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Abstract 
Software agents can be used to automate many of the tedious, time-consuming 
information processing tasks that humans currently have to complete manually.  
However, to do so, agent plans must be capable of representing the myriad of actions and 
control flows required to perform those tasks.  In addition, since these tasks can require 
integrating multiple sources of remote information – typically, a slow, I/O-bound process 
– it is desirable to make execution as efficient as possible.  To address both of these 
needs, we present a flexible software agent plan language and a highly parallel execution 
system that enable the efficient execution of expressive agent plans.  The plan language 
allows complex tasks to be more easily expressed by providing a variety of operators for 
flexibly processing the data as well as supporting subplans (for modularity) and recursion 
(for indeterminate looping).  The executor is based on a streaming dataflow model of 
execution to maximize the amount of operator and data parallelism possible at runtime.  
We have implemented both the language and executor in a system called THESEUS.  Our 
results from testing THESEUS show that streaming dataflow execution can yield 
significant speedups over both traditional serial (von Neumann) as well as non-streaming 
dataflow-style execution that existing software and robot agent execution systems 
currently support.  In addition, we show how plans written in the language we present can 
represent certain types of subtasks that cannot be accomplished using the languages 
supported by network query engines.  Finally, we demonstrate that the increased 
expressivity of our plan language does not hamper performance; specifically, we show 
how data can be integrated from multiple remote sources just as efficiently using our 
architecture as is possible with a state-of-the-art streaming-dataflow network query 
engine. 

1. Introduction 
The goal of software agents is to automate tasks that require interacting with one or more 
accessible software systems.  Past research has yielded several types of agents and agent 
frameworks capable of automating a wide range of tasks, including: processing sequences of 
operating system commands (Golden, Etzioni, & Weld, 1994), mediation of heterogeneous data 
sources (Wiederhold 1996; Bayardo, Bohrer, Brice, Cichocki, Fowler, Helal, Kashyap, Ksiezyk, 
Martin, Nodine, Rashid, Rusinkiewicz, Shea, Unnikrishnan, Unruh, & Woelk 1997; Knoblock, 
Minton, Ambite, Ashish, Muslea, & Tejada 2001), online comparison shopping (Doorenbos, 
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Etzioni, & Weld, 1996), continual financial portfolio analysis (Decker, Sycara, & Zeng, 1996), 
and airline ticket monitoring (Etzioni, Tuchinda, Knoblock, & Yates, 2004), to name only a few.  
Despite software agent heterogeneity, two recurring characteristics are (i) the wide variety of 
tasks that agents are used to automate and (ii) the frequent need to process and route information 
during agent execution. 

Perhaps no other domain poses as many tantalizing possibilities for software agent automation 
as the Web.  The ubiquity and practicality of the Web suggests that many potential benefits can 
be gained from automating tasks related to sources on the web. Furthermore, the Web is ripe for 
such automation – given the sheer number of online applications and the complete lack of 
coordination between them, agents could address an endless list of needs and problems to be 
solved for people that do use the Web for practical purposes.  Furthermore, like other software 
agent domains, Web tasks vary widely in complexity and, by definition, involve routing and 
processing information as part of the task.     

In this paper, we describe a software agent plan language and execution system that enables 
one to express a wide range of tasks as a software agent plan and then to have that plan be 
efficiently executed.  We have implemented both the language and the executor in a system called 
THESEUS.  Throughout this paper, we will discuss THESEUS in the context of Web information 
gathering and processing, since the Web represents a domain where most (if not all) of the 
challenges that software agents face can be found.        

1.1 Web Information Agents 
In recent years, the Web has experienced a rapid rate of growth, with more and more useful 
information becoming available online.  Today, there exists an enormous amount of online data 
that people can not only view, but also use in order to accomplish real tasks.  Hundreds of 
thousands of people use the Web every day to research airfares, monitor financial portfolios, and 
keep up to date with the latest news headlines.  In addition to its enormity, what is compelling 
about the Internet as a practical tool is its dynamic, up-to-the-minute nature.  For example, 
although information such as stock quotes and ticket availabilities change frequently, many 
sources on the Internet are capable of reporting these updates immediately.  For this reason, and 
because of the breadth and depth of information it provides, the Web has become – for certain 
tasks – a more timely and necessary medium than even the daily newspaper, radio, or television.  

The degree of complexity in gathering information from the Web varies significantly.  Some 
types of tasks can be accomplished manually because the size of the data gathered is small or the 
need to query is infrequent.  For example, finding the address of a restaurant or a theater in a 
particular city using a Yellow Pages type of Web site is easy enough for people to do themselves.  
It does not need to be automated, since the query need only be done once and the result returned 
is small and easy to manage.  However, not all information gathering tasks are as simple.  There 
are often times when the amount of data involved is large, or the answer requires integrating data 
from multiple sites, or the answer requires multiple queries over a period of time.  For example, 
consider shopping for an expensive product over a period of time using multiple sources that are 
each updated daily.  Such tasks can become quickly tedious and require a greater amount of 
manual work, making them very desirable to automate. 

1.1.1. MORE COMPLICATED TASKS 
One type of difficult Web information gathering task involves interleaved gathering and 
navigation. For the benefit of people that use a Web browser to access online data, many Web 
sources display large sets of query results spread over a series of web pages connected through 
“Next Page” links.   For example, querying an online classified listings source for automobiles for 
sale can generate many results.  Instead of displaying the results on a single very long Web page, 
many classified listings sites group sets of results over series of hyperlinked pages.  In order to 
automatically collect this data, a system needs to interleave navigation and gathering an 



AN EXPRESSIVE LANGUAGE AND EFFICIENT EXECUTION SYSTEM FOR SOFTWARE AGENTS 

627 

indeterminate number of times: that is, it needs to collect results from a given page, navigate to 
the next, gather the next set of results, navigate, and so on, until it reaches the end of set of 
results.  While there has been some work addressing how to theoretically incorporate navigation 
into the gathering process (Friedman, Levy, & Millstein, 1999), no attention has been given to the 
efficient execution of plans that engage in this type of interleaved retrieval. 

A second example has to do with monitoring a Web source.  Since the Web does not contain a 
built-in trigger facility, one is forced to manually check sources for updated data.  When updates 
are frequent or the need to identify an update immediately is urgent, it becomes desirable to 
automate the monitoring of these updates, notifying the user when one or more conditions are 
met.  For example, suppose we want to be alerted as soon as a particular type of used car is listed 
for sale by one or more online classified ad sources.  Repeated manual checking for such changes 
is obviously tedious.  Mediators and network query engines can automate the query, but 
additional software in programming languages such as Java or C must be written to handle the 
monitoring process itself, something that requires conditional execution, comparison with past 
results, possible notification of the user, and other such actions.   

1.1.2. THE NEED FOR FLEXIBILITY 
These examples show that automatically querying and processing Web data can involve a 

number of subtasks, such as interleaved navigation and gathering and integration with local 
databases.  Because of these needs, traditional database query languages like SQL are insufficient 
for the Web.  The root of the problem is lack of flexibility, or expressivity, in these languages -- 
typically, only querying is supported. More complicated types of Web information gathering 
tasks, such as those described here and in other articles (Etzioni & Weld, 1994; Doorenbos et al., 
1997; Chalupsky, Gil, Knoblock, Lerman, Oh, Pynadath, Russ, & Tambe, 2001; Ambite, Barish, 
Knoblock, Muslea, Oh, & Minton, 2002; Sycara, Paolucci, van Velsen, & Giampapa, 2003; 
Graham, Decker, & Mersic, 2003), usually involve actions beyond those needed for merely 
querying (i.e., beyond filtering and combining) – they require plans capable of a variety of 
actions, such as conditional execution, integration with local databases, and asynchronous 
notification to users.  In short, Web information gathering tasks require an expressive query or 
plan language with which to describe a solution. 
    XQuery (Boag, Chamberlin, Fernandez, Florescu, Robie, & Simeon, 2002), used for querying 
XML documents, is one language that offers more flexibility.  For example, XQuery supports 
“FLWOR” expressions that allow one to easily specify how to iterate over data.  XQuery also 
supports conditional expressions, UDFs, and recursive functions.      

Support for expressive agent plans can also be found in a number of software agent and robot 
agent frameworks, such as INFOSLEUTH (Bayardo et al., 1997), RETSINA (Sycara et al., 2003), 
DECAF (Graham et al., 2003), RAPs (Firby 1994) or PRS-LITE (Myers 1996).  These systems 
support concurrent execution of operators and the ability to execute more complicated types of 
plans, such as those that require conditionals.  In addition, unlike database systems, software 
agent and robot agent execution plans can contain many different types of operators, not just 
those limited to querying and filtering data.  

1.1.3. THE NEED FOR EFFICIENCY 
Despite support for more expressive plans, existing software agent and robot agent plan execution 
systems lack efficiency – a problem that is painfully realized when doing any kind of large scale 
data integration or when working with remote sources that operate at less than optimal speeds.  In 
particular, while systems like RETSINA, DECAF, RAPs and PRS-LITE ensure a high-degree of 
operator parallelism (independent operators can execute concurrently), they do not ensure any 
type of data parallelism (independent elements of data can be processed concurrently).  For 
example, it is not possible for one operator in these systems to stream information to another.  
This is understandable in the case of  robot plan execution systems, which address how a robot 
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interacts in the physical world, and are typically concerned with communicating effects, such as 
“has object X” or “direction north”, which are – relatively speaking – small amounts of local 
information.  Interestingly, while other software agent frameworks like DECAF and INFOSLEUTH 
have expressed a desire to support some sort of streaming architecture (Bayardo et al., 1997), 
such research has been constrained in part by the use of data transport layers (such as KQML) 
that do not contain the infrastructure necessary to support streaming.  

However, for a software agent to process large amounts of remote information efficiently, 
both types of parallelism are critical.  Dataflow-style parallelism is important in order to schedule 
independent operations concurrently; streaming is important in order to be able to process remote 
information as it becomes available and to make maximum use of local processing resources.  
Consider an agent that engages in two types of image processing on image data downloaded from 
a surveillance satellite.  If it normally takes one minute to download the data and another minute 
for each type of processing, streaming dataflow execution can theoretically reduce the overall 
execution time by up to two-thirds.  Even greater speedups are possible for different information 
processing tasks.  

Though existing software agent and robot plan execution systems do not support streaming, a 
substantial amount of previous work has gone into building such architectures for database 
systems (Wilschut & Apers, 1993) and more recently network query engines (Ives, Florescu, 
Friedman, Levy, & Weld, 1999; Hellerstein, Franklin, Chandrasekaran., Deshpande, Hildrum, 
Madden, Raman, & Shah, 2000;  Naughton, DeWitt, Maier, Aboulnaga, Chen, Galanis, Kang, 
Krishnamurthy, Luo, Prakash, Ramamurthy, Shanmugasundaram, Tian, Tufte, Viglas, Wang, 
Zhang, Jackson, Gupta, & Che, 2001).  These systems employ special iterative-style operators 
that are aware of the underlying support for streaming1 and exploit that feature to minimize 
operator blocking.  Examples include the pipelined hash join (Wilschut & Apers, 1993; Ives, et 
al., 1999) the eddy data structure (Avnur & Hellerstein, 2000), which efficiently routes streaming 
data to operators.  Despite support for a streaming dataflow model of execution, network query 
engines lack the generality and flexibility of existing agent frameworks and systems.  XQuery 
does provide a more powerful and flexible language for Web data gathering and manipulation.  
However, the network query engines support only a subset of XQuery or related XML query 
processing operators and do not support constructs such as conditionals and recursion2, which are 
essential for more complex types of information processing tasks.   

1.2 Contributions 
In summary, while it is desirable to automate the gathering and processing of data on the Web, it 
is currently not possible to build an agent that is both flexible and efficient using existing 
technologies.  Existing agent execution systems are flexible in the types of plans they support, but 
they lack the ability to stream information, a critical feature that needs to be built into both the 
underlying architecture as well as the individual operators (i.e., operators need to implemented as 
iterators).  Network query engines contain support for streaming dataflow, but lack the 
expressivity provided by existing agent plan languages. 

In this paper, we address the need to combine both by presenting an expressive plan language 
and an efficient execution system for software agents.  More specifically, this paper makes two 
contributions.  The first is a software agent plan language that extends features of existing agent 
plan languages and is more expressive than the query languages of existing information 
integration systems and network query engines.  The language proposed consists of a rich set of 
operators that, beyond gathering and manipulating data, support conditional execution, 
management of data in local persistent sources, asynchronous notification of results to users, 

                                                 
1 Note: The term “pipelining” is common in database literature (e.g., Graefe, 1993), although “streaming” is 
often used in network query engine literature (see recent publications by Niagara and Telegraph). 
2 For example, Tukwila supports only a subset of Xquery (Ives et al., 2002). 
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integration between relational and XML sources, and extensibility (i.e., user-defined functions).  
In addition, the language is modular and encourages re-use: existing plans can be called from 
other plans as subplans and plans can be called recursively.  Both the operators and constructs 
provide the expressivity necessary to address more complicated types of software agent tasks, 
such as the monitoring and interleaved navigation and gathering of Web data.     

A second contribution of this paper is the design for an executor that efficiently processes 
agent plans written in the proposed language.  The core of the executor implements a streaming 
dataflow architecture, where data is dispatched to consuming operators as it becomes available 
and operators execute whenever possible.  This design allows plans to realize the maximum 
degree of operational (horizontal) and data (vertical) parallelism possible.  Our design also 
supports recursive streaming, resulting in the efficient execution of plans that require 
indeterminate looping, such as agents that interleave navigation and gathering of information on 
the Web.  In short, the executor supports the highly parallel execution of software agent plans, 
leading to significant performance improvement over that provided by expressive, but less 
efficient agent executors. 

We have implemented both the plan language and executor in a system called THESEUS.  
Throughout this paper, we refer to example plans that have been deployed in THESEUS in order to 
better illustrate plan expressivity and, later, to validate efficiency claims. 

1.3 Organization 
The rest of this paper is organized as follows.  Section 2 provides background and the basic 
terminology of both dataflow computing (Arvind & Nikhil, 1990; Papdopoulos & Culler, 1990; 
Gurd & Snelling, 1992), generic information integration (Chawathe, Garcia-Molina, Hammer, 
Ireland, Papakonstantinou, Ullman, & Widom, 1994; Arens, Knoblock, & Shen, 1996; Levy, 
Rajaraman, & Ordille, 1996; Weiderhold 1996; Genesereth, Keller, & Duschka, 1997) and 
automated Web information gathering (Knoblock et al., 2001; Ives et al., 1999; Barish & 
Knoblock, 2002; Thakkar, Knoblock, & Ambite, 2003; Tuchinda & Knoblock, 2004).  Section 3 
describes the details involved in one type of complex software agent information gathering task, 
an example that will be used throughout the rest of the paper.  In Section 4, we describe the 
proposed plan language in detail.  Section 5 deals with the design of the streaming dataflow 
executor and how it provides high degrees of horizontal and vertical parallelism at runtime.  In 
Section 6, we present experimental results, describing how the plan language and executor 
implemented in THESEUS measure up to those provided by other systems.  In Section 7, we 
discuss the related work in greater detail.  Finally, we present overall conclusions and discuss 
future work. 

2. Preliminaries 
The language and execution system we present in this paper build upon a foundation of prior 
research related to dataflow computing (Dennis 1974) and Web information integration 
(Wiederhold 1996; Bayardo et al., 1997, Knoblock et al., 2001).  Although seemingly orthogonal 
disciplines, they are effective complements in that the parallelism and asynchrony provided by 
dataflow computing lends itself to the performance problems associated with Web information 
gathering.   

2.1 Dataflow Computing 
The pure dataflow model of computation was first introduced by Dennis (1974) as an alternative 
to the standard von Neumann execution model.  Its foundations share much in common with past 
work on computation graphs (Karp & Miller, 1955), process networks (Kahn 1974), and 
communicating sequential processes (Hoare 1978).  Dataflow computing has a long theoretical 
and experimental history, with the first machines being proposed in the early 1970s and real 
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physical systems being constructed in the late 1970s and throughout the 1980s and early 1990s 
(Arvind & Nikhil, 1990; Papdopoulos & Culler, 1990; Gurd & Snelling, 1992).       

The dataflow model of computation describes program execution in terms of data 
dependencies between instructions.  A dataflow graph is a directed acyclic graph (DAG) of nodes 
and edges.  The nodes are called actors.  They consume and produce data tokens along the edges 
that connect them to other actors.  All actors run concurrently and each is able to execute, or fire, 
at any time after its input tokens arrive.  Input tokens can come from initial program input or as a 
result of earlier execution (i.e., the output of prior actor firings).  The potential overall 
concurrency of execution is thus a function of the data dependencies that exist in the program, a 
degree of parallelism referred to as the dataflow limit.   

The key observation to be made about dataflow computing that its execution is inherently 
parallel – actors function independently (asynchronously) and fire as necessary.  In contrast, the 
von Neumann execution model involves the sequential processing of a pre-ordered set of 
instructions.  Thus, execution is inherently serial.  When comparing dataflow to von Neumann, a 
more subtle difference (yet one at the heart of the distinction between the two) to be noted is that 
the scheduling of instructions is determined at run-time (i.e., dynamic scheduling), whereas in a 
von Neumann system it occurs at compile-time (i.e., static scheduling).  Figure 1 illustrates the 
difference between the dataflow and von Neumann approaches applied to the execution of a 
simple program.  The program requires the multiplication of two independent additions.  Under 
the von Neumann style of execution, the ADD operations must be executed sequentially, even 
though they are independent of each other, because an instruction counter schedules one 
instruction at a time.  In contrast, since the availability of data drives the scheduling of a dataflow 
machine, both ADD operations can be executed as soon as their input dependencies are fulfilled.       

Dataflow systems have evolved from the classic static (Dennis 1974) model to dynamic 
tagged token models (Arvind & Nikhil, 1990) that allowed multiple tokens per arc, to hybrid 
models that combine von Neumann and traditional dataflow styles of execution (Iannucci, 1988; 
Evripidou & Gaudiot, 1991; Gao, 1993).  Other models that have been applied to digital signal 
processing include boolean dataflow and synchronous dataflow (Lee & Messerschmitt, 1987), 
resulting in architectures known as “dataflow networks”.  The work described in this paper is 
most relevant to a specific hybrid dataflow approach, known as threaded dataflow 
(Papadopoulos & Traub, 1991), which maintains a data-driven model of execution but associates 

Figure 1: Comparing von Neuman and dataflow computing
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instruction streams with individual threads that execute in a von Neumann fashion.  It is distinct 
from pure von Neumann multithreading in the sense that data, not an instruction counter, remains 
the basis for scheduling instructions (operators).  But it is also distinct from pure dataflow in the 
sense that execution of instruction streams is a statically scheduled sequential task, unlike the 
typical dynamic scheduling found in dataflow machines.  As a result, threaded dataflow can also 
be viewed as data-driven multithreading.  

Recent advances in processor architecture, such as the Simultaneous Multithreading (SMT) 
project (Tullsen, Eggers, & Levy, 1995) have demonstrated the benefits of data-driven 
multithreading.  SMT-style processors differ from conventional CPUs (such as the Intel Pentium) 
by partitioning on-chip resources so that multiple threads can execute concurrently, making better 
use of available functional units on the same amount of chip real estate.  The resulting execution 
reduces “vertical waste” (the wasting of cycles) that can occur when a sequence of instructions is 
executed using only one thread, as well as “horizontal waste” (the wasting available functional 
units) that can occur when executing multiple threads.  To do so, the technique effectively trades 
instruction-level parallelism (ILP) benefits for thread-level parallelism (TLP) benefits.  Instead of 
having a deep processor pipeline (which becomes less useful as its depth increases), SMT 
processors contain multiple shorter pipelines, each associated with a single thread.  The result 
can, for highly parallel applications, substantially improve the scheduling of on-chip resources 
that, on conventional CPUs, would normally be starved as a result of both I/O stalls as well as 
thread context-switching.   

The work described here applies a threaded dataflow design to a higher level of execution – 
the information gathering plan level.  Instead of executing fine-grained instructions, we are 
interested in the execution of coarse-grained operators.  Still, we believe that threaded dataflow is 
generally an efficient strategy for executing I/O-bound information gathering plans that integrate 
multiple remote sources because it allows coarse-grained I/O requests (such as network requests 
to multiple Web sources) to be automatically scheduled in parallel.  Such plans are similar to 
other systems that maintain high degrees of concurrent network connections, such as a Web 
server or database system.  Prior studies on such Web servers (Redstone, Eggers, & Levy, 2000) 
and database systems (Lo, Barroso, Eggers, Gharachorloo, Levy, & Parekh, 1998) have already 
shown that such systems run very efficiently on SMT-style processors; we believe the same will 
hold true for the execution of dataflow-style information gathering plans. 

2.2 Web-based Information Gathering and Integration 
Generic information integration systems (Chawathe et al., 1994; Arens et al., 1996; Levy et al., 
1996; Genesereth et al., 1997) are concerned with the problem of allowing multiple distributed 
information sources to be queried as a logical whole.  These systems typically deal with 
heterogeneous sources – in addition to traditional databases, they provide transparent access to 
flat files, information agents, and other structured data sources.  A high-level domain model maps 
domain-level entities and attributes to underlying sources and the information they provide.  An 
information mediator (Wiederhold 1996) is responsible for query processing, using the domain 
model and information about the sources to compile a query plan.  In traditional databases, query 
processing involves three major phases: (a) parsing the query, (b) query plan generation and 
optimization and (c) execution.  Query processing for information integration involves the same 
phases but builds upon traditional query plan optimization techniques by addressing cases that 
involve duplicate, slow, and/or unreliable information sources.   

Web-based information integration differs from other types of information integration by 
focusing on the specific case where information sources are Web sites (Knoblock et al., 2001).  
This adds two additional challenges to the basic integration problem: (1) that of retrieving 
structured information (i.e., a relation) from a semi-structured source (Web pages written in 
HTML) and (2) querying data that is organized in a manner that facilitates human visual 
consumption, not necessarily in a strictly relational manner.  To address the first challenge, Web 
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site wrappers are used to convert semi-structured HTML into structured relations, allowing Web 
sites to be queried as if they were databases.  Wrappers take queries (such as those expressed in a 
query language like SQL) and process them on data extracted from a Web site, thus providing a 
transparent way of accessing unstructured information as if it were structured.  Wrappers can be 
constructed manually or automatically, the latter using machine learning techniques (Knoblock, 
Lerman, Minton, & Muslea 2000; Kushmerick, 2000).  While wrappers can be used to extract 
data from many Web sites, other sites are problematic because of how the data to be extracted is 
presented.  One common case is where the Web site distributes a single logical relational answer 
over multiple physical Web pages, such as in the case of the online classifieds example described 
earlier.  Automating interleaved navigation with gathering is required in such scenarios, yet it has 
received little attention in the literature.  One approach is to extend traditional query answering 
for information integration systems to incorporate the capability for navigation (Friedman et al., 
1999).  However, such solutions mostly address the query processing phase and it remains an 
open issue regarding how to execute these types of information gathering plans efficiently.   

A more recent technology for querying the Web is the network query engine (Ives et al., 
1999; Hellerstein et al., 2000; Naughton et al., 2001).  While these systems are, like mediators, 
capable of querying sets of Web sources, there has been a greater focus on the challenges of 
efficient query plan execution, robustness in the face of network failure or large data sets, that of 
processing XML data.  Many network query engines rely on adaptive execution techniques, such 
as dynamic reordering of tuples among query plan operators (Avnur & Hellerstein 2000) and the 
double pipelined hash join (Ives et al., 1999), to overcome the inherent latency and unpredictable 
availability of Web sites.  

An important aspect of network query engine research has been its focus on dataflow-style 
execution.  Research on parallel database systems has long regarded dataflow-style query 
execution efficient (Grafe, 1993; Wilschut & Apers, 1993).  However, when applied to the Web, 
dataflow-style processing can yield even greater speedups because (a) Web sources are remote, so 
the base latency of access is much higher than that of accessing local data and (b) Web data 
cannot be strategically pre-partitioned, as it can in shared-nothing architectures (DeWitt & Gray, 
1992).  Thus, because the average latency of Web data access is high, the parallelizing capability 
of dataflow-style execution is even more compelling than it is for traditional parallel database 
systems because the potential speedups are greater. 

3. Motivating Example 
As discussed earlier, while mediators and network query engines allow distributed Web data to be 
queried efficiently, they cannot handle some of the more complicated types of information 
gathering tasks because their query (and thus plan) languages do not support the degree of 
expressivity required.  To better motivate our discussion, we now describe a detailed example of 
an information gathering problem that requires a more complex plan.  Throughout the rest of this 
paper, we will refer to this example as we describe the details of our proposed agent plan 
language and execution system.   

Our example involves using the Web to search for a new house to buy.  Suppose that we want 
to use an online real estate listings site, such as Homeseekers (http://www.homeseekers.com), to 
locate houses that meet a certain set of price, location, and room constraints.  In doing so, we 
want our query to run periodically over a medium duration of time (e.g., a few weeks) and have 
any new updates (i.e., new houses that meet our criteria) e-mailed to us as they are found. 

To understand how to automate the gathering part of this task, let us first discuss how users 
would complete it manually.    Figures 2a, 2b, and 2c show the user interface and result pages  for  
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Figure 2c: Detailed result from Yahoo Real Estate

Figure 2b: Initial results from Yahoo Real Estate

Figure 2a: Initial query form for Yahoo Real Estate 
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Homeseekers.  To query for new homes, users initially fill the criteria shown in Figure 2a – 
specifically, they enter information that includes city, state, maximum price, etc.  Once they fill in 
this form, they submit the query to the site and an initial set of results are returned – these are 
shown in Figure 2b.  However, notice that this page only contains results 1 through 15 of 22. To 
get the remainder of the results, a "Next" link (circled in Figure 2b) must be followed to the page 
containing results 16 through 22.  Finally, to get the details of each house, users must follow the 
URL link associated with each listing.  A sample detail screen is shown in Figure 2c.  The detail 
screen is useful because it often contains pictures and more information, such as the MLS 
(multiple listing services) information, about each house.  In our example, the detailed page for a 
house must be investigated in order to identify houses that contain the number of rooms desired.  

Users would then repeat the above process over a period of days, weeks, or even months.  The 
user must both query the site periodically and keep track of new results by hand.    This latter 
aspect can require a great deal of work – users must note which houses in each result list are new 
entries and identify changes (e.g., selling price updates) for houses that have been previously 
viewed.      

As we have already discussed, it is possible to accomplish part of our task using existing Web 
query techniques, such as those provided by mediators and network query engines.  However, 
notice that our task requires actions beyond gathering and filtering data.  It involves periodic 
execution, comparison with past results, conditional execution, and asynchronous notification to 
the user.  These are not actions that traditional Web query languages support – indeed, these 
actions involve more than gathering and filtering.  Instead of a query plan language, what is 
needed is an agent plan language that supports the operators and constructs necessary to complete 
the task.    

We can consider how such agent plans generally might look.  Figure 3 shows an abstract plan 
for monitoring Homeseekers.  As the figure shows, search criteria are used as input to generate 
one or more pages of house listing results.  The URLs for each house from each results page are 
extracted and then compared against houses that already existed in a local database.  New houses 
– those on the web page but not in the database – are subsequently queried for their details and 
appended to the database so that future queries can distinguish new results.  During the extraction 
of houses from a given Homeseekers results page, the "Next" link (if any) on that page is 
followed and the houses on that page go through the same process.  The next-link processing 
cycle stops when the last result page, the page without a “Next” link, has been reached.  Then, 
after the details of the last house have been gathered, an update on the set of new houses found is 
e-mailed to the user.   
 

Figure 3: Abstract plan for monitoring Yahoo Real Estate
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4. An Expressive Plan Language for Software Agents  
In this section, we present an agent plan language that makes it possible to construct plans 
capable of more complicated tasks.  Throughout this section, we focus on information gathering 
tasks, such as the Homeseekers example shown in Figure 3.    

4.1 Plan Representation 
In our language, plans are textual representations of dataflow graphs describing a set of input 
data, a series of operations on that data (and the intermediate results it leads to), and a set of 
output data.  As discussed earlier, dataflow is a naturally efficient paradigm for information 
gathering plans.  Graphs consist of a set of operator sequences (flows) where data from one 
operator in a given flow is iteratively processed and then flows to successive operators in the 
flow, eventually being merged with another flow or output from the plan.   

For example, Figure 4 illustrates the dataflow graph form of a plan named Example_plan.  It 
shows that the plan consists of six nodes (operators) connected with a set of edges (variables).  
The solid directed edges (labeled a, b, c, d, f, and g) represent a stream of data, while the dashed 
directed edge (labeled e) represents a signal used for synchronization purposes.         

Figure 5 shows the text form of the same plan.  The header consists of the name of the plan 
(example_plan), a set of input variables (a and b), and a set of output variables (f).  The body 
section of the plan contains the set of operators.  The set of inputs for each operator appears to the 
left of the colon delimiter and the set of outputs appears to the right of the delimiter.  One 
operator (Op3) has a WAIT clause that is associated with the production of the signal indicated in 
Figure 4 by e.  The ENABLE clause of a later operator (Op5) describes the consumption of that 
signal.  

Both the graph and text forms of the example plan describe the following execution.  
Variables a and b are plan input variables.  Together, they trigger the execution of Op1, which 
produces variable c.  Op2 fires when c becomes available, and this leads to the output of variable 
d.  Op3 fires upon the availability of d and produces the signal e. Op4 uses d to compute f (the 

PLAN example_plan 
{ 
  INPUT: a, b 
  OUTPUT: f 
 
  BODY  
  { 
    Op1 (a, b : c)  
    Op2 (c : d) 
    Op3 (c : ) {ENABLE: e} 
    Op4 (d : f, g) 
    Op5 (g : ) {WAIT : e} 
  } 
} 

Figure 5: Text form of Example_plan

Figure 4: Graph form of Example_plan 
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plan output variable) and g.  Finally, the availability of g and the signal e triggers the execution of 
Op5. 

Note that although the body part of the text form of the plan lists operators in a linear order, 
this ordering does not affect when they are actually executed.  Per the dataflow model of 
processing, operators fire whenever their individual data dependencies are fulfilled.  For example, 
although Op3 follows Op2 in the order specified by the plan text, it actually executes at the same 
logical time as Op2.  Also note that plan output, f, can be produced while the plan is still running 
(i.e., while Op5 is still processing).  

4.1.1. FORMAL DEFINITIONS  
Formally, we define the following: 

Definition 1: An information gathering plan P can be represented as a directed graph of 
operators Ops as nodes connected through a set of variables Vars that are the edges. Each plan 
is associated with a subset of Vars that are plan input variables PlanIn and another subset of 
variables that are plan output variables PlanOut.  More specifically, let a plan P be represented 
as the tuple 

P = <Vars, Ops, PlanIn, PlanOut> 
where 

Vars = {v1, ..., vn}, n > 0 
Ops = {Op1, ..., Opm}, m > 0 
PlanIn = {va1, ..., vax}, x > 0, s.t. {va1, ..., vax} ∈ Vars 
PlanOut = {vb1, ..., vby}, y >= 0, s.t. {vb1, ..., vby} ∈ Vars 

Definition 2: A plan operator Op encapsulates a function Func that computes a set of operator 
output variables OpOut from a set of operator input variables OpIn. More specifically, let each 
operator Opi in P be represented as the tuple 

Opi = <OpIn, OpOut, Func> 
where 

OpIn = {vi1, ..., vic}, c > 0, s.t. {vi1, ..., vic} ∈ Vars  
OpOut = {vo1, ..., vog}, g >= 0, s.t. {vo1, ..., vog} ∈ Vars  
Func = Function that computes {vo1, ..., vog} from {vi1, ..., vic} 

Furthermore, any plan Pa can also be called from another plan Pb as an operator.  In this case, 
the plan Pa is known as a subplan.  

Definition 3: The schedule of execution for any operator instance Opi is described by a firing 
rule Ψi that depends on OpIn, an optional second set of input wait variables OpWait, and results 
in the generation of OpOut and an optional second set of output enablement variables OpEnable.  
The initial firing of an operator is conditional on the availability of at least one of OpIn and all of 
OpWait.  After the initial firing, any OpEnable variables declared are also produced.  All other 
OpOut variables are produced in accordance with the semantics of the operator.   More 
specifically, let us define:   

Ψi (Opi) = <OpIn, OpWait, OpOut, OpEnable> 
where  

OpWait = {vw1, ..., vwd}, d >= 0, s.t. {vw1, ..., vwd} ∈ Vars  
OpEnable = {ve1, ..., veh}, h >= 0, s.t. {ve1, ..., veh} ∈ Vars  

Wait and enable variables are synchronization mechanisms that allow operator execution to be 
conditional beyond its normal set of input data variables.  To understand how, let us first 
distinguish between a standard data variable and a synchronization variable.  A standard data 
variable is one that contains information that is meant to be interpreted, or more specifically, 



AN EXPRESSIVE LANGUAGE AND EFFICIENT EXECUTION SYSTEM FOR SOFTWARE AGENTS 

637 

processed by the function that an operator encapsulates.  For example, PlanIn, PlanOut, OpIn, 
and OpOut all consist of normal data variables.  A synchronization variable (earlier called a 
“signal”) is one that consists of data not meant to be interpreted – rather, such variables are 
merely used as additional conditions to execution.  Since control in dataflow systems is driven by 
the availability of data, synchronization variables in dataflow style plans are useful because they 
provide more control flow flexibility.  For example, if a certain static operation should occur each 
time a given data flow is active, synchronization variables allow us to declare such behavior. 

 Definition 3 indicates that, like actors in traditional dataflow programs, operators in 
information gathering plans have a firing rule that describes when an operator can process its 
input.  For example, in the dataflow computer specified by (Dennis 1974), actors can fire when 
their incoming arcs contain data.  For the plans in the language described in this paper, the firing 
rule is slightly different:  

An operator may fire upon receipt of any input variable, providing it has received all 
of its wait variables. 

Note that both plans and operators require at least one input because, as the firing rule implies, 
plans or operators without at least one input would fire continuously. 

4.2 Data Structures  
Operators process and transmit data in terms of relations.  Each relation R consists of a set of 
attributes (i.e., columns) a1..ac and a set of zero or more tuples (i.e., rows) t1..tr, each tuple ti 
containing values vi1..vic.  We can express relations with attributes and a set of tuples containing 
values for each of those attributes as: 

R (a1, ..., ac) = {{v11, ..., v1c}, {v21, ..., v2c}, ...,  {vr1, ..., vrc}} 

Each attribute of a relation can be one of five types: char, number, date, relation (embedded), or 
document (i.e., a DOM object).  

Embedded relations (Schek & Scholl, 1986) within a particular relation Rx are treated as 
opaque objects vij when processed by an operator. However, when extracted, they become a 
separate relation Ry that can be processed by the rest of the system.  Embedded relations are 
useful in that they allow a set of values (the non-embedded objects) to be associated with an 
entire relation. For example, if an operator performs a COUNT function on a relation to 
determine the number of tuples contained in that relation, the resulting tuple emitted from the 
operator can consist of two attributes: (a) the embedded relation object and (b) the value equal to 
the number of rows in that embedded relation.  Embedded relations thus allow sets to be 
associated with singletons, rather than forcing a join between the two.  In this sense, they preserve 
the relationship between a particular tuple and a relation without requiring the space for an 
additional key or the repeating of data (as a join would require). 

XML data is supported through the document attribute type.  XML is one type of document 
specified by the Document Object Model (DOM).  The proposed language here contains specific 
operators that allow DOM objects to be converted to relations, for relations to be converted to 
DOM objects, and for DOM objects that are XML documents to be queried in their native form 
using XQuery.  Thus, the language supports the querying of XML documents in their native or 
flattened form. 

4.3 Plan Operators  
The available operators in the plan language represent a rich set of functions that can be used to 
address the challenges of more complex information gathering tasks, such as monitoring.  
Specifically, the operators support the following classes of actions: 

• data gathering: retrieval of data from both the network and from traditional relational 
databases, such as Oracle or DB2. 
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• data manipulation: including standard relational data manipulation, such as Select and 
Join, as well as XML-style manipulations such as XQuery. 

• data storage: the export and updating of data in traditional relational databases. 
• conditional execution: routing of data based on its contents at run-time.  
• asynchronous notification: communication of intermediate/periodic results through 

mediums/devices where transmitted data can be queued (e.g., e-mail). 
• task administration: the dynamic scheduling or unscheduling of plans from an external 

task database. 
• extensibility: the ability to embed any special type of computation (single-row or 

aggregate) directly into the streaming dataflow query plan 

Though operators differ on their exact semantics, they do share some similarities in how they 
process input and generate output.  In particular, there are two modes worth noting: the automatic 
joining of output to input (a dependent join) and the packing (embedding) and unpacking 
(extracting) of relations. 

In information gathering plans, it is common to use data collected from one source as a basis 
for querying additional sources.  Later, it often becomes desirable to associate the input to the 
source with the output it produces.  However, doing this join as a separate step can be tedious 
because it requires the creation of another key on the existing set of data plus the cost of a join.  
To simplify plans and improve the efficiency of execution, many of the operators in the language 
perform a dependent join of input tuples onto the output tuples that they produce.  A dependent 
join simply combines the contents of the input tuple with any output tuple(s) it generates, 
preserving the parity between the two. For example, the operator ROUND converts a floating 
point value in a column to its nearest whole integer value.  Thus, if the input data consisted of the 
tuples {{Jack, 89.73}, {Jill, 98.21}} then the result after the ROUND operator executes would be 
of {{Jack, 89.73, 90}, {Jill, 98.21, 98}}.  Without a dependent join, a primary key would need to 
be added (if one did not already exist) and then a separate join would have to be done after the 
ROUND computation.   Thus, dependent joins simplify plans – they reduce the total number of 
operators in plan (by reducing the number of decoupled joins) and eliminate the need to ensure 
entity integrity prior to processing.       

Another processing mode of operators involves the packing and unpacking of relations3.  
These operations are relevant in the context of embedded relations.  Instead of creating and 
managing two distinct results (which often need to be joined later), it is cleaner and more space-
efficient to perform a dependent join on the packed version of an input relation with the result 
output by an aggregate-type operator.  For example, when using an AVERAGE operator on the 
input data above, the result after a dependent join with the packed form of the original relation 
would be: {{{Jack, 89.73}, {Jill, 98.21}}, 93.97}.  Unpacking would be necessary to get at the 
original data.  In short, embedded relations make it easy to associate aggregates with the values 
that led to their derivation.  Packing and unpacking are useful data handling techniques that 
facilitate this goal. 

Table 1 shows the entire set of operators in the proposed language.  Some of these (such as 
Select and Join) have well-known semantics (Abiteboul, Hull, & Vianu, 1995) and are used in 
other database and information gathering systems.  As a result, we will not discuss them here in 
any detail.  However, many of the operators are new and provide the ability to express more 
complicated types of plans.  We now focus on the purpose and mechanics of some of these other 
operators. 

                                                 
3 Note: These operations are also referred to as NEST and UNNEST in database literature. 
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4.3.1. INTERACTING WITH LOCAL DATABASES 
There are two major reasons why it is useful to be able to interact with local database systems 
during plan execution.  One reason is that the local database may contain information that we 
wish to integrate with other online information.  A second reason has to do with the ability for the 
local database to act as “memory” for plans that run continuously or when a plan run at a later 
time needs to use the results of a plan run at an earlier time.   

To address both needs, the database operators DbImport, DbQuery, DbExport, and DbAppend 
are provided.  A common use for these operators is to implement a monitoring-style query.  For 
example, suppose we wish to gradually collect data over a period of time, such as the collection 
of house data in the Homeseekers example.  To accomplish this, DbImport or DbQuery can be 
used to bring previously queried data into a plan so that it can be compared with newly queried 
data (gathered by a Wrapper operator) by using any of the set-theoretic operators, such as Minus) 
and the result or difference can be written back to the database through DbAppend or DbExport.    

4.3.2. SUPPORTING CONDITIONAL EXECUTION 
Conditional execution is important for plans that need to perform different actions for data based 
on the run-time value of that data.  To analyze and conditionally route data in a plan, the language 

Table 1: The complete set of operators 

Operator Purpose
Wrapper Fetch and extract data from web sites into relations.
Select Filters data from a relation.
Project Filters attributes from a relation.

Join Combines data from two relations, based on a specified condition.
Union Performs a set union of two relations.

Intersect Finds the intersection of two relations.
Minus Subtracts one relation from another.

Distinct Returns tuples unique across one or more attributes.
Null Conditionally routes one of two streams based on existence of tuples in a third
Pack Embeds a relation within a new relation consisting of a single tuple.

Unpack Extracts an embedded relation from tuples of an input relation.
Format Generates a new formatted text attribute based on tuple values.
Rel2xml Converts a relation to an XML document.
Xml2rel Converts an XML document to a relation.

Xquery
Queries an XML document attribute of tuples of an input relation using language 
specified by the Xquery standard, returning an XML document result attribute 
contained in the tuples of the output relation.

DbImport Scan a table from a local database.
DbQuery Query the schema from a local database using SQL.

DbAppend Appends a relation to an existing table – creates the table if none exists.
DbExport Exports a relation to a single table.
DbUpdate Executes a SQL-style update query; no results returned.

Email Uses SMTP to communicate an email message to a valid email address.
Phone Sends a text message to a valid cell phone number.

Fax Faxes data to a recipient at a valid fax number.
Schedule Adds a task to the task database with scheduling information.

Unschedule Removes a task from the database.
Apply Executes a user-defined function on each tuple of a relation.

Aggregate Executes a user-defined function on an entire relation.
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supports the Null operator.  Null acts as a switch, conditionally routing one set of data based on 
the status of another set of data.  Null refers to the predicate “Is Null”, which is a conditional that 
executes different actions depending on the result of the evaluation.  When the data is null, action 
A is performed; when it is not null, action B is performed.  To accomplish this in dataflow, the 
Null operator publishes different sets of data, one for either case.       

For example, suppose it is desirable to have stock quotes automatically communicated to a 
user every 30 minutes.  Normally, quotes should be retrieved and then e-mailed.  However, if the 
percentage price change of any stock in the portfolio is greater than 20%, then all quotes should 
be sent via cell phone messaging (since such communication can be more immediate).  Null 
would be useful in such a case because it would allow a Select condition to process the check on 
price changes and – if there exist tuples that match the filtering criteria – allow that data to trigger 
an operator that communicated those results via cell phone.  Otherwise, Null would route the data 
to an operator that communicated in the information via e-mail.  In short, Null is powerful 
because it is a dynamic form of conditional execution in that it can be used with other operators 
(like Select) to activate/deactivate flows based on the runtime content of the data. 

 The input and output to Null is summarized in Figure 6.  The input is data to be analyzed d, 
data to be forwarded upon true (null) dt, and the data to be forwarded upon false df.  If d is null 
(i.e., contains zero tuples), then dt is copied as output variable t.  Otherwise, df is copied as output 
f.  For example, if d contains three tuples {x1, x2, x3} and if dt contains five tuples {t1, t2, t3, t4, 
t5} and df contains two tuples {f1, f2}, then only a variable t containing {t1, t2, t3, t4, t5} is 
output.  Consumers of f will never receive any data. 

4.3.3. CALLING USER-DEFINED FUNCTIONS 
In designing a number of agent plans, we found that there were times when agents needed to 
execute some special logic (e.g., business logic) during execution.  Usually, this logic did not 
involve relational information processing and the plan writer simply wanted to be able to code in 
a standard programming language (such as Java or C).  For example, in some of the plans written 
for the Electric Elves travel agents (Ambite et al., 2002), it was necessary for the agent to send 
updates to users via the DARPA CoAbs Agent Grid network.  In other plans, we needed to 
normalize the formats of date strings produced by different Web sources.  Instead of expanding 
the operator set for each unique type of logic encountered, we developed two special operators 
that allowed plans to make calls to arbitrary functions written in standard programming 
languages.  The goal of having these operators was to (a) make it easier to write plans that 
required special calculations or library calls, (b) encourage non-relational information processing 
(which could not benefit from the efficiency of dataflow style processing) to be modularized 
outside of the plan, and (c) to simplify plans.   

The two operators, Apply and Aggregate, provide extensibility at both the tuple and relation 
level. Apply calls user-defined single-row functions on each tuple of relational data and performs 
a dependent join on the input tuple with its corresponding result.  For example, a user-defined 
single-row function called SQRT might return a tuple consisting of two values: the input value 
and its square root.  The user defined function is written in a standard programming language, 
such as a Java, and is executed on a per-tuple basis.  Thus, this type of external function is very 
similar to the use of stored procedures or UDFs in commercial relational database systems. 

The Aggregate operator calls user-defined multi-row functions and performs a dependent join 
on the packed form of the input and its result. For example, a COUNT function might return a 

Figure 6: The NULL operator 
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relation consisting of a single tuple with two values: the first being the packed form of the input 
and the second being the count of the number of distinct rows in that relation.  As with Apply, the 
user-defined multi-row function is written in a standard programming language like Java.  
However, in contrast to being called on a per-tuple basis, it is executed on a per-relation basis. 

4.3.4. XML INTEGRATION 
For purposes of efficiency and flexibility, it is often convenient to package or transform data 
to/from XML in mid-plan execution.  For example, the contents of a large data set can often be 
described more compactly by leveraging the hierarchy of an XML document.  In addition, some 
Web sources (such as Web services) already provide query answers in XML format.  To analyze 
or process this data, it is often simpler and more efficient to deal with it in its native form rather 
than to convert it into relations, process it, and convert it back to XML.  However, in other cases, 
a relatively small amount XML data might need to be joined with a large set of relational data.  

To provide flexible XML manipulation and integration, the language supports the Rel2xml, 
Xml2rel, and Xquery operators.  The first two convert relations to XML documents and vice-
versa, using straightforward algorithms.  Xml2Rel allows one to specify an “iterating” element 
(which map to tuples in the relation) and “attribute” elements (which map to attributes of the 
relation), and generates tuples that include an index referring to the order in which the original 
XML element was parsed.  Cross product style flattening for deeper child elements is performed 
automatically.  Rel2Xml is even more straightforward: it creates parent XML elements for each 
tuple and inserts attribute elements as children, in the order they appear in the relation.  To allow 
XML to be processed in its native form, we support the Xquery operator, based on the XQuery 
standard (Boag et al., 2002).     

The Xml2Rel, Rel2Xml, and Xquery are complementary in terms of functionality.  Xml2Rel 
handles the basic conversion of XML to relational data, noting the order of data in the document.  
Rel2Xml handles the basic conversion back to XML, without regards to order – note that the 
nature of streaming dataflow parallelism is such that order of processing those tuples is 
deliberately not guaranteed.  However, if the order of the XML document generated by Rel2Xml 
is important, Xquery can be used as a post-processing step to address that requirement.  In short, 
both Xml2Rel and Rel2Xml focus on the simple task of converting from a relation to a document; 
any complex processing of XML can be accomplished through the Xquery operator.     

4.3.5. ASYNCHRONOUS NOTIFICATION 
Many continuously running plans, such as Homeseekers, do not involve interactive sessions with 
users.  Instead, users request that a plan be run on a given schedule and expect to receive updates 
from the periodic execution of that plan.  These updates are delivered through asynchronous 
means, such as e-mail, cell-phone messaging, or facsimile.  To facilitate such notification, the 
language includes the Email, Fax, and Phone operators for communicating data via these devices. 

Each of these operators works in a similar fashion.  Input data received by the operator is re-
formatted into a form that is suitable for transmission to the target device.  The data is then 
transmitted: Email sends an e-mail message, Fax contacts a facsimile server with its data, and 
Phone routes data to cell phone capable of receiving messages.  

4.3.6. AUTOMATIC TASK ADMINISTRATION 
The overall system that accompanies the language includes a task database and a daemon process 
that periodically reads the task database and executes plans according to their schedule.  This 
architecture is shown in Figure 7.  Task entries consist of a plan name, a set of input to provide to 
that plan, and scheduling information.  The latter data is represented in a format similar to the 
UNIX crontab entry.  This format allows the minute, hour, day of the month, month, and year that 
a plan is supposed to be run.  For example, a task entry of 

05 08-17 1,3,5 * * homeseekers.plan 
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means:  run homeseekers.plan at five minutes after every hour between 8am and 5pm on the 1st, 
3rd, and 5th days of every month of every year. 

While tasks can be scheduled manually, the language we have developed also allows plans to 
automatically update the scheduling of other plans, including it.  To do so, we support two special 
scheduling operators, Schedule and Unschedule.  The former allows a plan to register a new plan 
to be run.  It creates or updates plan schedule data in the task database.  The input to Schedule 
consists of a plan name and a schedule description, such as the one shown above.  The operator 
produces a single tuple of output that indicates the assigned task ID of the scheduled task. 

Unschedule removes a scheduled plan from the task database.   Unschedule can be used by a 
plan to remove itself from a monitoring activity and is often used in tandem with a notification 
operator.  For example, a plan can monitor the set of available houses on the market for the entire 
month of September, send an email at the end of that month to the user containing the results, 
unschedule itself from execution, and then schedule a new plan (perhaps, for example, to clean up 
the database that stored the monitoring data).  The input to Unschedule is the task ID of the 
scheduled plan and the output is a tuple indicating success or failure of the attempt to remove the 
plan from the task database. 

4.4 Subplans 
To promote reusability, modularity, and the capability for recursion, the plan language supports 
the notion of subplans.  Recall that all plans are named, consist of a set of input and output 
streams, and a set of operators.  If we consider that the series of operators amounts to a complex 
function on the input data, then plans present the same interface as do operators.  In particular, 
using our earlier definitions, it is possible that Opi = P in that OpIn = PlanIn, OpOut = PlanOut, 
OpWait = ∅, OpEnable = ∅, and Func = {Op1, ..., Opn}.  Thus, a plan can be referenced within 
another plan as if it were an operator.  During execution, a subplan is called just like any other 
operator would – as inputs of the subplan arrive, they are executed within the body of the subplan 
by the operators of that subplan. For example, consider how the Example_plan, introduced 
earlier, can be referenced by another plan called Parent_plan.  Figure 8 illustrates how the text 
form of Parent_plan treats Example_plan as merely another operator.    

Figure 7: Task administration process  
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Subplans encourage modularity and re-use.  Once written, a plan can be used as an operator in 
any number of future plans.  Complicated manipulations of data can thus be abstracted away, 
making plan construction simpler and more efficient.   

For example, one could develop a simple subplan called Persistent_diff, shown in Figure 9, 
that uses the existing operators DbQuery, Minus, Null, and DbAppend to take any relation, 
compare it to a named relation stored in a local database.  This plan determines if there was an 
update, appends the result, and returns the difference.  Many types of monitoring style plans that 
operate on updated results can incorporate this subplan into their existing plan. The Homeseekers 
plan itself could be a subplan that returns house details given a set of search parameters.    

4.4.1. RECURSION 
In addition to promoting modularity and re-use, subplans make another form of control flow 
possible: recursion.  Recursive execution can be useful in a number of scenarios related to Web 
query processing.  Here we describe two: reformulating data integration queries and iterating over 
Next Page links. 

One application of recursion in THESEUS involves reformulating data integration queries.  For 
example, a more efficient version of the Duschka’s Inverse Rules algorithm (Duschka 1997) can 
be implemented using recursive streaming dataflow execution in THESEUS (Thakkar & Knoblock, 
2003).  Support for recursion in query reformulation allowed Thakkar and Knoblock to develop a 
system that produced more complete answers than other query reformulation algorithms, such as 
MiniCon (Pottinger & Levy, 2001), which do not support recursion. 

Another practical use of recursion in Web data integration involves iterating over a list that is 
described over multiple documents.  As described earlier, a number of online information 
gathering tasks require some sort of looping-style (repeat until) control flow.  Results from a 
single query can be spanned across multiple Web pages.  Recursion provides an elegant way to 
address this type of interleaved information gathering and navigation in a streaming dataflow 
environment.          

For example, when processing results from a search engine query, an automated information 
gathering system needs to collect results from each page, follow the "next page" link, collect 
results from the next page, collect the "next page" link on that page, and so on – until it runs out 
of "next page" links.  If we were to express this in von Neumann style programming language, a 
Do...While loop might be used accomplish this task.  However, implementing these types of loops 

Figure 8: Text of parent_plan 

PLAN parent_plan 
{ 
  INPUT: w, x 
  OUTPUT: z 
 
  BODY  
  { 
    Op6 (w : y) 
    example_plan (x, y : z) 
  } 
} 

Figure 9: The Persistent_diff subplan 
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in a dataflow environment is problematic because it requires cycles within a plan.  This leads to 
data from one loop iteration possibly colliding with data from a different iteration.  In practice, 
loops in dataflow graphs require a fair amount of synchronization and additional operators. 

Instead, this problem can be solved simply with recursion.  We can use subplan reference as a 
means by which to repeat the same body of functionality and we can use the Null operator as the 
test, or exit condition.  The resulting simplicity and lack of synchronization complexity makes 
recursion an elegant solution for addressing cases where navigation is interleaved with retrieval 
and when the number of iterations for looping style information gathering is not known until 
runtime.  As an example of how recursion is used, consider the abstract plan for processing the 
results of a search engine query.  A higher level plan called Query_search_engine, shown in 
Figure 10a, posts the initial query to the search engine and retrieves the initial results.  It then 
processes the results with a subplan called Gather_and_follow, shown in Figure 10b.  The search 
results themselves go to a Union operator and the next link is eventually used to call 
Gather_and_follow recursively.  The results of this recursive call are combined at the Union 
operator with the first flow.   

4.4.2. REVISITING THE EXAMPLE 
Let us now revisit the earlier house search example and see how such a plan would be expressed 
in the proposed plan language.  Figure 11a shows one of the two plans, Get_houses,  required to 
implement the abstract real estate plan in Figure 3. Get_houses calls the subplan Get_urls shown 
in Figure 11b, which is nearly identical to the plan Gather_and_follow, described above.  The rest 
of Get_houses works as follows: 

(a) A Wrapper operator fetches the initial set of houses and link to the next page (if any) 
and passes it off to the Get_urls recursive subplan. 

(b) A Minus operator determines which houses are distinct from those previously seen; 
new houses are appended to the persistent store. 

(c) Another Wrapper operator investigates the detail link for each house so that the full 
set of criteria (including picture) can be returned. 

(d) Using these details, a Select operator filters out those that meet the specified search 
criteria. 

(e) The result is e-mailed to the user. 

Figure 10a: The Query_search_engine plan

GATHER_AND_FOLLOWWRAPPER
init ial-result s

search term web pages

Figure 10b: The Gather_and_follow recursive subplan
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5. An Efficient Plan Execution Architecture 
By definition, Web information gathering involves processing data gathered from remote sources.  
During the execution of an information gathering plan, it is often the case that multiple 
independent requests are made for different sets of remote data.  Those data are then 
independently processed by a series of operations and then combined or output.  Network 
latencies, bandwidth limitations, slow Web sites, and queries that yield large result sets can 
dramatically curtail the execution performance of information gathering plans.  This is especially 
the case when plan operators are executed serially: any one of the issues mentioned can 
bottleneck the execution of an entire plan. 

From an efficiency standpoint, there are two problems with standard von Neumann execution 
of information gathering plans.  One is that it does not exploit the independence of data flows in a 
common plan in that multiple unrelated requests for remote data cannot be parallelized.  The plan 
language we have designed addresses this problem somewhat by allowing plans to be expressed 
in terms of their minimal data dependencies: still, that does not dictate how those operators are 
actually executed.  

The second efficiency problem is that von Neumann execution does not exploit the 
independence of tuples in a common relation: for example, when a large data set is being 
progressively retrieved from a remote source, the tuples that have already been retrieved could 
conceivably be operated on by successive operators in the plan.  This is often reasonable, since 
the CPU on the local system is often under-utilized while remote data is being fetched.   

To remedy both problems, we have designed a streaming dataflow execution system for 
software agent plans.  The system allows the maximum degree of operator and data parallelism to 
potentially be realized at runtime, by executing multiple operators concurrently and pipelining 
data between operators throughout execution.  Other network query engines have implemented 
designs that bear some similarity to what we present below.  However, our discussion below 
extends the existing work in three ways: 

• We describe the details of execution (i.e., how threads interact and how our firing rules 
work).  With the exception of (Shah, Madden, Franklin, & Hellerstein, 2001), we have 
not been able to locate a similar discussion of the details of execution in these other 
systems. 

Figure 11a: The Get_houses plan

WRAPPER
house -urls

GET_URLS WRAPPER
raw-house-details

SELECT
cond

FORMAT
"beds = %s"

criteria PROJECT
price -info

Figure 11b: The Get_urls recursive subplan
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• We present a novel thread-pooling approach to execution, where multiple threads are 
shared by all operators in a plan.  This allows significant parallelism without exhausting 
resources. 

• We describe how recursive streaming dataflow execution is implemented using a data 
coloring approach. 

5.1 Dataflow Executor 
While our plan language allows dataflow-style plans to be coded in text, it does not specify how 
the actual execution process works.  Thus, to complement the language and to efficiently execute 
plans, we developed a true dataflow-style executor.  The executor allows plans to realize 
parallelization opportunities between independent flows of data, thus enabling greater horizontal 
parallelism at runtime. 

The executor functions as a virtual threaded dataflow machine.  It assigns user-level threads to 
execute operators that are ready to fire.  This type of execution is said to be “virtual dataflow” 
because thread creation and assignment is not done natively by the CPU, nor even in kernel space 
by the operating system, but by an application program (the executor) running in user space.  By 
using threads to parallelize execution of a plan, the executor can realize better degrees of true 
parallelism, even on single CPU machines.  This is because the use of threads reduces the impact 
of any I/O penalties caused by a currently executing operator.  That is, multiple threads reduce the 
effect of vertical waste that can occur when single-threaded execution reaches an operation that 
blocks on I/O.    

For example, consider the case where a plan containing two independent Wrapper operators is 
being executed on a machine with a single CPU.  Suppose that both Wrapper operators have their 
input and can fire.  Both operators will be assigned distinct threads.  The single CPU will execute 
code that issues the network request for the first Wrapper operator, not wait for data to be 
returned, and finish issuing the network request for the second Wrapper operator.  Thus, in a 
matter of microseconds, both operators will have issued their requests (which typically take on 
the order of hundreds of milliseconds to complete) and retrieval of the data (on the remote sites) 
will have been parallelized.  Thus, the overall execution time will be equal to the slower of the 
two requests to complete.  This contrasts with the execution time required for serial execution, 
which is equal to the sum of time required for each request.      

5.1.1. PROMOTING AND BOUNDING PARALLELISM WITH THREAD POOLS 
While using threaded dataflow has its benefits, past research in dataflow computing and operating 
systems has shown that there are cases when parallelism must be throttled or the overhead of 
thread management (i.e., the creation and destruction of threads) can be overly taxing.  For 
example, if threads are created whenever an operator is ready, the cost to create them can add up 
to significant overhead.  Also, if there is significant parallelism during execution, the number of 
threads employed might result in context switching costs that outweigh the parallelism benefits.  
To address both issues, we developed a thread pooling architecture that allows the executor to 
realize significant parallelism opportunities within fixed bounds.   
    At the start of plan execution, a finite number of threads are created (this number is easily 
adjustable through an external configuration file) and arranged in a thread pool.  Once the threads 
have been created, execution begins.  When data becomes available (either via input or through 
operator production), a thread from the pool is assigned to execute a method on the consuming 
operator with that data.  Each time that operator produces output, it hands off the output to zero or 
more threads so that its consumer(s), if any, can process the output.  If the pool does not contain 
any available threads, the output is queued in a spillover work queue, to be picked up later by 
threads as they return to the queue.  This same behavior occurs for all operator input events.  
Thus, parallelism is both ensured by the existence of multiple threads in the pool and bounded by 
it – in the latter case, the degree of true parallelism during execution can never exceed the pool 
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size.  Demands on parallelism beyond the number of threads in the pool are handled by the work 
queue.    

Figure 12 illustrates the details of how the thread pool is used by the executor at runtime.  The 
figure shows that there are four key parts to the executor: 

• The thread pool: This is a collection of threads ready to process the input collected in 
the queue.  There can be a single thread pool or it can be partitioned so that certain 
sources have a guaranteed number of threads available to operators that query those 
sources.  All available threads wait for new objects in the queue.  Typically, contention 
for the queue on machines with a single CPU is not an issue (even with hundreds of 
threads).  However, configuration options do exist for multiple work queues to be 
created and for the thread pool to be partitioned across queues.     

• The spillover work queue: All data received externally and transmitted internally (i.e., 
as a result of operator execution) that cannot be immediately assigned to an available 
thread is collected in this queue.  As threads return to the pool, they check if there are 
objects in the queue: if there are, they process them, otherwise the thread waits to be 
activated by future input.  The queue itself is an asynchronous FIFO queue implemented 
as a circular buffer. When the queue is full, it grows incrementally as needed.  The initial 
size of the queue is configurable.  The structure of a queue element is described in detail 
below.  

• The routing table:  This data structure describes the dataflow plan graph in terms of 
producer/consumer operator method associations.  For example, if a Select operator 
produces data consumed by a Project operator, the data structure that marshals output 
from the Select is associated with the Project input method that should consume this 
data.  The table is computed once – prior to execution – so that the performance of 
operator-to-operator I/O is not impacted at runtime by repetitive lookups of consumers 
by producers.  Instead, pre-computation allows the data structure associated with a 
producing method to immediately route output data to the proper set of consuming input 
methods.  

Figure 12: Detailed design of the executor
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• The set of operator objects: These are the collection of operator classes (including their 
input/output methods and state data structures).  There exists one operator object per 
instance in the plan. 

Each queue object consists of a tuple that describes: 

• the session ID 
• the iteration ID 
• the content (i.e., the data) 
• destination operator interface (i.e., a function pointer).  

The session ID is used to distinguish independent sessions and the iteration ID to distinguish 
current call-graph level of a session, which ensures safety during concurrent re-entrancy at 
runtime.  These IDs provide a unique key for indexing operator state information.  For example, 
during recursive execution, these IDs ensure that the concurrent firing of the same operator at 
different levels of the call graph do not co-mingle state information.   Finally, the destination 
operator interface is the pointer to the code that the thread assigned to a queue object will run. 

At runtime, the system works as follows.  Initial plan input arrives and is assigned to threads 
from the thread pool  (#1 in Figure 12), one thread for each input tuple (#2a), or  if no threads are 
available the data is added to the spillover work queue (#2b).  Each assigned thread from the pool 
takes its queue object  and, based on the description of its target, fetches the appropriate operator 
object so that it can execute the proper function on the data (#3).  During the execution of the 
operator, state information from previous firings may be accessed using the (session ID, iteration 
ID) pair as a key.  The result of an operator firing may result in output.  If it does, the operator 
uses the routing table (#4) to determine the set of consumers of that output.  It then composes new 
data queue objects for each consumer and hands off those objects (#5) to either an available 
thread in the thread pool (#2a) or deposits them to the work queue (#2b) if no threads are 
available.  To reduce memory demands, producers only deep-copy data they produce if there are 
multiple consumers.  Finally, operators that produce plan output data route that data out of the 
plan as it becomes available. 

5.2 Data Streaming 
At a logical level, each of the variables in the plan language we describe is relations.  However, to 
provide more parallelism and thus efficiency at runtime, tuples of a common relation are 
streamed between operators.  Each stream consists of stream elements (the tuples in a relation), 
followed by an end of stream (EOS) marker.  Thus, when communicating a relation from 
producer to consumer, producing operators communicate individual tuples to consumer operators 
and follow the final tuple with an EOS token. 

Streaming relations between operators increases the degree of vertical parallelism during 
plan execution.  In revisiting the firing rule described earlier, we can further clarify it to read: 

An operator may fire upon receipt of any input tuple, providing it has received the 
first tuple of all of its wait variables. 

Thus, when an operator receives a single tuple on any of its inputs, it can consume and process 
that tuple.  Afterwards, it can potentially emit output that, in turn, can be consumed by a 
downstream operator or output from the plan.  The resulting parallelism is “vertical” in the sense 
that two or more operators (e.g., one producer and one or more consumers) can concurrently 
operate on the same relation of data.  Remote sources that return significant amounts of data can 
be more efficiently processed through streaming, since the operator that receives the network 
transmission can pass along data for processing as it becomes available and before the rest of the 
data has been received. 
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Support for any kind of streaming implies that state must be kept by operators between firings.  
This is because the operation being performed is logically on an entire relation, even though it 
physically involves each tuple of that relation.  If the operator does not maintain state between 
firings, it cannot necessarily produce correct results.  For example, consider the set-theoretic 
Minus operator that takes two inputs, lhs and rhs, and outputs the result of lhs - rhs.  This 
operator can begin emitting output as soon as it has received the rhs EOS token.  However, the 
operator must still keep track of rhs data until it receives the EOS from both; if not, it may emit a 
result that is later found to be incorrect.  To see how this could happen, suppose that the order of 
input received by an instance of the Minus operator was: 

 
lhs: (Dell) 
lhs: (Gateway) 
rhs: (HP) 
rhs: (Gateway) 
rhs: EOS 
lhs: (HP) 
lhs: EOS 
 

The correct output, lhs-rhs, should be 
 
lhs-rhs: (Dell) 
lhs-rhs: EOS 

 
However, this can only be achieved by waiting for the EOS  before emitting any output and also 
by keeping track (i.e., maintaining state) of both inputs.  For example, if only lhs data is retained, 
then the rhs instance of (HP) would not be in memory when the lhs instance of (HP) occurred 
and this tuple would be incorrectly emitted.   

In summary, streaming is a technique that improves the efficiency of operator I/O by 
increasing the degree of vertical parallelism that is possible at runtime.  By allowing producers to 
emit tuples as soon as possible – and by not forcing those to wait for consumers to receive them – 
both producers and consumers can work as fast as they are able.  The main tradeoff is increased 
memory, for the queue required to facilitate streaming and for the state that needs to be 
maintained between firings.      

5.2.1. RECURSIVE STREAMING: SIMPLICITY + EFFICIENCY 
Streaming can complement the simplicity of many types of recursive plans with highly efficient 
execution.  Looping in theoretical dataflow systems is non-trivial because of the desire for single-
assignment and because of the need for synchronization during loop iterations.  Streaming further 
complicates this: data from different loop iterations can collide, requiring some mechanism to 
color the data for each iteration.  As a result, looping becomes an even more difficult challenge.  

To address this problem, we use a data coloring approach.  Each time that data enters a flow, it 
is given a session value and an iteration value (initially 0).  Upon re-entrancy, the iteration value 
is incremented.  When leaving a re-entrant module, the iteration value is decremented.  If the new 
value is equal to 0, the flow is routed out of the recursive module; otherwise, the data flow 
continues to unravel until its iteration value is 0.  For tail-recursive situations, the system 
optimizes this process and simply decrements the iteration value to 0 immediately and exits the 
recursive module.  The two pronged data-coloring approach, which is similar to strategies used in 
dataflow computing literature, maintains the property of single assignment at each the level of the 
call graph.  Streaming easily fits into this model without any other changes.  As a result, many 
levels of the call graph can be active in parallel – effectively parallelizing the loop. 
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To see how this works, we return to the Get_houses example of Figures 11a and 11b.  When 
the input tuple arrives, the initial page of houses is fetched.  When that happens, the “Next” link 
is followed in parallel with the projecting of the house URLs to the Union operator and then to 
the Minus operator.  Since the Union operator can emit results immediately, and the Minus 
operator will have both of its inputs, data flow continues until the next Wrapper operator, which 
queries the URL and extracts the details from the house.  Thus, the details of the houses from the 
first page are queried in parallel with the following of the “Next” link, if it exists.  Data from the 
next page is then extracted in parallel with the following of the “Next” link from this second page 
and so on.  Meanwhile, the results from the Get_urls subplan (the house URLs) are streamed back 
to the first level of the plan, to the Union operator.  They continue on through and their details are 
gathered in parallel.   

In short, recursive streaming is a powerful capability that is made possible by the combination 
of the expressivity of the THESEUS plan language and efficient execution system.  The result 
allows one to write plans that gather, extract, and process data as soon as possible – even when a 
logical set of results is distributed over a collection of pages (a common case on the Internet). 

6. Experimental Results 
To demonstrate the contributions of this paper, we conducted a set of experiments that highlight 
the increased expressivity and efficient execution supported by our plan language and execution 
system.  Our method consists of verifying three hypotheses that are fundamental to our claims: 
 

Hypothesis 1:  The streaming dataflow plan execution system ensures faster plan 
execution times than what is possible under von Neumann or non-
streaming dataflow execution. 

 
Hypothesis 2:  The agent plan language described here supports plans that cannot be 

represented by the query languages of network query engines. 
 
Hypothesis 3:  The additional expressivity permitted by the plan language described here 

does not result in increased plan execution time. 
 
After a brief introduction about the implemented system used in the experiments, the rest of 

this section is divided into three subsections, each of which focuses on verifying each of these 
hypotheses. 

6.1 The THESEUS Information Gathering System 
We implemented the approach described in this paper in a system called THESEUS.  THESEUS is 
written entirely in Java (approximately 15,000 lines of code) and thus runs on any operating 
system to which the Java virtual machine (JVM) has been ported.  We ran the experiments 
described here on an Intel Pentium III 833MHz machine with 256MB RAM, running Windows 
2000 Professional Edition, using the JVM and API provided by Sun Microsystems’ Java Standard 
Edition (JSE), version 1.4. This machine was connected to the Internet via a 10Mbps Ethernet 
network card. 

6.2 Hypothesis 1: Streaming Dataflow Ensures Fast Information Agents 
To support our first hypothesis, we measured the efficiency of the Homeseekers information 
agent.  Our experiments show that without the parallelism features of the plan language and 
execution system, agents such as Homeseekers would take significantly longer to execute.  

The graphical plan for Homeseekers is the same as shown in Figures 11a and 11b.  Note that 
this plan does not monitor Homeseekers (we will get to that in the next section), but simply 
gathers data from the Web site.  The textual plans required for this are simply translations of 
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Figures 11a and 11b using the plan language described in this paper.  The textual form of the 
Get_houses plan is shown in Figure 13a and the textual form of the Get_urls plan is shown in 
Figure 13b. 

To demonstrate the efficiency that streaming dataflow provides, we ran the Homeseekers 
Get_houses plan under three different configurations of THESEUS.  The first configuration (D-) 
consisted of a thread pool with one thread – effectively preventing true multi-threaded dataflow 
execution and also makes streaming irrelevant.  The resulting execution is thus very similar to the 
case where the plan had been programmed directly (without threads) using a language like Java 
or C++.   A second THESEUS configuration (D+S-) used multiple threads for dataflow-style 
processing, but did not stream data between operators.  Finally, the third configuration (D+S+) 
consisted of running THESEUS in its normal streaming dataflow mode, enabling both types of 
parallelism.  For the D+S- and D+S+ cases, the number of threads was set to 15.   

Note that the configurations were only done for purposes of running these experiments.  In 
practice, THESEUS runs in only one configuration: streaming dataflow with n threads in the thread 
pool (n is typically set to 10 or 20).  Only if one wants to modify the number of threads in the 
pool does he need to alter the configuration file.  This is rarely necessary. 

We ran each configuration three times (interleaved, to negate any temporary benefits of 
network or source availability) and averaged the measurements of the three runs.  The search 
constraints consisted of finding “houses in Irvine, CA that are priced between $500,000 and 
$550,000”.  This query returned 72 results (tuples), spread across 12 pages (6 results per page).  
Figure 14 shows the average performance results for these three configurations in terms of the 
time it took to obtain the first tuple (beginning of output) and the time it took to obtain the last 
tuple (end of output).   A series of unpaired t-tests on these measurements indicates that they are 

Figure 13b: Text of the Get_urls plan 

PLAN get_urls 
{ 
  INPUT: result-page-info 
  OUTPUT: combined-urls 
 
  BODY  
  { 
    project(result-page-info, “house-url” : curr-urls) 
    distinct(result-page-info, “next-page-link” : next-status) 
    null (next-status, next-status, next-status : next-page-info, next-urls) 
    wrapper (“result-page”, next-page-info : next-urls) 
    union ( curr-urls, next-urls : combined-urls) 
  } 
} 

Figure 13a: Text of the Get_houses plan 

PLAN get_houses 
{ 
  INPUT: criteria 
  OUTPUT: filtered-house-details 
 
  BODY  
  { 
    project (criteria, “price-range”, price-info) 
    format (“beds = %s”, “beds” : bed-info) 
    wrapper (“initial”, price-info : result-page-info) 
    get_urls (house_urls : all-house-urls) 
    wrapper (“detail”, all-house-urls : all-house-details) 
    select (raw-house-details, bed-info : filtered-house-details) 
  } 
} 



BARISH & KNOBLOCK 

652 

statistically significant at the 0.05 level.4     
The time to first tuple is important because it shows the earliest time that data becomes 

available.  Callers of an information agent plan are often interested in how early results come 
back, especially if a substantial amount of data is returned or the time between tuples is great, 
since it allows processing of results to begin as soon as possible.  The time to last tuple is also an 
important metric because it is associated with the time at which all of the data has been returned.  
Callers of a plan that require the entire set of results, such as a caller that executes an aggregate 
function on the data, are thus interested in this measurement.  

As Figure 14 shows, the parallelism provided by streaming dataflow has a significant impact.  
Typical von Neumann style execution, such as that in (D-), cannot not leverage opportunities for 
parallelism and suffers heavily from the cumulative effects of I/O delays.  While the D+S- fares 
better because concurrent I/O requests can be issued in parallel, the inability to stream data 
throughout the plan prevents all result pages from being queried in parallel. Also, because of the 
lack of streaming, results obtained early during execution (i.e., the first tuple) cannot be 
communicated until the last tuple is ready.  Note that the D+S- case reflects the performance 
provided if the plan had been executed by robot plan execution systems like RAPs or PRS-LITE, 
which support operational (horizontal) parallelism but not data (vertical) parallelism. 

Finally, the D+S+ case shows that streaming can alleviate both problems, allowing the first 
tuple to be output as soon as possible, while supporting the ability to query all result pages in 
parallel (and process the detail pages as soon as possible, in parallel).  In short, Figure 14 shows 
that streaming dataflow is a very efficient execution paradigm for I/O-bound Web-information 
gathering plans that require interleaved navigation and gathering.  

We also sought to compare the execution performance of the Get_houses plan against  the 
performance achieved when using another type of information gathering system, such as a 
network query engine.  However, since these systems do not support the ability to express loops 
or recursive information gathering, it was not possible to simply run the same plan in these other 
executors.  To address this, we calculated the theoretical performance for a network query engine 
that supported streaming dataflow, but did not have the ability to loop over result pages.   

To solve the type of challenge that sites like Homeseekers pose, these systems would need to 
gather data from one result page at a time.  Note that while loops or recursion for these systems is 
not possible (i.e., not possible to gather data spread across a set of pages in parallel), given the 

                                                 
4 Two-tailed P results for the D+S vs. D+S- and D+S- vs. D- time-to-first-tuple cases were ≤ 0.0001 and 
0.0024 respectively.  Two-tailed P results for the D+S+ vs D+S- and D+S- vs. D- time-to-last tuple cases 
were 0.0001 and 0.0026,  respectively:  
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type of intermediate plan language they support, they can still be used to “drill down” on the 
details of a particular result (i.e., gather data below a set of pages) in parallel.  Thus, a network 
query engine could leverage its dataflow and streaming capabilities to process a single page, but 
could not be used to parallelize the information gathering from a set of linked result pages.  Each 
page (and its details) would have to be processed one at a time.  

To simulate this behavior, we used THESEUS to extract house URLs and the details one page at 
time, for each of the twelve pages of results we obtained in our initial query.  The average time 
required to gather the details of all six housing results was 3204 ms.  Note again that the time to 
retrieve the first detailed result was the same as in the THESEUS D+S+ case: 1852ms.  If we take 
the time to extract all six detailed results and multiply it by the number of pages in our query (12), 
we get a time of last tuple equal to (3204 * 12) = 38448ms.  Figure 15 shows how these results 
compare to the D+S+ case of THESEUS. 

Thus, while an ad-hoc solution using a network query engine could allow the first tuple of 
results to be returned just as fast as in THESEUS the inability for the “Next” links to be navigated 
to immediately would result in less loop parallelism and, as a result, would lead to slower 
production of the last tuple of data.  Therefore, while network query engines could be used to 
gather results spread across multiple hyperlinked web pages, their inability to natively support a 
mechanism for looping negates the potential for streaming to further parallelize the looping 
process.  

In summary, to verify our first hypothesis, we described how the expressivity of the plan 
language presented enables more complex queries (like Homeseekers) to be answered efficiently.  
These results apply not just to Homeseekers, but to any type of site that reports a result list as a 
series of hyperlinked pages. 

6.3 Hypothesis 2: Better Plan Language Expressivity 
To support our second hypothesis, we investigated how the more complex task of monitoring 
Homeseekers could be accomplished using our approach versus existing Web query systems.  We 
have previously described why monitoring in cases such as this would be useful – searching for a 
house is a process that requires weeks, if not months of executing the same kind of query.  Thus, 
a corresponding information gathering plan would query Homeseekers once per day and send 
newly found matches to the end user over e-mail.  Again, this type of problem is general – it is 
often desirable to be able to monitor many Internet sites that produce lists of results.  However, to 
do so requires support for plans that are capable of expressing the monitoring task, the persistence 
of monitoring data, and the ability to notify users asynchronously. 

The plan to monitor Homeseekers is shown in Figure 16.  It is the same plan as shown in 
Figure 13a, but with a few additional modifications.  In particular, it uses two database operators 
(DbImport and DbAppend) to integrate a local commercial database system for the persistence of 

Figure 15: Comparison against hypothetical network query engine 
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results.  This allows future queries to only return new results and stored all past results.  Notice 
that initial DbImport is triggered by a synchronization variable.  The plan also communicates new 
results asynchronously to users via an Email operator. 

To measure expressivity, we consider a comparison of the plan in Figure 16 with those 
capable of being produced by the TELEGRAPH and NIAGARA network query engines.  Our 
comparison focuses on TELEGRAPHCQ (Chandrasekaran, Cooper, Deshpande, Franklin, 
Hellerstein, Hong, Krishnamurthy, Madden, Raman, Reiss, & Shah, 2003) and NIAGARACQ 
(Chen, DeWitt, Tian, & Wang, 2000), both of which are modifications of their original systems to 
support continuous queries for the monitoring of streaming data sources.  Since the 
TELEGRAPHCQ and NIAGARACQ query languages are very similar, we present a detailed 
comparison with the former and a general comparison with the latter. 

Both CQ systems allow continuous Select-Project-Join (SPJ) queries to be expressed.  
TELEGRAPHCQ provides a SQL-like language with extensions for expressing operations on 
windows of streaming data.  Specifically, the language allows one to express SPJ style queries 
over streaming data and also includes support for “for” loop constructs to allow the frequency of 
querying those streams.  For example, to treat Homeseekers as a streaming data source and to 
query it once per day (for 10 days) for houses in Manhattan Beach, CA, that are less than 
$800,000: 

 
Select street_address, num_rooms, price 
  From Homeseekers 
 Where price < 800000 and city = ‘Manhattan Beach’ and state = ‘CA” 
for (t=ST; t<ST+10; t++) { 
  WindowIs(Homeseekers, t-1, t) 
} 
 

NIAGARACQ also allows more complicated operations, such as Email, to be accomplished by 
calling out to a function declared in a stored procedure language.  The format of a NIAGARACQ 
query is: 

CREATE CQ_name 
XML-QL query 
DO action 
{START s_time} {EVERY time_interval} {EXPIRE e_time} 

In our example, “query” would be the XML-QL equivalent of selecting house information for 
those that met our query criteria.   The “action” part would be something similar to 
“MailTo:user@example.com”. 

Generally, both query language have the same limitations when it comes to flexible 
monitoring of sources, limitations that THESEUS does not have.  First, there is no ability to 
interleave gathering of data with navigation (in fact, NIAGARACQ assumes that Homeseekers can 
be queried as an XML source that provides a single set of XML data).   Second, there is no 
support for actions (like e-mail) based on differentials of data monitored over some period of 
time.  Although both  allow one to write a stored procedure that could accomplish this action, it 

Figure 16: Modifying Homeseekers to support monitoring requirements 
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requires a separate programming task and its execution is not as efficient as the rest of the query 
(this could be an issue for more complicated or more intensive CPU or I/O-bound activities per 
tuple).  Finally, with both CQ systems, there is no way to terminate a query other than by 
temporal constraints.      

6.4 Hypothesis 3: Increased Expressivity Does Not Increase Execution Time 
Though we have demonstrated that THESEUS performs well on more complex information 
gathering tasks, it is useful to assess whether the increased expressivity in THESEUS impacts its 
performance on simpler tasks – in particular, ones that network query engines typically process.  
To do this, we explored the performance of THESEUS on a more traditional, database style query 
plan for online information gathering and compared it to the same type of plan executed by a 
network query engine. 

We chose a single, common type of SPJ query that involved multiple data sources to serve as 
the basis for comparison.  This is the canonical data integration query.  We claim that 
understanding how THESEUS compares to a network query engine with respect to the 
performance of an SPJ query is at the heart of the efficiency comparison between the two types of 
systems. Since both types of systems execute dataflow-style plans in pipelined fashion, 
theoretical performance should be the same – the only expected differences would be due to 
implementation or environment biases (e.g., different LAN infrastructures).  Nevertheless, to 
support our efficiency claim, we felt it was important to use a concrete SPJ query for comparison. 

For our experiment, we chose to reproduce a query from the paper of another network query 
engine – Telegraph.  To measure the performance of their partial results query processing 
technique, Raman and Hellerstein ran a query that gathered data from three sources and then 
joined them together (Raman & Hellerstein, 2002).  The specific query involved gathering 
information on contributors to the 2000 U.S. Presidential campaign, and then combined this 
information with neighborhood demographic information and crime index information.  Table 2 
lists the sources and the data they provide.  “Bulk scannable” sources are those where the data to 
be extracted can be read directly (i.e., exists on a static Web page or file).  “Index” sources are 
those that provide answers based on queries via Web forms.  Index sources are thus sources 
which require binding patterns.  Table 3 shows the query that was used to evaluate the 
performance of TELEGRAPH. 

It is important to note that Raman and Hellerstein measured the performance of the query in 
Table 3 under standard pipelined mode and compared this with their JuggleEddy partial results 
approach.  We are only interested in the results of the former, as this is a measure of how well an 
“unoptimized” network query engine – what we call the “baseline” – gathers data when 
processing a traditional, database-style query.  Any further optimization, such as the JuggleEddy, 
is complementary to the system described here.  Since both types of systems rely on streaming 
dataflow execution consisting of tuples routed through iterative-style query operators, it would 
not be difficult to extend THESEUS to support this and other types of adaptive query processing 
techniques. 

Source Site Type of data
FEC www.fec.gov Bulk scannable source that provides information

(including zip code) on each contributor to a candidate
in the 2000 Presidential campaign.

Yahoo 
Real 

Estate

realestsate.yahoo.com Index source that returns neighborhood demographic
information for a particular zip code.

Crime www.apbnews.com Index source that returns crime level ratings for a
particular zip code.

Table 2:  Sources used in the FEC-Yahoo-Crime query 
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We wrote a simple THESEUS plan that allowed the query in Table 3 to be executed.  We used 
exactly the same sources, except we found that the latency of the Crime source had increased 
substantially, as compared to the times recorded by Raman and Hellerstein. Instead, we used 
another source (Yahoo Real Estate) but added an artificial delay to each tuple processed by that 
source, so that the new source performed similarly.    Raman and Hellerstein’s results show that 
the performance of their pipeline plan was as slow as the Crime source, and about 250ms per 
tuple.  To match this, we added a 150ms delay to each tuple of processing for our new source, 
Yahoo, which was normally fetching data at about 100ms per tuple. Our results are shown in 
Figure 17. 

The results show that THESEUS was not only able to execute the same plan at least as fast as 
the “baseline” TELEGRAPH plan, the non-optimized result shown in Figure 8 of the paper by 
Raman and Hellerstein, but THESEUS execution can be more efficient depending on the number 
of threads in the thread pool.  For example, THESEUS-3 describes the case where the THESEUS 
thread pool contains 3 threads.  The result from this run performs slightly worse than the 
TELEGRAPH baseline – such minor differences could be due to changes in source behavior or in 
different proximities to network sources.  However, running THESEUS with more threads in the 
thread pool (i.e., THESEUS-6 and THESEUS-10) shows much better performance.  This is because 
the degree of vertical parallelism demanded during execution can be better accommodated with 
more threads.  It should be noted that the reason TELEGRAPH does not perform as well as 
THESEUS-6 and THESEUS-10 is likely because that system only assigned a single thread to each 
operator (Raman 2002).  That is, THESEUS-6 and THESEUS-10 execution involves 6 and 10 
concurrent threads, respectively, whereas the TELEGRAPH plan uses 3 concurrent threads. 

7. Related Work 
The language and system discussed in this paper are relevant to other efforts that focus on agent 
execution and the querying of Web data.  To understand the work presented here in the context of 
these other approaches, we consider past work in software agent execution, robot agent execution, 
and network query engines.  The first area is most relevant, as software agent systems have 

Query
SELECT F.Name, C.Crime, Y.income
   FROM FEC as F, Crime as C, Yahoo as Y
 WHERE F.zip = Y.zip and F.zip = C.zip

Table 3:  SQL query that associates crime and income statistics 
with political campaign contributions 

Figure 17: Comparing THESEUS to TELEGRAPH baseline (FEC-Yahoo-Crime) 
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historically addressed expressivity issues and, in recent years, have also attempted to address 
some of the efficiency issues.  Robot plan executors represent a slightly greater contrast that have 
less experience with processing large amounts of data.  On the other hand, network query engines 
have explored large-scale remote data processing, though plan/query expressivity tends to be 
quite narrow.    

7.1 Software Agent Execution Systems 
The Internet Softbot (Eztioni & Weld, 1994) is a software agent that automates various 
information processing tasks, including UNIX command processing and Web information 
gathering.  To support execution with incomplete information about the world, the system 
interleaves planning with execution.  The XII (Golden et al., 1994) and later Puccini (Golden 
1998) planners generate partially-ordered plans in which the effects of an action do not have to be 
known before execution – but which can be verified during execution.  While the Softbot makes a 
clear distinction between information goals and satisfaction goals, it does not specifically address 
the need to efficiently nor flexibly handle the information it processed.  For example, the system 
does not support any kind of parallel processing of information (to capitalize on the I/O-bound 
nature of execution).  In terms of expressivity, while XII and Puccini do allow universal 
quantification to be expressed (i.e. iteration is possible), to do so requires that the set of what is 
being iterated over be known in advance.  As we pointed out in an earlier example on Next Page 
links, this is not always the case – the set of “next” pages to be processed are only discovered by 
iterating through all of them in an indeterminate, do..while fashion.  In contrast, although it does 
not interleave planning and execution, the system described here does support a more expressive 
plan language capable of handling next-link type of processing, as well as a streaming dataflow 
model of execution that enables efficient large scale information processing.  To a great extent, 
contributions of both research efforts can be viewed as complementary. 

Other research, such as INFOSLEUTH (Bayardo et al., 1997) has recognized the importance of 
concurrent task/action execution, close to the spirit of true dataflow computing.  At the same 
time, such work has generally not investigated the impact of streaming combined with dataflow.  
INFOSLEUTH describes a collection of agents that, when combined and working together, present 
a cohesive view of data integration across multiple heterogeneous sources.  INFOSLEUTH 
centralizes execution in its Task Execution Agent, which coordinates high-level information 
gathering subtasks necessary to fulfill user queries by routing appropriate queries to resources 
that can accommodate those queries.  The Task Execution Agent is data-driven and, thus, task 
fulfillment proceeds in a dataflow-style manner.  In addition, a multi-threading architecture 
supports concurrent, asynchronous communication between agents.  However, the streaming 
component does not exist – in fact, while INFOSLEUTH intends to do large scale information 
processing, it specifically notes that limitations to KQML (the basis of its message transport 
between agents) were such that streaming was not feasible at the time of implementation.  Both 
INFOSLEUTH and THESEUS are similar in their desire to support efficient, large-scale information 
processing.  However, THESEUS supports streaming between operators, as well as a more 
expressive plan language, capable of support for more complex types of plans, including support 
for conditionals and recursion. 

In contrast to INFOSLEUTH, BIG (Lesser, Horling, Klassner, Raja, Wagner, & Zhang, 2000) is 
a more general software agent that separates the components of agent planning, scheduling, and 
execution (among other components).  BIG agents execute plans based on tasks modeled in the 
TÆMS modeling language.  During execution, BIG reasons about resource tradeoffs and attempts 
to parallelize “non-local” requests (such as Web requests), at least in terms of how such actions 
are scheduled.  In terms of expressivity, TÆMS does not include support for conditionals or 
looping constructs (see DECAF, below), unlike the system described in this paper.  In terms of 
execution, BIG may perform some operations concurrently, but it does not execute in a pure 
dataflow manner: instead, it parallelizes only certain operations, based on whether or not they are 
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blocking.  This significantly reduces additional opportunities for dataflow-style parallelism.  For 
example, it is not possible to parallelize CPU-bound operations (desirable on hyperthreaded 
processors or multi-CPU machines) nor is it possible to leverage additional I/O-bound parallelism 
from two different instruction flows.  As an example of the latter, consider a plan that uses 
common input data to query a set of sources, performing different computations on the input data 
(e.g., to form it into a query) before each remote request.  Since only I/O-bound operations are 
parallelized, there is no way to execute both flows simultaneously, even though both flows 
eventually end up I/O-bound   A second but larger difference between BIG and THESEUS is that 
the latter supports the capability to stream data between operators, maximizing the degree of 
vertical parallelism possible, while the former does not.  As we have shown, better vertical 
parallelism during execution can yield significant performance gains.    

RETSINA (Sycara et al., 2003) is a more general, multi-agent system that attempts to automate 
a wide range of tasks, including information processing.  RETSINA is unique because it attempts 
to interleave not only planning and execution (as did XII in the Internet Softbot), but also 
information gathering.  Each RETSINA agent is composed of four modules: communication, 
planning, scheduling, and execution monitoring.  As these modules run as separate threads, 
communication, planning and scheduling can occur during information gathering (which is often 
I/O-bound).  In addition, multiple actions in RETSINA can be executed concurrently, in a 
dataflow-style manner, through separate threads.  During execution, actions communicate 
information between one another via provision/outcome links (Williamson, Decker, & Sycara, 
1996), which are similar to the notion of operator input and output variables we have described 
here.  While the dataflow aspect of agent execution in RETSINA is similar to that in THESEUS, its 
plan language is less expressive (no support for conditionals or any kind of looping, including 
indeterminate) and no execution support for streaming.     

DECAF (Graham et al., 2003) is an extension of both the RETSINA and the TÆMS task language 
to support agent plans that contain if-then-else and looping constructs.  In addition, DECAF 
incorporates a more advanced notion of task scheduling and views its mode of operation as more 
analogous to that of an operating system – for example, during execution, it is concerned with the 
number of I/O-bound and CPU-bound tasks at any one time, so as to optimize task scheduling.  
While DECAF employs a more expressive task language, closer to what is supported by THESEUS, 
there is no support for streaming during execution.  Again, as we have shown, the benefits of 
increased vertical parallelism through streaming can make a significant difference when 
processing large amounts of data or when working with slow, remote sources, a case that is 
common with environments like the Web. In fact, we have shown that going beyond the dataflow 
limit (maximum vertical and horizontal parallelism) though techniques such as speculative 
execution (Barish & Knoblock, 2002; Barish & Knoblock, 2003) can yield even greater 
performance benefits.  Streaming is not a simple feature to add to an execution system; the way 
operators execute must change (i.e., they become iterators), end-of-stream ordering must be 
managed with care, support for operator state management is needed, in addition to other related 
challenges.      

7.2 Robot Agent Execution Systems 
Our work on THESEUS is also related to past work on robot agent execution systems.  The main 
similarity is the emphasis on providing both a plan language and execution system for agents.  
The main difference, however, is that robot agent execution systems are built primarily for robots, 
which act in the physical world, and lack support for some of the critical features that software 
agents like Web information agents require.  In discussing specifics, we focus on two well-known 
robot agent executors: the RAP system (Firby 1994) and PRS-LITE (Myers 1996).   

Both RAP and PRS-LITE offer general plan languages and execution systems that support 
concurrent execution of actions.  Like other expressive plan languages, such as  RPL (McDermott 
1991), both RAP and PRS-LITE also support additional action synchronization through the WAIT-
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FOR clause, which triggers an action after a particular signal has been received.  This is similar to 
the use of WAIT and ENABLE in the THESEUS plan language.  PRS-LITE supports even greater 
expressivity, including the notion of sequencing goals, which enable conditional goals as well as 
parallel or sequential goal execution.  For example,  PRS-LITE supports the SPLIT and AND 
modalities as two different ways to specify parallel goal execution, the former decoupled from the 
parent task while the latter is more tightly coupled.  

Despite the expressivity supported by RAPs and PRS-LITE, it is clear that their plan languages 
are primarily meant to handle the needs of robots.  For example, operator execution involves the 
processing of signals, not streams of tuples, between operators.  In contrast, both the THESEUS 
language and the executor are built to stream potentially large amounts of relational data.  If a 
plan like Homeseekers was executed on RAPs or PRS-LITE, the lack of streaming would result in 
significantly worse performance and make poor use of available resources.  This is not to say that 
RAPs nor PRS-LITE contain design flaws: rather, these systems simply better facilitate the needs 
of robots – which process small amounts of local data (such as target presence or location 
information) and perform actions in the physical world.  In contrast, Web information agents do 
not act on physical objects, but software objects, such as Web sites, and need to deal with the 
problems associated with the unreliable remote I/O of potentially large amounts of data.  
Streaming is thus a critical feature for these agents, as it allows for much faster performance and 
for local resources, such as the CPU, to be better utilized.       

Another significant difference between the language presented here and those of RAPs and 
PRS-LITE is the support for recursion.  It is understandable that robot agent execution systems 
lack this feature because none of their primary tasks require such control flow.  In fact, neither 
PRS-LITE nor RAP supports any kind of looping mechanism.  In contrast, looping is often required 
for Web information agents, which frequently need to gather a logical set of data distributed 
across an indeterminate number of pages connected through “Next” page links.  Recursive 
streaming enables high-performance looping in a dataflow environment without any kind of 
complicated synchronization. 

It cannot be understated that features like streaming and recursion make a significant 
difference in terms of agent performance.  For example, execution of Homeseekers without 
recursive streaming would fare no better than the D+S- example in Section 6, which performed 
much worse than the D+S+ case.   

7.3 Network Query Engines  
Network query engines such as TUKWILA (Ives et al., 1999), TELEGRAPH (Hellerstein et al., 
2000) and NIAGARA (Naughton et al., 2001) have focused primarily on efficient and adaptive 
execution (Avnur & Hellerstein 2000; Ives et al., 2000; Shanmugasundaram et al., 2000; Raman 
& Hellerstein 2002), the processing of XML data (Ives et al., 2001), and continuous queries 
(Chen et al., 2000; Chandrasekaran et al., 2003).  All of these systems take queries from users, 
form query plans, and execute those plans on a set of remote data sources or incoming streams.  
As with THESEUS, network query engines rely on streaming dataflow for the efficient, parallel 
processing of remote data. 

The work described here differs from network query engines in two ways.  The first, and most 
important difference, has to do with the plan language.  Plans in network query engines consist 
mostly of relational-style operators and those required to do additional adaptive or XML-style 
processing.  For example, TUKWILA includes a double pipelined hash join and dynamic collector 
operators for adaptive execution (Ives et al., 1999), and x-scan and web-join operators to facilitate 
the streaming of XML data as binding tuples.  TELEGRAPH contains the Eddy operator (Avnur & 
Hellerstein 2000) for dynamic tuple routing and the SteMs operator to leverage the benefits of 
competing sources and access methods.  NIAGARA contains the Nest operator for XML 
processing and other operators for managing partial results (Shanmugasundaram et al., 2000).  
Outside of these special operators for adaptive execution and XML processing, plans in network 
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query engines look very similar to database style query plans.  These plans are also inaccessible – 
users can only alter the queries that generate plans, not the plans themselves.   

In contrast, the plan language presented here is more expressive and agent plans are 
accessible. Like network query engines, the language we have described includes relational-style 
operators and those for processing XML data.  However, it also includes operators that support 
conditional execution, interaction with local databases, asynchronous notification, and user-
defined single-row and aggregate functions.  The plan language we developed also supports 
subplans for modularity, re-use, and recursive execution for looping-style information gathering.  
In contrast, network query engines do not support these kinds of constructs.  As a result, these 
systems cannot represent the interleaved navigation and gathering required by tasks such as the 
Homeseekers example.  Consider the Telegraph approach for handling Next Page links.  The 
logic for iterating over a set of Next Page type links is located in the wrapper itself, separate from 
the query plan5.  While this simplifies the wrappers somewhat (each wrapper returns all of the 
data for a particular site), it limits the flexibility of describing how to gather remote data.  For 
example, if one develops a Google wrapper in Telegraph that gathers results from a search (over 
several pages), there is no easy way to express the requirement “stop after 10 pages” or “stop 
when more than 5 links from the same site are extracted”.   In short, since the logic for dealing 
with the Next Page type links has been decoupled from the plan, expressivity is limited.  In 
addition, to build a wrapper that handles Next Page links in Telegraph, one must write a custom 
Java class that is referenced by the engine at runtime.  In contrast, the THESEUS language can 
handle interleaved navigation and gathering using recursion to loop over the set of Next Page 
links, while streaming tuples back to the system as they are extracted, for immediate post-
processing or for conditional checks (i.e., to know when to stop gathering results).        

A final difference worth noting has to do with accessibility.  In contrast to network query 
engines, plans in the language we have described are accessible to the user.  Although they can be 
generated by query processors (Thakkar et al., 2003) and other types of applications (Tuchinda & 
Knoblock, 2004), just like plans produced by network query engines, they can also be constructed 
and modified using a text editor.  This provides the ability for users to specify more complicated 
plans that could not otherwise be represented as a query. While some network query engines, 
such as NIAGARACQ (Chen et al., 2000) support some means for specifying more complicated 
types of actions to be associated with continuous queries, this support is not native to the system 
and thus it is not possible to execute complex actions in the middle of queries (such actions need 
to occur at certain times, for example when certain events occur).  For example, NIAGARACQ 
requires one to specify actions in a stored procedure language, introducing a barrier (query plan to 
stored procedure) that does not exist in our system.  Furthermore, this logic is separate from the 
query plan (i.e., not integrated with other query plan operators) and does not execute until some 
condition is met.   

8. Conclusion and Future Work 
Software agents have the potential to automate many types of tedious and time-consuming tasks 
that involve interactions with one or more software systems.  To do so, however, requires that 
agent systems support plans expressive enough to capture the complexity of these tasks, while at 
the same time execute these plans efficiently.   What is needed is a way to marry the generality of 
existing software agent and robot agent execution systems with the efficiency of network query 
engines.  

In this paper, we have presented an expressive plan language and efficient approach to 
execution that addresses these needs.  We have implemented these ideas in THESEUS and applied 

                                                 
5 See the Advanced TESS Wrapper Writing section of the TESS manual, 
http://telegraph.cs.berkeley.edu/tess/advanced.html 
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the system to automate many types of Web information processing tasks.  The Web is a 
compelling domain because it is a medium which demands both agent flexibility and efficiency. 
While existing software agent and robot agent plan execution systems can support complex plans 
consisting of many different types of operators, such systems are not designed to process 
information as efficiently as technologies developed in the database research communities.  In 
this paper, we have presented a plan language and execution system that combines key aspects of 
both agent execution systems and state-of-the-art query engines, so that software agents can 
efficiently accomplish complex tasks.  The plan language we have described makes it possible to 
build agents that accomplish more complex tasks than those supported by the network query 
engines. Agents written using this language can then be executed as efficiently as the state-of-the-
art network query engines and more efficiently than the existing agent execution systems. Beyond 
the work here, we have also proposed and are continuing to work on a method for speculative 
execution for information gathering plans (Barish & Knoblock 2002).  The technique leverages 
machine learning techniques to analyze data produced early during execution so that accurate 
predictions can be made about data that will be needed later in execution (Barish & Knoblock 
2003).  The result is a new form of dynamic runtime parallelism that can lead to significant 
speedups, beyond what the dataflow limit allows.  

We are also currently working on an Agent Wizard (Tuchinda & Knoblock, 2004), which 
allows the user to define agents for monitoring tasks simply by answering a set of questions about 
the task.  The Wizard works similar to the Microsoft Excel Chart Wizard, which builds 
sophisticated charts by asking the user a set of simple questions.  The Wizard will generate 
information gathering plans using the language described in this paper and schedule them for 
periodic execution.       
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