is stored by and que-
ried from Web sources. They are a natural fit because
URLs are strings that are often the result of simple trans-
formations based on earlier input. Thus, for sources that
provide content that cannot be queried directly (instead
requiring an initial query and then further navigation),
transducers serve as compact predictors that capitalize on
the regularity of Web queries and source structure.

Type Price Car
Sedan 18000 Saturn S Series
Sedan 19000 Honda Accord
Sedan 20000 VW Beetle
Coupe 18000 Saturn S Series
Coupe 19000 Honda Accord
Coupe 20000 VW Beetle

Figure 3: Value transducer for CarInfo

1 2

INSERT(" h t t p: / / c g . c om/ f u l l / ")

TRANSDUCE(T1 , hi n t)

3

INSERT(" . ht m")

1 5

h: ACCEPT

2

u: ACCEPT

3

/ : ACCEPT

� : ACCEPT

4

/ : COPY

� : COPY

/ : ACCEPT

� : ACCEPT
� : ACCEPT

4 A Unifying Learning Algorithm
In this section, we present a set of algorithms that de-
scribe how to combine classification and transduction in
order to induce value transducers (VTs) for the specula-
tive execution of information gathering plans.

To learn a VT, the general approach consists of:

1. For each attribute of the answer tuple, identify an
SD Template that distinguishes static from dynamic
parts of the target string by analyzing the regularity
between values of this attribute for all answers.

2. For each static part, add an Insert arc to the VT.

3. For each dynamic part, determine if transduction
can be used; if so, add a Transduce arc to VT.

4. If no transducer can be found, classify the dynamic
part based on the relevant attributes of the hint and
add a Classify arc to the VT.

We implemented this in the algorithm LEARN-VALUE-
TRANSDUCER, shown below. The algorithm takes a set of
hints, a set of corresponding answers, and returns a VT
that fits the data:

1 Function LEARN-VALUE-TRANSDUCER
 returns ValueTransducer
2 Input: the set of hints H, the set of answers A
3 VT � �
4 tmpl � LEARN-SD-TEMPLATE (A);
5 Foreach element e in tmpl
6 If e is a static element
7 Add Insert (e.value) arc to VT
8 Else if e is a dynamic element
9 DA � the set of dynamic strings in A for this tmpl element
10 HT � LEARN-HINT-TRANSDUCER (H, DA)
11 If HT != �
12 Add Transduce (HT) arc to VT
13 else
14 C � LEARN-CLASSIFIER (H, DA)
15 Add Classify (C) arc to VT
16 Return VT
17 End /* LEARN-VALUE-TRANSDUCER */

In this algorithm, learning a classifier can be achieved by
decision tree induction algorithms such as Id3 (Quinlan
1986). Learning the SD template and the hint transform-
ing transducer, however, require unique algorithms.

4.1 Learning templates of string sets
Learning a VT requires first identifying a template for
the target value that describes what parts of the target are
static and what parts are dynamic. After that, each static
part of the template is replaced with Insert operations
and a each dynamic part becomes a candidate for either
transduction or classification.

To identify an SD template, we use an approach based
on the longest common subsequence (LCS) between a set
of values. First, an LCS identification algorithm similar
to the one described by (Hirschberg 1975) is applied to
the set of answer values. We then iterate through the
LCS on each answer value to determine the set of possi-
ble static/dynamic templates that fit that answer. Only

those templates common to all are kept – from this, one
of the set is returned (though all are valid). The algo-
rithm that implements this, LEARN-SD-TEMPLATE, is
shown below.

1 Function LEARN-SD-TEMPLATE returns Template
2 Input: set of strings S
3 tmpl � �
4 lcs � GET-LCS(S)
5 If seq != �
6 tmplSet � �
7 Foreach string s in S
8 curTmplSet � EXTRACT-TEMPLATES (s, lcs)
9 tmplSet � tmplSet � curTmplSet
10 If tmplSet != �
11 tmpl � choose any member of tmplSet /* al l are valid * /
12 Return tmpl
13 End /* LEARN-SD-TEMPLATE */

4.2 Learning hint transducers
To learn a hint transducer, we also make use of SD-
template identification. However, instead of identifying
a template that fits all answers, we identify templates that
fit all hints. Based on this template, we then construct a
transducer that accepts the static parts of the hint string
and performs the character-level transformation on the
dynamic part. A sketch of the algorithm that implements
this, LEARN-HINT-TRANSDUCER, is shown below.

1 Function LEARN-HINT-TRANSDUCER returns HintTransducer
2 Input: the set of hints H, the set of resulting strings S
3 Use LCS to identify static parts between all H
4 Foreach H,S pair (h, s)
5 h � � extraction of h replacing static chars with the token ‘A’
6 A � Align (h � , s) based on string edit distance
7 Annotate A with character level operations
8 End
9 RE � Build a reg expr that fits all annotations (using LCS)
10 If RE == �
11 Return �
12 Else
13 Return general predictive transducer based on RE
 that accepts static sequences of H where necessary
 and transduces dynamic sequences.
14 End /* LEARN-HINT-TRANSDUCER */

For example, suppose prior hints { Dr. Joe Smith, Dr. Jane
Thomas} had corresponding observed values { joe_s,
jane_t} . The algorithm would first identify the static part of
the hints and rewrite the hints using the Accept operation,
i.e., { AAAAJoe Smith, AAAAJane Thomas} where A re-
fers to the operation Accept. It would then align each hint
and value based on string edit distance and annotate with
character level operations that reflect the transformation to
the observed values, resulting in { AAAAALCCRLDDDD,
AAAAALCCCRLDDDDD} . Next, it would use the LCS
to build the regular expression { A*LC*RLD*} fitting these
examples and, from this, a general predictive transducer
(partial form shown):

1 2 3

� : ACCEPT

' ' : ACCEPT � : COPY
� : LOWER

4

� : COPY ' ' : REPLACE(_)

5
� : LOWER

...

5 Experimental Results
To evaluate our approach to value prediction, we com-
pared it with caching on three sample plans that can
benefit from speculative execution. These plans were
chosen because all query multiple sources and/or multi-
ple times within a source in order to retrieve information
that is not possible to query directly. These plans nor-
mally require sequential execution; however, with specu-
lative execution, significant speedup is possible.

These plans included CarInfo (which we have already
described), RepInfo, and PhoneInfo. RepInfo, based on
the plan described in (Barish and Knoblock 2002), queries
the site Vote-Smart.org for the issue positions of U.S.
federal representatives for a particular nine-digit zip
code. Its plan involves three queries: one for the l ist of
representatives in the desired zip code, navigation to the
profi le page for each member, and navigation to their
corresponding issue positions page. PhoneInfo is a simi-
lar plan that takes a U.S. phone number, does a reverse
lookup of that number (on SuperPages.com) to find the
state of origin and then queries the US Census (Quick-
Facts.census.gov) about demographics for that state.
When querying the Census, additional navigation is re-
quired to get from the initial summary page about the
state to the corresponding demographics details page.

All three were modified for speculative execution, with
results similar to that shown in Figure 2. We then
learned predictors for each. The CarInfo predictors, as
described, involved classification (make/model/year to
car summary page) and transduction (summary to full
review page). RepInfo required classification (nine-digit
zip to political district page) and transduction (district to
issue positions page). Finally, PhoneInfo required classi-
fication (phone number to state) and transduction (initial
state facts page to detailed demographics page).

When learning the predictors, instances were drawn
from typical distributions for that domain; for example,
instances for RepInfo were drawn from a list of addresses
of individuals that contributed to presidential campaigns
(obtained from the FEC) – a distribution that closely ap-
proximates the U.S. geographic population distribution.
Similarly, the phone numbers used in PhoneInfo came
from a distribution of numbers for common last names.

We implemented speculative execution in Theseus, a
streaming dataflow system for Web information gather-
ing. Since our tests involved thousands of requests, we
ran our plans using Theseus on local copies of the rele-
vant data and simulated network latencies during re-
trieval. In doing so, we assumed each source had a la-
tency of 2 seconds (note that the particular latency cho-
sen does not matter –speedups will be the same).

Our results focus on three measurements. The first,
shown in Table 1, show the average number of examples
required in order to learn the correct transducer required
by each of the plans. Notice, that RepInfo required more
than PhoneInfo or CarInfo because there was a higher
l ikelihood of the examples sharing some part of their dy-

namic data in common – and this was extracted by the
LCS-based algorithm as a static element.

 CarInfo
(full-review
URL)

RepInfo
(issue positions
URL)

PhoneInfo
(demographics
URL)

Examples 6 11 7

The second set of results, shown in Figure 4, focuses
on the accuracy of classification, as measured over a 10-
fold cross-validation sample of the data (where no data in
the test fold was in any of the training folds). As ex-
pected, domains with larger sets of discrete target classes
(such as RepInfo) required many more examples than
those with smaller numbers of classes (l ike PhoneInfo).

The final set of results show how the learning we have
described resulted in better average plan execution
speedups than did caching. Due to space constraints, we
show results from only one of the plans – CarInfo – in
Figure 5. This figure shows that, while the benefit of
caching degrades significantly as the composition of fu-
ture requests contains a greater number of unseen exam-
ples, the learning allows accurate predictions to be made
– even for a mix containing entirely new requests. Fur-
thermore, as the number of examples increases, speedup
from learning increases and the accuracy of speculation
(even on 100% unseen instances) gradually increases.
Though omitted here, these same general trends hold for
both RepInfo and PhoneInfo as well (although to different
degrees).

Figure 4: Accuracy of classification

Figure 5: Learning vs. caching in CarInfo

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

No spec Caching Spec
(50 ex)

Spec
(100 ex)

Spec
(150 ex)

Spec
(200 ex)

Spec
(250 ex)

Execution scenario

Av
er

ag
e s

pe
ed

up

0% unseen

50% unseen

100% unseen

Table 1: Learning the correct transducer

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 100 200 300

Number of examples

P
re

di
ct

iv
e

ac
cu

ra
cy

CarInfo
(make & model)

RepInfo
(political district)

PhoneInfo
(U.S. state)

6 Related Work
Learning to speculatively execute programs has been
well-studied in computer science. Historically, computer
architecture research has largely focused on branch pre-
diction – which involves predicting control, not data.
While hardware-level value prediction is an active area
of research, its goals are very different (predicting mem-
ory locations or loop iterations) that our goals here.
 To the best of our knowledge, there has not been past
work on value prediction for information gathering sys-
tems. (Hull et al. 2000) proposed speculation in a deci-
sion flow framework, but one in which only control
predictions were necessary. There has also been past
work on information gathering with partial results
(Shanmugasundaram et al. 2000), but these systems do
not predict data values and instead use approximate val-
ues from intermediate aggregate operators in order to
obtain approximate final results.
 Surprisingly, there has been little work on the learning
of subsequential transducers. One existing algorithm is
OSTIA (Oncina et al. 1993), which is able to induce tra-
ditional subsequential transducers capable of automating
translations of decimal to Roman numbers or English
word spell ings of numbers to their decimal equivalents.
Our work differs from OSTIA mainly in that the trans-
ducers we learn capture the general process of a regular
class of string transformations. After learning from only
a few examples, our algorithm can achieve a high-degree
of accuracy on such classes. In contrast, while OSTIA
can learn more complex types of subsequential transduc-
ers, it can require a very large number of examples before
it can learn the proper rule (Gildea and Jurafsky 1996).

The transducer learning algorithm suggested by (Hsu
and Chang 1999) viewed transduction as a means for in-
formation extraction. Our use is similar in that one part
of our approach involves extracting dynamic values from
hints. However, the transducers we describe go beyond
extraction – they transform the source string so that it
can be integrated into a predicted value. In doing so, our
transduction process also makes use of classification.
 Finally, while our use of classification applies to pre-
dicting any type of data value in an information gathering
plan, our typical use of transduction is for the prediction
of URLs. Other approaches have explored point-based
(Zukerman et al. 1999) or path-based (Su et al. 2000)
methods of URL prediction, attempting to understand
request models based on either time, the order of re-
quests, or the associations between requests. However,
unlike our approach, these techniques do not try to un-
derstand very general patterns in request content and
thus cannot predict previously unrequested URLs.

7 Conclusions
Successful speculative execution of information gather-
ing plans is fundamentally l inked with the abil ity to make
good predictions. In this paper, we have described how
two simple techniques – classification and transduction –

can be combined and applied to the problem. Our ex-
perimental results show that learning such predictors can
allow for signficant speedups when gathering information
that must be queried indirectly. We believe that a bright
future exists for data value prediction at the information
gathering level, primarily because of the potential
speedup enabled by speculative execution and because of
the availabil ity of resources (i.e., memory) that exist at
higher levels of execution, enabling more sophisticated
machine learning techniques to be applied.

References

Barish, Greg and Craig A. Knoblock (2002). Speculative
execution for information gathering plans. Proceedings
of the Sixth International Conference on AI Planning and
Scheduling (AIPS 2002). Tolouse, France.

Gildea, Daniel and Daniel Jurafsky (1996). "Learning
Bias and Phonological-Rule Induction." Computational
Linguistics 22(4): 497--530.

Hirschberg, Daniel S. (1975). "A linear space algorithm
for computing maximal common subsequences." Com-
munications of the ACM 18(6): 341--343.

Hsu, Chu-Nan and Chien-Chi Chang (1999). Finite-State
Transducers for Semi-Structured Text Mining. Proceed-
ings of IJCAI-99 Workshop on Text Mining: Foundations,
Tecchniques, and Applications.

Hull, Richard, Francois Llirbat, Bharat Kumar, Gang
Zhou, Guozhu Dong and Jianwen Su (2000). Optimiza-
tion techniques for data-intensive decision flows. Pro-
ceedings of the 16th International Conference on Data
Engineering. San Diego, CA: 281--292.

Mohri, Mehryar (1997). "Finite-State Transducers in
Language and Speech Processing." Computational Lin-
guistics 23(2): 269-311.

Oncina, Jose, Pedro Garcia and Enrique Vidal (1993).
"Learning subsequential transducers for pattern recogni-
tion." IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 15(5): 448--458.

Shanmugasundaram, Jayavel, Kristin Tufte, David J.
DeWitt, Jeffrey F. Naughton and David Maier (2000).
Architecting a network query engine for producing par-
tial results. Proceedings of the ACM SIGMOD 3rd Inter-
national Workshop on Web and Databases (WebDB).
Dallas, TX: 17-22.

Su, Zhong, Qiang Yang, Ye Lu and Hong-Jiang Zhang
(2000). WhatNext: A Prediction System for Web Request
Using N-gram Sequence Models. First International
Conference on Web Information Systems Engineering:
214--221.

Zukerman, Ingrid, David W. Albrecht and Ann E.
Nicholson (1999). Predicting User's Requests on the
WWW. Proceedings of the 7th International Conference
on User Modeling.

