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Abstract

The execution performance of an information gatigeglan can suffer significantly due to remote
I/O latencies. A streaming dataflow model of exemutaddresses the problem to some extent,
exploiting all natural opportunities for parallelezution, as allowed by the data dependencies in a
plan. Unfortunately, plans that integrate inforimatfrom multiple sources often use the results of
one operation as the basis for forming queries ®uldsequent operation. Such cases require
sequential execution, an inefficiency that can erpsor gains made through techniques like
streaming dataflow. To address this problem, wes@mt a technique callespeculative plan
execution an out-of-order method that capitalizes on knolgkegained from prior executions as a
means for overcoming remaining data dependencigeeba plan operators. Our approach inserts
additional plan operators that generate and corgpectulative results, while preserving the safety
and fairness of overall execution. To increaseutiléy of speculative execution, we propose a
method of value prediction that combines cachinthwhe more effective and space-efficient
techniques of classification and transduction. p¥esent experimental results that demonstrate
how the performance of information gathering plaaa benefit from speculative execution and
how its overall utility can be increased through bybrid method of value prediction.

Keywords plan execution, speedup learning, informatiomége

1. Introduction

The ubiquity of computer networking has created pbé&ential for many types of data to be
combined and processed in all sorts of useful wdyswhere is the benefit of such networking
more obvious than it is on the Internet. Millioospeople use the Web every day to research
airfares, monitor financial portfolios, and keep topdate with the latest news headlines. The
capability of integrating data from multiple sousaan networks like the Internet allows users to
accomplish a limitless number of useful tasks.

Unfortunately, manually gathering data from a adllen of remote sources, like Web sites,
can be tedious and time consuming. To accompligiven task, one must often query multiple
sources in a certain order. Worse, it is ofteressary to navigate through sets of intermediate
data en route to the exact information being saugkiso, throughout the process, one is often
required to keep track of data gathered earlieoydter to combine it with data gathered later.

For example, consider the task of using multipleoWies for purposes of researching a car
to buy. Suppose that, when choosing a car basesbime criteria (say year and type), we are
interested not only in the price, but also in rexgeof the car, as well as recent safety ratings. T



gather this information manually may require thatwse one Web site to identify which cars are
in our price range. Then, for each car that doestraur price constraints, we need to browse to
all of the reviews, possibly at a different siténally, again for each candidate car, we may need
to visit a yet another site to obtain recent cdetyaratings. Although the Web contains all of
this information, it is a time consuming processnanually search and click through to all of the
data. Some variations of this type of search (esgarching for a house) are even worse to
consider because the frequency of executing telsighigher, with the same steps are repeated
over and over again.

Information mediators (Wiederhold, 1996; Bayardalet 1997; Knoblock et al., 2001) and
software agent execution systems (Eztioni and WEI®4; Lesser et al., 2000; Sycara et al.,
2003; Barish and Knoblock, 2005) enable these tgbasdious information gathering tasks to
be automated. For example, a relatively simplenagan be constructed to gather all of the
information about the cars that match a specifiegr@h criteria, including reviews and safety
ratings. Such agents can also become useful Webcatons — Froogle, Shopzilla, and
PriceGrabber are just a few examples of widely-uS#edb applications that function as
information agents. Such applications integrata f@m other Web or database-style sources,
presenting the result of integration in a singlerusterface for the end-user.

1.1 The performance problem

While information agents automate what is normalliedious manual task, such agents can be
slow to execute, especially if the data must bdveyad from a source that is not local. For
example, when querying a remote Web site, latencas vary tremendously, from a few
hundred milliseconds to several seconds. Not dobs the agent pay a small penalty to access
the information remotely, but the rate at which tkenote source can answer a query often
depends on its load at the time the query was dtdxni

The inefficiency of information gathering plans Hascome a topic of research for both
network query engines (lves et al., 2002; Nauglabal., 2001; Hellerstein et al., 2003) and
information agents (Barish and Knoblock, 2005). nc8i it is impossible to control the
performance of the network or of the remote soyreesearch has instead focused on strategies
for increasing the degree of run-time parallelisirowards that end, various parallel execution
technigues such as dataflow-style plan representatidata pipelining, remote query
optimization, and adaptive query execution havenbemerged. The latter category includes
techniques such as adaptive tuple routing (Avnur ldallerstein, 2000), double pipelined hash
joins (lves et al., 1999), and approximate quesylts (Shanmugasundaram et al., 2000).

Despite the benefits of all of these techniqueta dapendencies between operators can still
significantly hamper execution. For example, argue a remote source can depend on the
answer of a query to a previous source. In thesearch scenario, for instance, the agent cannot
gather safety ratings for cars until an earlierrgubat identifies candidate cars based on price
and basic features completes. If the query to tiredlist of candidate cars takes 2 seconds to be
answered and the safety ratings query takes 2 dectiten the overall plan will take 4 seconds
to execute. None of the currently proposed execution optimiretican improve upon this,
because of the remote data dependency involv&dich binding-pattern style relationships
require sequential execution and thus offer no dppdy for parallelization.

Four seconds may not seem like a long time, edpeaansidering the benefit of the
automation, but for agents that are deployed a&sriat applications, such performance can be an
eternity. Every increase in basic plan executiometdecreases the throughput of how many
gueries can be processed per unit time. Per ’sittlaw (Little, 1961), assuming that a service



has a fixed amount of a set of resources and tiatatrival rate is constant, longer plan
execution times will lead to longer queues and tbanger wait timesin short, a minor wait can
translate into a major throughput problem for papalgents.

1.2 Speculative execution: a new type of run-time parallelism

To combat persistent latencies, and to capitalizéhe knowledge gained from prior executions,
we present an approach for tkpeculative executiof information gathering plans. In
computer architecture, speculative execution isptoeess of executing instructions ahead of
their normal schedule. Nearly all modern CPUs emthis technique as a means to address the
I/O latencies associated with accessing local RAMhe underlying idea is that it is more
efficient to probabilistically use an otherwiseedCPU than to not use it at all. As long as the
benefits of successful speculative execution oglvéhe total overhead of its use, the technique
is considered a profitable activity. Research $taswvn that speculative execution remains one
of the most effective means for increasing thelle¥énstruction level parallelism (ILP) during
program execution (Wall, 1990).

Just as speculation improves ILP for programs, lneevshow it can also be used to increase
the degree of operator-level parallelism duringekecution of information gathering plans. By
speculating about the execution of future operatiirss possible to overcome CPU delays
caused by earlier I/O-bound operators (e.g., tHesehing remote data) and deliver better
performance. Thus, speculative execution direatldresses the problem of data dependent
operators executing in environments with availat@sources. Further, applying speculative
execution at a level higher than that of machistéruttions enables two additional benefits:

» Significant performance improvement. Since information gathering latencies can
be quite high, speculative execution of plan omesaallows gains to often be made
in terms ofsecondswith resulting speedups exceeding a factor of two

* The opportunity to apply more intelligent techniques to the problem of
speculation. CPU-level speculative execution must rely on tiédiresources — and
thus limited techniques — when predicting prograomtml and data flow. In
contrast, plan-level speculative execution canriye more resources and reap the
benefits that more sophisticated techniques caar.off

1.3 Contributions of this paper

In this paper, we describe an approach to speealatan execution and demonstrate how it can
improve the performance of information gatheringiVe also present an approach to value
prediction that combines classification and tractidn in order to generate predictions from

hints in an intelligent, space-efficient mannepe@ifically, the contributions of this paper are:

* An approach for speculative plan execution thatdgiearbitrary speedups, while
ensuring safety and fairness.

» Algorithms for automatically transforming any infeation gathering plan into one
capable of speculative execution.

» Algorithms for learning string transducers that @ame caching, classification, and
substring transduction in order to generate pragistfrom hints.

The rest of this paper is organized as follows. e Tiext section reviews how information
gathering plans are executed. In Section 3, werdbesour approach to speculative execution in
detail. Section 4 describes how machine learnamg lme applied to improve value production,



specifically how classification and transductiomdae used to build efficient and intelligent
value predictors. Section 5 details the relateckvemid Section 6 concludes our discussion.

2. Executing infor mation gathering plans

We start by reviewing the details of how informatigathering plans are executed. Generally
speaking, an information gathering plan is any tygeplan that collects, processes, and
integrates information from one or more sourcese Pplan is formed by a higher level query
processing system, such as an information medidtor.example, the Prometheus and Ariadne
mediators (Thakkar et al. 2005; Knoblock et al. PQOreason about sources and form
information gathering plans to be executed, justaasompiler forms a series of machine
instructions to execute. Once formed, such plamske executed by systems such as Theseus
[Barish & Knoblock, 2005]. While an executor mageumany techniques to efficiently process
the plan, such as streaming or novel tuple rouiotniques, it does not typically re-engage in
higher-level planning, such as reasoning aboutcssur

Execution plans consist of a partially-ordered grap operator€Op;..Op, connected in a
producer/consumer fashion. Each operator conswuamsst of inputsa;..a, fetches data or
performs a computation based on that input, andym®s one or more outpuis.b,. The types
of operators used in information gathering plansyvédut most either retrieve or perform
computations on data.

Data may be retrieved from a variety of sourcesluoing databases, Web services, and
Web sites. The latter is more involved — one nfiust fetch a Web page from a remote source
and then extract from that page, typically basedame extraction rules that have been hand-
coded or automatically generated. Operators tegbpn this task are calledrappers These
operators can often be slow to execute becausmatedNeb site may be busy and also because
the data being requested (the HTML) may be lardgeu@h the amount of data extracted may be
small). Unfortunately, the remote Web site is ¢glly not under the administrative control of
the person that wishes to extract data from ithes@r she may encounter unpredictable delays.
In this paper, we will frequently refer to examplans that gather data Warapperoperators,
although any operator that gathers data from agr&taource can exhibit the same fundamental
problem: dependency on a remote entity with varyegponse latencies.

2.1 Streaming dataflow plan execution

There are two basic types of parallelism that ameguently exploited when executing
information gathering plans. Onehisrizontal parallelismor operator parallelism, which is the
notion of multiple operators executing concurrentéx second issertical parallelism or data
parallelism, which is where a larger unit of dasa de broken up into smaller units so that the
larger unit is effectively processed in parallelrbyltiple operators.

Horizontal parallelism is realized throughtaflowsstyle execution of information gathering
plans, where the plan is represented as a partedlgred graph. Operators act as nodes in the
graph, while the input and output variables forheaperator determine the edges. During
execution, producer operators transmit data to woes operators in terms oélations where
each relation R consists of a set of attributes, (€olumnsp;..a and a set of zero or mongples
(i.e., rows)t;..t,, each tupld; containing values;;..vi.. We can express relations with attributes
and a set of tuples aRR (a..a) = {{vir.- i}, {Vo1..\d}, ... {V1..Vic}}. Note that relations are not
necessarily the only type of data that can be conmated between operators; however, in
practice it is very common, particularly since mamars of database research has focused on
processing relational data.



Vertical parallelism is exploited bywgtreaming data between producer and consumer
operators. This is accomplished by transmittinga @ the tuple level. In doing so, there needs
to be a way to signal that the stream has comptea@dmission. This is the function of a special
end-of-stream(EOS) token, transmitted from a producer to a oores after the last tuple has
been sent. As a result of streaming, the firinig f an operator changes from “whenever a
relation arrives” to “whenever a tuple arrives.tréaming is a powerful feature for information
gathering plans, as it allows data to be proceasatltrickles out from a remote source. At the
same time, it is more complex to implement becausequires operators to maintain state in
between firings.

Combining both types of parallel execution is comigaeferred to astreaming dataflow
and is a technique that has been applied to netgquoekies (Naughton et al., 2001, Hellerstein et
al., 2000, Ives et al.,, 2002) and information aggi@arish and Knoblock, 2005). Streaming
dataflow represents the maximum amount of “natupalallelism possible by exploiting, where
possible, the independence of operations and/ar dat

2.2 Example execution

To better understand the benefits of streamingfldata and to set the stage for our later
discussion of speculative execution, let us comdide details of an example Web information
agent plan. In doing so, we return to the eadiaample of an agent that assists the user who is
interested in buying a new car.

Carinfo is an agent that collects reviews and safety gatof used cars that meet a specific
set of user search criteria. The criteria are ameg of car type, year of original production, and
a desired price range. The user also specifiest aflcar makers to avoid. Once it receives its
input data, Carinfo uses a collection of Web soairtte gather the appropriate results. In
particular, three different Web sources are used:

* Edmunds.com, to get a list of used car models meeting theainsiearch criteria.

» Consumer Guide.com, to obtain the reviews for those models.

« NHTSA.gov (National Highway Traffic Safety Association), forash safety ratings of
those models.

The Web pages for each of these sources is shotigumes 2.1a-c.
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Figure 2.1a: Edmunds car search results page Figure 2.1b: NHT SA safety ratings page
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Figure 2.1c: Consumer Guide car reviews page

Carlnfo first gathers the list of cars from Edmuntigers out those automakers that the user
would like to avoid (Edmunds does not allow thissggecified through its search interface),
gathers the safety reports from NHTSA for the fdte set of cars, combines this result with
reviews gathered at ConsumerGuide and then outhetsesults. A dataflow-style plan for
Carlnfo that performs these operations is showFigure 2.2.

WRAPPER JOIN
NHTSA > —p result
S h
search WRAPPER SELECT ki :
criteria - Edmunds maker !=
Search "Oldsmobile”
WRAPPER WRAPPER WRAPPER
ConsumerGuide ™| ConsumerGuide [ ConsumerGuide
Search Summary Full Review

Figure 2.2 Dataflow-style version of CarInfo infor mation agent plan

As the figure shows, the independence of the NHB8A ConsumerGuide queries allows
both to execute concurrently. Also note the comipleof gathering the car reviews from
ConsumerGuide, specifically that additional naviatis required. Carlnfo must first query
ConsumerGuide through its search interface todipainter to the summary page for that car. It
then queries the summary page to find the detadestw page. Finally, it gathers the review
text from the detailed review page. Engaging iditi@hal navigation in order to extract the
desired information is a common subtask for Webnegén particular, since Web sites are
designed to be visually browsed and may not sugperdirect querying of all the information
they provide.

As a detailed example of Carinfo execution, consitie case where the initial search
criteria is Midsize sedan, year 2002 model, minimum price $46@Ximum price $1200@nd
the cars to avoid are those by the auto maRéismobilg. During execution, the first Wrapper
operator returns§ldsmobile Alero, Dodge Stratus, Pontiac Grand Marcury Couga). From
these, filtering out of Oldsmobile models resutfisthie subsetlYodge Stratus, Pontiac Grand
Am, Mercury Cougdr The safety reports and full reviews of theses ae then queried. For



example, for the first tupleDodge Stratus the URL for the summary review of that car is
(http://cg.com/summ/20812.htm and  the URL for the  full review is
(http://cg.com/full/20812.htin Once at the full review URL, the review texinclhe extracted
and joined with the safety report.

The Carinfo plan is one common type of informatament plan. Similar plans that extract
data from two or more distinct sources and thenlinenthem together are common throughout
the literature (Friedman et al. 1999; Ives et 8099, Barish et al. 2000; Barish and Knoblock
2002). Like Carinfo, these plans also involve aeting and combining data from multiple
sources using relational-style operations. Funtioee, note that the particular Carinfo plan
generated for execution is not important; it ist jas example of one type of plan. The actual
plan generated will vary per the query processysgesn (mediator, etc.) that produces it.

Figure 2.3 shows the execution time chart for Garlif we assume that each 1/0-bound
operation (i.e., a Wrapper) requires 1000 milliseto (ms) and each CPU-bound operation
requires (e.g., a Join) 100ms to execute, per taplé if we assume that the operators return the
data suggested in the above detailed exdmpls the figure shows, the first result tuple.(ithe
first tuple emitted from Join) would be availablely after 4200ms, despite the fact that both
streaming and dataflow are exploited during executi For example, note that each operator
starts as soon as a result tuple is emitted froonica operator. Also note that all queries to
remote sources are performed in parallel. For @@nalthough the Select returns three cars to
the CG Search operation, the executor can emploguceent threads to gather the remote data.
In terms of dataflow, notice that the figure leawes the time required to execute the query to
NHTSA, since our assumptions of 1 second per remiOteuery ensure that it will be less than
the time required for ConsumerGuide, which is penfed in parallel.

Join
CG Full |_m
CG Summary
CG Search
Select

Edmunds

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (seconds)
CPU-bound operation I:lllo-bound operation

Figure 2.3 Execution time chart for Carlnfo under streaming dataflow

3. Speculative execution

As Figure 2.3 shows, despite the benefits of stregmataflow, information gathering plans can
remain significantly 1/0-bound. For example, altnaB of the 4400ms execution time in the
CarInfo example is devoted to waiting for data froemote sources. This is not unusual for
Web information agent plans, which focus on gatigeand combining data from multiple online
sources. Incurring network latencies for plans liRarinfo that query remote sources are
unavoidable: if we want the data from a particslaurce, and we have no administrative control
over that source, then we are forced to wait foloag as the source takes. Usually, querying a

! Note that the figure shows some overlap betweenatipns — this is due to the streaming. For exenipe CG
Search takes a total of 1300ms (remote fetchethfee tuples from the prior Select, staggerredands intervals).



single source does not cause a noticeable degtatenty during execution. However, querying
multiple data-dependent sources in sequence can lefad to a noticeable aggregate latency.

Unfortunately, the nature of information integratias such that there are often data
dependencies, doinding patternsbetween sources: that is, plans often need twegaiata from
one source and then use it to query another. &umibre, information networks like the Web are
designed to be browsed interactively by the useguiring additional navigation in order to
obtain a final answer (such as the details of as@aour the full review of a car). Additional
navigation typically involves chasing “Next Pagef’ ‘Details” links from a previous page,
translating into even more data-dependent remathds. Such dependencies require the plan
to be more sequential, leading to slower execution.

One of the primary remaining challenges associai#ddincreasing the performance of Web
qguery plans has to do with improving the extentwaich flows that contain these types of
binding-pattern relationships can be parallelizéebr example, in the Carinfo plan, it is not
normally possible to query NHTSA safety ratings a@dnsumerGuide car reviews until
Edmunds returns the list of cars that meet thaalngearch criteria. If we could somehow
parallelize the gathering of ratings and reviewthwiine Edmunds search, the overall execution
time would be dramatically improved. Unfortunatetilis does not make logical sense: we
cannot gather safety ratings and car reviews waiknow which cars for which we need ratings
and reviews. In short, the data dependencies ketvaperators in a plan determine its
performance barrier. This is better known asddflow limit

3.1 The mechanics of speculative execution

To overcome the natural dataflow limit of a plane witroduce a new form of run-time
parallelism:speculative plan executionThe intuition behind this technique is the u$diats
received at earlier points in execution to genesgieculative input data to dependent operators
that occur later in a plan and execute them ahéadhedule. Through this method, consumer
operators that are dependent on slow producerbea@xecuted in parallel with those producers,
using the input to those producers as hints abowrttb execute.

In speculative plan execution, the knowledge of nnts are associated with predictions is
learned over time from earlier executions. As mkm®wledge is gained, accuracy (both
precision and recall) can improve. And as accuilagyoves, so does the average execution
time of plans that employ speculative execution.

To better illustrate the how speculative executian improve plan execution performance,
let us return to the CarInfo plan example presemi@dier. Consider the retrievals of the car
reviews from ConsumerGuide and the safety ratimgednfNHTSA. Both activities occur in
parallel, but both are dependent on the cars retufrom Edmunds based on the user search
criteria. As observed earlier, if Edmunds is slperformance of the rest of the plan suffers.

With speculative execution, however, the input tbriands (the price range, the year, the
type of car, mileage specifications, etc.) can $&duo predict the inputs for the ConsumerGuide
and NHTSA wrappers. For example, it could be ledrthat certain features of the search
criteria (such as car type, year, and price raage)yood predictors of the car makes and models
that Edmunds will return. This would provide aseaable basis upon which to predict queries
to ConsumerGuide and NHTSA — even for input nevevipusly seen. For example, once the
system has seen the cars that the search critefilidsize coupe/hatchback, 2002, $4000,
$12000Q returns, it is possible to make reasonable ptiedis about the cars that the criteria
(Midsize coupe/hatchback, 2002, $5000, $1)0@0 return.



In this example, there is no reason why the systanmot speculatively execute retrievals
for multiple sets of cars to improve the chancesstecess. For example, from prior executions,
the system could learn that a price range of $4RIHBOO returns a result SBRG and a price
range of $8000-$16000 returns a resultR®t When given a new criteria of $6000-$14000, the
system could predict botRS and RS. Identifying the correct subset occurs during the
processing of the search at Edmunds. However,cdpability to issue multiple sets of
predictions at once allows us to have the bestott kworlds — hedging both predictions — and
confirming only those speculations that turn oubéocorrect. Speculatively executing the same
path with multiple data can thus often be usefuémhints map to multiple answers.

Speculative plan execution can enable the fetcbindata from Edmunds, NHTSA, and
ConsumerGuide to be run in parallel. Since ake¢htasks are almost entirely 1/0O-bound, using
separate threads for each can result in almostdomeurrent execution. It is important to
realize, however, that we cannot speculate witlsaution. In particular, we need to be careful
about how the output from the final Join operatohandled — that is, data should not exit the
plan until the earlier predictions that led toatie been verified as correct.

In summary, this discussion of speculatively exgutnformation agent plans has raised
three important requirements. Specifically, foy approach, it is important to:

» Definea process for speculation and confirmation: It is important to specify how
speculative execution works — what triggers it, predictions are made, etc.

 Ensure safety: Speculative execution must be prevented fromgétmg an
unrecoverable action (such as the generation gbububr the execution of an
operator affecting the external world) until earl@edictions has been verified.
Thus, all speculation must lbenfirmed

* Ensurefairness. Speculative execution should not be prioritizédha same level
as normal execution. Its resource demands shaukkbondary. For example, the
CPU should not be processing speculative instrostihile normal instructions
await execution.

In the remainder of this section, we describe hoe address each of these three
requirements, as well awhere to predict and how to automatically transform pglaior
speculative execution. The problem what to predict, which directly affects the utility of
speculative execution, is addressed in detail tii@e4.

3.1.1 Speculation and confirmation

The process we introduce for enabling speculatilan gexecution involves augmenting a
standard information agent plan with two additiomglerators. The firstSpeculate, is a
mechanism for using hints to predict inputs to fetoperators, and later for correcting or
confirming those predictions. The second operaonfirm, halts the flow of speculative data
beyond “safe points” in a plan until earlier preains can be confirmed or corrected.

Figure 3.1 shows how these operators are deplayea fransformation of Carinfo for
speculative execution. As the figure shows, a Glpge operator receives its hint (the search
criteria) and uses it to generate predictions alwamtmodels. These cars, in turn, drive the
remainder of execution, while the first part of exton continues. Note that the final Join can
also be executed — the only requirement is thabafin operator exist somewhere after the
Speculate operator and before the end of the pldus prevents speculative results from exiting
the plan until Speculate has confirmed its preditgi
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Figure 3.1: The Carlnfo plan, modified for speculative execution

The inputs and outputs of the Speculate operamrsammarized in Figure 3.2. As the
figure shows, this operator receivasts (input data to an earlier operator in the plarg ases
those hints to generate dateedictions(used as input to operators later in the planhesgé
predictions are tagged as speculative; any funtesults they lead to are also tagged. Later,
Speculate receiveanswersto its earlier predictions from the operator naditgnproducing this
data. Using these answergnfirmationscan be generated to validate prior predictionsiy A
data errantly predicted is not confirmed and ddtat twas never predicted is eventually
forwarded via the predictions/additions outputheiit being tagged.

hints —— — predictions/additions

Speculate o
ANSWEI'S mmpy — confirmations

Figure 3.2: The Speculate operator

For example, in Figure 3.1, the search criteriausesd to predict cars. Let us suppose these
predictions are X, Y}. This triggers the gathering and combining of sai@tings and car
reviews, with the combination (joining) of this ddteld up at the Confirm operator. At the same
time, suppose that the Speculate operator recaivesswer that indicates that the real cars were
{X, Z}. It can subsequently route confirmation ¥oto the Confirm operator. In contra3t,s
not confirmed because no such answer was receiggdEdmunds. In additioiZ, is not tagged
speculative and is propagated through to the CoesBmde, NHTSA, and Join operators.
Note thatZ does not require confirmation because it was npkedticted (Confirm allows tuples
not tagged for confirmation to pass through). Ais #txample demonstrates, because Speculate
operates at the tuple level, corrections to itsligt®ns are fine-grained and require only the
minimum amount of additional work be done to caremistaken prediction.

The behavior of the Confirm operator is to emityobnfirmed results. Figure 3.3
illustrates its inputs and outputgrobable resultsare the incoming speculative tuples,
confirmations are generated by the Speculate operator, astdal resultsare the filtered
(correct) results. The role of Confirm is to guaghinst the release of unconfirmed or errant
tuples beyond a safe point in the plan. The maiw it differs from a relational Select operator
is in how it uses the confirmations as a filtehtdt probable_resultguples until each has been
confirmed.

confirmations >
Confirm |——actual_results
probable_results >

Figure 3.3: The Confirm operator
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Note that this approach exploits the fine-graineopprty of execution that data steaming
provides. By basing production of verified resutsconfirmations — instead of errors — correct
data can be output as soon as possible, withouingafor the remaining corrections to be
processed. Confirm will continue to wait for catiens until it receives an EOS, which is
controlled and propagated by the Speculate operator

Finally, a note about the input to the Confirm @per. In Figure 3.3, it is shown as a single
input. However, we assume that this input is dist@avariable stream input. That is, it accepts
multiple producers of the same data (each prodsemding its own EOS) and unions together all
of these streams. In this way, multiple producafronfirmations (i.e., multiple Speculate
operators) can share the same Confirm operatoe. adiliantage of this will become clear in later
subsections.

3.1.2 Safety and fairness

Ensuring safety during speculative execution mgaesenting errant predictions from affecting
the external world in unrecoverable ways. As dbedr above, the Confirm operator ensures
safety by only producing verified results as losgitais correctly placed in a transformed plan.
To maximize the benefits of speculative executidnlevensuring correctness, Confirm is placed
as far as possible along a speculative path, dogujust prior to plan output or an “unsafe
operator”. This allows speculation to parallelsaguential flows as much as is safely possible.
For example, in Figure 3.1, Confirm is located jusor to plan output.

Ensuring fairness means guaranteeing that normedugion is prioritized over speculative
execution in terms of access to resources. Farnmdtion gathering plans, the primary three
resources to be concerned about are processingr q@#&J), physical memory (RAM), and
network bandwidth. Using existing technology, fiass with respect to the CPU can be ensured
by the operating system. During execution, opesafor information gathering systems are
associated with threads and processing occurseatugple-level. By maintaining a pool of
standard-priority “normal threads” and a pool ofré-priority “speculative threads”, the former
can be used to handle the firing of operators undemal execution while the latter can be used
for speculative execution. Standard operatingesysthread scheduling thus ensures that
speculative CPU use never supersedes normal CRU use

Memory can be metered by pooling objects. Opesatan be written such that they draw
memory from different pools, based on whether thieas being processed have been tagged as
speculative. If so, new objects can be allocatenhfthe speculative pool of those objects. The
sizes of these pools can be adjusted as necedsmmsgd on how much physical memory is
allocated for speculative processing.

In terms of bandwidth, the goal is again to make s$lat speculative use of bandwidth does
not interfere with normal requests for bandwidBandwidth reservation schemes such as RSVP
(Zhang et al., 1993) are one way to provide sudrantees. In addition to hardware-based (e.g.,
network switch bandwidth provisioning) and softwaiased (e.g., TCP/IP socket configuration)
methods, network resources can also be controlfdaniiting the number of speculative threads
and handles to network connection objects. Ths&nslar to the solution for limiting memory
use. A fixed number of threads and connection abjéimits the number of simultaneous
speculative use of resources and thus can asdisuimding the amount of speculative bandwidth
(or any other resource) concurrently demanded.

3.1.3 Theprofitability of speculative execution
The maximum, or optimistic performance, benefiutisg from speculative execution is equal
to the minimum possible execution time of a tramsied plan. Calculating this requires
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computing the minimum execution times for eachhefindependent sequential flows of the plan
and then choosing the maximum value of that sedingJthe minimum execution time for each
flow implies all predictions are correct and natler additions are needed.

For example, consider the optimistic performancthefplan in Figure 3.1. This plan shows
three paths of concurrent execution (as labeldtierfigure): the Edmunds flowy, the NHTSA
speculative flowf,, and the ConsumerGuide speculative fliaw If we again assume that all
network retrievals take 1000ms per tuple and athpotations (Select, Join, Speculate, and
Confirm) each take 100ms per tuple, the resultiogy performance for the first tuple is:

fa= 1000 + 100 + 100 =1200 ms
fp =100 + 100 + 1000 + 100 + 100 = 1400 ms
fc=100 + 100 + 1000 + 1000 + 1000 + 100 + 100 = 3#80

Since the original time to first tuple (using thessumed values) would have been 4200ms,
the potential speedup due to speculative execinidhis case is 4200ms/3400ms = 1.24. Note
that if Edmunds had been very slow, say 3200mdype, overall original performance would
have been slower (6400ms) and potential speed}®(B4/3400ms = 1.88) greater.

3.2 Achieving better speedups

While a speedup of about two allows execution ttmdée nearly halved, producing noticeable
results, there is room for improvement. At firgt, might not seem possible — since all
speculation must be confirmed, execution time apgpéaund by either the time to perform
speculative work or the time to process confirnratid-or example, in Figure 3.1, we are either
bound by the time required by initial and confirguiiow f, or the speculative flowss or f..

However, two additional techniques can be usedntvease the degree of speculative
parallelism and the level of accuracy with resgedhe prediction, both leading to significantly
better speedups. The first involves using eadpggculation to drive later speculation, which
increases the degree of speculative parallelismuatime. The second is the concept of
speculating multiple times per hint, which increaswerage recall for a particular speculative
opportunity. We discuss both in detail, below.

3.2.1 Cascading speculation

We are not limited to speculating about only onerafor at a time. In fact, it is possible for
speculation about one operator to trigger speariabout the next operator and so on, an effect
we call cascading speculation When the results of an initial prediction areowm, this can
trigger confirmation of the second prediction ands, in effect cascading confirmations.

The performance benefit of cascading is the ineréasspeculative parallelism it allows,
thus making it possible to achieve very high speeduro illustrate, consider a longer sequence
of operators, such as that in Figure 3.4. Reanlbar earlier assumptions, processing ten
wrapper operators in succession would normally ireqllO seconds. Let us also assume that
each operator consumes a single tuple of inpufpandiuces a single tuple of output. Predicting
inputf in Figure 3.4, which occurs midway in the sequeatlews the first and last halves of the

a b c d e f g h [ j
“wHlwpPlw{wPlwpPiwpPwPlwpPiwP{w

Figure 3.4: A longer sequence of operators
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plan to execute concurrently, resulting in a newceition time of 5 seconds and a speedup of 2.
With a single Speculate operator, this is the maxmspeedup possible.

However, suppose that we wanted to as® speculate about the inphbtto a second
Wrapper, use the speculation lofto predictc, and so on. This is shown in Figure 3.5 (each
Speculate operator is denoted by &rConfirm by aC). Note that in the case of cascading
speculation, one Confirm is still all that is requal, as this operator is used to generally verify
speculative tuples and requires no knowledge ofrwlewhy the speculation occurfed It
simply determines if each answer tuple is eithepaculative output or a product of an earlier
speculative output. If so, the tuple is held upldhe confirmation(s) for that tuple have arrived

SIS TS > S > S 1”1 S > S| S > S
[1 Lt Lt Lt Lt Lt Lt [1 LfL |
- C >
Figure 3.5: Cascading speculation of the sequencein Figure 3.4

Since all wrappers require the same amount of tonexecute and are all I/O-bound, they
would act simultaneously (the 1000ms remote soulaency parallelized) and their
confirmations could be processed at once. Thusrdselting execution time would simply be
the duration of a single wrapper call plus the beed for speculation and the time to process
confirmation. Even if we assume that the overhaad confirmation somehow requires an
additional 100ms, execution would still only requir000+100+100=1200ms, a speedup of 8.33.

Figure 3.6 shows a version of the speculative Gauptan in Figure 3.1 further modified for
cascading speculation. Using earlier timing asgiong, then the five flows require the
execution times shown in Table 3.1. Since exeautime would be limited to the slowest of
these flows, the optimistic speedup for the fiopié would be (4200ms/1600ms =) 2.63.

=»| CONFIRM

A A

v
C—

; W
» W |[=»] SPEC J=» S 1 L 1
W =»{ SPEC W |=»] SPEC | W

Figure 3.6: Carlnfo modified for cascading speculation

? Recall that the Confirm operator can take a végiabhmber of confirmation inputs. For dataflommplanguages
that do not support variable inputs, cascadingwpéon would still be possible by arranging a satpe of
Confirm operators in place of the single Confirnegior shown in Fig 3.5.
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Edmunds + Spec + Confirm 1200
Spec + Select + CG Search + Spec + Confirm 1400
Spec + Select + Spec + CG Summary + Spec + Confirm 1500
Spec + Select + Spec + Spec + CG Full + Join + Confirm 1600

Table 3.1: Optimistic execution timesfor Carlnfo flows shown in Figure 3.6

Intuitively, cascaded speculation seems to makertbst sense for navigational sequences,
such as the three successive fetches from Consunter@ the Carinfo plan. Many Web
sources present a visual view of an underlyingticelal database schema. HTML pages are
programmatically generated and thus navigation édam data often tends to follow some
simple URL patterns. Once prediction to the ihjiage is confirmed, all subsequent navigation
is almost always verified because it predictablylofes from the first page. Thus, for
information gathering plans that speculate abotérli@aved navigation, cascading speculation
can often overcome the cost of interleaved nawgati

This specific case occurs in the Carinfo plan. sider the lower half of the plan in Figure
3.1, where ConsumerGuide is queried for car revie@ace the dynamic part of the target URL
is discovered (the car ID, “20812” in the case lo¢ tDodge Stratus example earlier), the
subsequent navigational pages are predictable.a Aesult, use of cascading speculation can
easily yield a speedup of 3 for this interleavedigation sequence.

3.2.2 Simultaneous speculation

A second technique that can lead to better speedopsspeculative plan execution is
simultaneous speculatipthe concept of making multiple sets of predictionThis technique
acts as a “hedging” device for a Speculate operatan if predictions about some tuples are
incorrect, others may be correct and the additionatber of predictions can improve recall.

Nevertheless, it is important to limit how many aigdehal speculations are made on behalf
of a single hint. Too many speculations can insgethe overhead of speculative execution in
several ways. First, each speculation leads tatiaddl speculative work by one or more
threads. For example, in the case of Carinfo, eatha prediction of what Edmunds might
return requires work by at least 6 threads (onesémh normal operator) + 3 additional threads
(two additional Speculate and one Confirm operatotptal of 9 threads.

A second way that multiple speculations can in@eagerhead is by severely impacting a
resource. For example, if one hundred differens fi@m Edmunds are predicted based a single
hint (when in fact there are only 3 or 4 actualvears), the NHTSA and ConsumerGuide
websites might be adversely affected by the addiitbad placed on their servers, which in turn
affects the execution of the Carinfo plan.

However, for certain scenarios, multiple specuteiare a reasonable and effective way to
increase recall. For example, if a Speculate dpetia predicting the result from a weather
forecasting site, there may only be a few posspkdictions (e.g., "sun”, “clouds”, “rain”,
“snow”, or “wind”). If the forecasting site is skg it may be worthwhile to predict all five,
knowing that only one will eventually be confirme8y predicting all five, there is a guarantee
that recall will be 100%, despite the fact thatcs®n obviously worsened to 20%.
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3.3 Automatic plan transfor mation

In the previous section, we described how speadagilan execution can vyield significant
performance gains. However, in that example, amgatien of the Carinfo plan was done
manually. In this section, we introduce algoriththat enable the automatic transformation of
any information gathering plan into one capablspsEculative execution.

The overall goal is to maximize the theoreticalrage performance gain resulting from
speculative execution. At the same time, we alsednto be wary of the overhead (cost) of
speculative execution. Thus, we would like to idgrthe best speculative transformatiBf of
a plan P, from some larger set of possible transformatid?is.P’,, that are different
transformations ol for speculative execution.

3.3.1 The set of candidate transfor mations
One natural way to approach the problem is to Gesterate the set of all possible speculative
transformations and then iterate through this applying the equation above to identify the
speculative transformation with the best theoréggacution time. Unfortunately, this approach
is impractical because the set of all possible @pége transformations is huge.

To demonstrate why this is the case, let us conside to calculate the number of possible
speculative transformations for certain class of/\&#mple information gathering plans that is a
subset of the larger set of all possible planse dlass of plans considered is those that:

(i) are composed of a single, unbroken chain operators
(i) consist of operators that all have single input sindle output (e.g., not Join)
(i) have one plan input and one plan output

For example, the plan shown in Figure 3.7 meetsethequirements.

a b c
- A= B™= (C =

Figure 3.7: Sample plan that meets (i), (ii), and (iii)

To calculate the number of possible speculativasf@mations of a particular plan, it is
assumed that we are only interested in transfoomativhere:

» all speculations involve using the input of an wmin operator as a hint for
predicting the input of a downstream operator

» there can be one or more speculations in the pkanascading speculation)

» the same downstream input is not predicted by pialtipstream inputs

For example, there are five possible transformation the plan shown in Figure 3.7, which
can be summarized as:

((bla), (cla), (bla, c|a), (c|b), (bla, c|b))

This list denotes the set of possible transfornmatioEach transformation involves one or
more instances of using a particular variable dsina for issuing predictions about another
variable. The list above simply describes the/pnediction pairs for each transformation. The
“I” means that the left-hand side variable couldppedicted by the right-hand side variable
(which always precedes the left-hand side in tla)pl For example, the transformatifja,
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c|b) is one where “a” is used to predict “b” and “bpésulative “b”, that is) is used to predict
“c”. Thus, in this example, there are two Speaitgterators and one Confirm.

To consider the total number of potential specuatransformations, we observe that for
operator sequences of lengths 2, 3, and 4, thegossible number of transformations is 1, 5,
and 23, respectively. Generally speaking, the rerndd transformations for a sequence of
length n consists of the number of transformations requi@da sequence af-1 plus the
number of transformations possible that involve #Huegled operator. Specifically, the total
number of possible speculative transformationsnpfof a particular sequence ofoperators for
plans is roughly equal to the factorial series ripieven simple plans of moderate length can
quickly generate a very large number of candidetrsformations to evaludte For example,
even under the fairly strict set of assumptionsdiesd earlier, a sequence of 10 operators has
3,628,799 possible speculative transformations.

3.3.2 Reducing the number of possible transformations

The problem with using a brute force approach teniily the most profitable plan
transformation is the factorial blowup of the numbécandidate transformations. The problem
obviously worsens for larger plans and even moramdtically when we relax earlier
assumptions, such as that plans can only consiatsifigle flow. At the same time, intuition
suggests that it is better to focus on how speiomanight reduce the impact of major bottleneck
operators in a plan, instead of considering evessible speculative opportunity.

We can reduce the size of the candidate transfamatet substantially by leveraging
Amdahl's Law, which states that program executioretis a function of its most latent sequence
of instructions. Thus, it is not worthwhile to caexr transformations involving operators that do
not exist in this sequence because any improveoamiot improve overall execution time.

Instead, Amdahl’'s Law suggests that performancenigation should be focused on the
costliest flow in the plan. In particular, we case a most-expensive-path (MEP) approach that
identifies the most latent sequence of operatoemimformation gathering plan and focuses the
generation of candidate transformations on that‘pam MEP-based transformation algorithm
for a given plarP consists of the following key steps:

1. Find all paths oP and their execution costs.

2. ldentify fmep

3. Identify all possible speculative transformations f@., ignoring transformations on
operators that execute faster than the overheagemulating.

4.If at least one transform is found, apply the mosdfitable transform to the plan and
repeat the process. Otherwise, stop.

Note that, the iterative refinement approach githesabove algorithm an anytime property
and thus allows refinement to be bounded by sorel fiime, if necessary.
We have developed a detailed algorithm, based enntuition above, called FRGREWRITE.
The algorithm is shown in Figure 3.8a..

01 Function SPEGREWRITE
02  Input: oldPlan

03 Returns: newPlan
04 {

05 newPlan - @

06

3 Specifically, the possible number of transformasiés equal to: SHj = (n-1) +n*ST(n-1), ST(1) =0
* The terms “path” and “flow” are used interchangaibl this section.
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07 do

08 newMep— @

09 bestSpeedup 1

10 planPaths— GET-ALL-PATHS (oldPlan)
11 meplnfo~ GeT-MEer-INFO (planPathg

12

13 foreach operator p 0 meplnfo.mep

14 IhsTime—~ GET-LHs-TIME (op, mepinfo.path

15 rhsTime— GeT-RHs-TIME (op, meplinfo.path

16 opTime— CALC-OPERATOREXECUTION-TIME (Op)

17 opOverheadTime (2 * per-tuple-overhead) * GET-AVERAGE-NUMBER- TUPLES PROCESSEIfOp)
18 newMepTime- lhsTime+ Max (opTime rhsTimég + opOverheadTime
19 candSpeedup meplinfo.timg newMepTime

20 if candSpeedup bestSpeedutthen

21 newMep- GENERATE-TRANSFORM-PATH(meplnfo.mepop, op.previousOp, op.nextPp
22 bestSpeedup candSpeedup

23 endif

24 end

25

26 if bestSpeedup > then

27 if newPlan = @ then

28 newPlan — oldPlan

29 endif

30 newPlan~ RePLACE-PATH(newPlan meplinfo.mepnewMep

31 endif

32

33  whilenewMepl= @

34

35 return newPlan

36 }

Figure 3.8a: The SPEC-REWRITE algorithm

To gather information about the current MEP, tireSREWRITE algorithm calls the helper
function GET-MEP-INFO, shown in Figure 3.8b. It returns an object chfteepinfothat contains
information on the most expensive path, includimg tost of that path. This function is called
during each iteration of plan transformation toali@cwhich flow is the primary plan bottleneck.

01 Function GET-MEP-INFO

02  Input: planPaths

03  Returns: mepinfo

04 {

05 meplinfo—newMeplinfo

06

07 mepinfomep~ @

08 meplinfomepCost— &

09

10 foreach pathp O planPaths

11 curCost— 0

12 foreach operator p O p

13 curCost curCost+ CaLc-AVERAGE-OPERATOREXECUTION-TIME(Op)
14 end

15 if mep=1 or curCostmepCosthen
16 meplnfo.mep- p

17 meplinfomepCost— curCost
18 endif

19 end

20

21  return mepinfo

22 }

Figure 3.8b: The GET-MEP-INFO helper function

To optimize the transformation of the MEP, theeSRewRITE algorithm in Figure 3.8a
uses the &r-LHs-TIME and GeT-RHS-TIME functions to calculate the cost of the left-harks
(LHS) and right-hand-side (RHS) of each speculatipportunity considered. For example, in
the transformed CarInfo plan in Figure 3.6, congitien of the Speculate operator after the first
wrapper operator would involve calculating the sast the LHS — the time it takes to execute
the Edmunds wrapper operator — and the cost dRHi® — the time it takes to execute the rest of
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the plan. The best possible outcome is for the Idd§ and the RHS cost to be equal, which
would enable correct speculation about the LHStluce the execution time of the original path
by half (the maximum possible per speculation oppoty).

Note that the 8EGReWRITE algorithm also accounts for the overhead of s@icul. In
particular,opOverheadTimeés based on the per-tuple overhead, the addititimal required per-
tuple for context switching and speculation/confitran processing, multiplied by the number of
tuples usually seen by that operator. The pertaplerhead is multiplied by 2 in theei&>
REWRITE algorithm to account for the overhead associatdth woth Speculation and
Confirmation per tuple. In addition to the algbnt taking into account overhead, performance
degradation is also addressed by use of threadtf@$p as discussed in section 3.1.2.

3.4 Experimental results’

To measure the impact of speculative plan execudiothe information gathering process, we
conducted experiments on a set of typical Web médion agent plans. The goal of these
experiments was to discover how useful the teclenmgould be for the types of information
integration plans that are common to Internet imfation gathering.

These experiments were conducted using Theseusarsng dataflow execution system
for information agents (Barish and Knoblock, 2005)he Theseus plan language supports a
Wrapper operator, as well as standard relation&raiprs (Select, Project, etc.), and some
additional operators for further types of data $fammation, monitoring, and remote
communication. These additional operators supgherte-mailing data gathered, the scheduling
agent plans, and the transformation to/from XMLnifto relations.

Theseus was modified to support the automatic foamstion of plans using therSc
REWRITE algorithm. In addition, Theseus was instrumentecdount the average number of
tuples per operator, per transaction as well asatteage time it took to process each tuple.
Using these numbers, Theseus iteratively transfdrthe MEPs in each plan, until no further
transformations were possible (or profitable). MBoe second and successive runs, Theseus
issued predictions using data acquired from pastwions. It also collected source/target data
for each speculative opportunity in order to impggag recall and precision for future runs.

3.4.1 Web agent plans

To measure the utility of speculative executionomtine information gathering, we looked at
how the technique affected the performance of fiiféerent types of Web agent plans that
integrate information between multiple Internetrees. These plans included:

» Carlnfo: The main example, introduced in Section 1.

* Replnfo: An agent described in (Barish and Knoblock 200t allows users to
specify an U.S. nine-digit zip code to query mugipgVeb sources that identify the
set of corresponding U.S. federal congressional beesn(House and Senate), along
with funding charts and recent news correspondingatch member.

* TheaterLoc: An agent that combines restaurant and theatarfdat particular city
and dynamically generates a map that plots theations (Barish et al. 2000).

* FlightStatus: An agent described in (Ambite et al. 2002) thagries the status of a
particular flight, and then e-mails the user/hetgh updates as necessary.

* StockInfo: An agent that takes a particular company namentifies the stock
symbol associated with it, locates profile inforraaton that company, finds out

® Data from our experiments can be found at httpulwisi.edu/integration/data/theseus/aijo7data.html
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what industry sector that company is in, identifies largest competitor (based on
market capitalization) and retrieves a chart tlwabgares the 1 year performance of
that competitor with the input company and the®ect

The details for each of these plans can be fouseirilere (Barish, 2003). Table 3.2 summarizes
the original number of operators for each plan @wednumber of Speculate operators added after
transformation for speculative execution.

Original | Speculate

Agent number of = operators
operators added

Carlnfo 7 3
Replinfo 8 4
TheaterLoc 5 2
FlightStatus 8 1
Stockinfo 7 7

Table 3.2: Summary of agent plans and resulting transfor mations

3.4.2 Example plan transformation

To better illustrate the details of plan transfotioa using $EGREWRITE, we describe
optimizing the real CarInfo plan, using actual @per execution times. In practice, the initial
run of this plan took 6900 seconds and yieldedferator execution times shown in Table 3.3.

Operator Time (ms)

Join 10
Select 153
Wrapper (NHTSA) 359
Wrapper (Consumer Guide - Summary) 1912
Wrapper (Consumer Guide - Full Review) 2175
Wrapper (Consumer Guide - Search) 1478
Wrapper (Edmunds) 812
Total 6900

Table 3.3: Operator execution timesin Carlnfo
From this, the path execution times shown in T8Mewere calculated.
Path Path operators Time (ms)

P1 Edmunds + Select + NHTSA + Join 1334
P2 Edmunds + Select + CG-Search + CG-Summary + CG-Full + Join 6900

Table 3.4: Path execution timesin Carlnfo

The $EGREWRITE algorithm then used the above statistics to tansfthe plan for
speculative execution. It first determined tha MEP of the plan was paf2. Initially, the
most profitable operator to speculate about was @wmsumer Guide Search wrapper.
Parallelizing its execution through speculationhwdperators on the MEP leading up to it
theoretically saved just over 1900ms (assuming 1@@#tect predictions). Note that even
though the Consumer Guide Full Review wrapper tlooiger, parallelizing its execution with
the rest of the plan would save little time, sinody a very fast Join follows. By continuing with
the algorithm, the original MEP was reduced furthgrspeculating about both the Consumer
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Guide Summary wrapper and Edmunds wrapper. It sther algorithm transformed the plan so
that instead of only two long parallel paths (a3 @ble 3.4), there were now many short parallel
paths, as shown in Table 3.5.

Path operators Estimated Time (ms)

Edmunds + Spec + Confirm 1012
Spec + Select + NHTSA + Join + Confirm 669
Spec + Select + CG-Search + Spec + Confirm 1878
Spec + Select + Spec + CG-Summary + Spec + Confirm 2412
Spec + Select + Spec + Spec + CG-Full + Join + Confirm 2685

Table 3.5: Path execution times after transfor mation for speculative execution

Thus, the estimated execution time of the plan ddd equal to the new MEP, th8de¢
Select Spe¢ Spe¢ CG Full, Join, Confirrh path, 2685ms. This represents a speedup of
(6900/2685 =) 2.57 over the original streaming fiiataplan, in terms of time to first tuple.

3.4.3 Overall results

We compared the performance of normal executiogpculative execution for all five agent
plans, focusing specifically on the speedups aasatiwith the time to first and last tuple.
When comparing normal execution to speculative etxec, we looked at three cases of
speculative execution:

e Optimistic: 100% correct
* Average: 50% of the predictions (from all predictors) maudere correct
* Pessimistic: none of the predictions made were correct

By “percent correct”, we are referring to recalor example, in the “50% correct” case, if
the answer was (A, B), our 50% correct predictiaghtyield (A, C, D). We chose to measure
these three cases of speculative execution to shewimpact of prediction quality on plan
speedup, while holding the speculative overheadstaoih. Figures 3.9a and 3.9b show the
average performance at different levels of recdllgure 3.9a shows the effect of speculative
execution on the time to first tuple (start of audp while Figure 3.9b shows the impact on the
time to the final tuple (end of output). The restaverage speedups for each of the plans, for
both the 100% and 50% cases, are shown are shokigures 3.10a and 3.10b.

3.4.4 Discussion

There were two interesting findings worth notingnfr the Web information gathering
results. The first was that speculative executemuced average execution time significantly for
CarInfo, Replinfo, TheaterLoc, Stockinfo, and legmidicantly for FlightStatus. Clearly, this
difference in the impact of speculative executi@s o do with two factors: (a) the number of
binding patterns between Wrapper operators in atah(b) the latency of the sources used.

For example, the Stockinfo plan had an MEP paiadble to a degree of seven.
Correspondingly, its average speedup was just uAdeiThis difference is likely due to the
overhead of speculation. The same is true for r@@rlnd Replinfo, which had MEPs
parallelizable up to 3 and 4, respectively, anddge average speedups of 2 and 2.5. In contrast,
the maximum possible speedup for FlightStatus thef sources were equally latent — was 2.0.
However, since one of the sources (the U.S. NairmkeTsource) was very fast, execution time
was dominated by the slower source (Delta airlines)
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A second notable finding was the difference in dpgs between first and last tuple as a
function of accuracy. For example, when 100% areect, we see that the speedups of the time
to first and the time to last tuple due to specudaexecution roughly correspond. Consider
Carlnfo, where the first tuple and last tuple spgesdwere 1.98 and 1.76, respectively, a standard
deviation of 0.16. However, when some predicti@me incorrect, there were significant
differences between first and last tuple speedups. example, the Carlnfo first and last tuple
speedups for the 50% scenarios were 1.80 and re@dectively, a standard deviation of 0.39.

The difference in deviations can be explained ke féct that, when correctness was less
than 100%, one or more tuple(s) will have requiteaveling through the normal path of
execution — that is, since confirmation failed atearlier stage, some tuples needed to pass
through some or all of the plan. However, minoeesups on the last tuple were still possible
because (a) execution was more “spread out” (smgheups of tuples required concurrent
processing by Wrapper operators) and (b) althoymgitidation failed some percentage of the
time, it was rare that a tuple which failed but wasrected in the middle of the plan, failed again
at a later point in the plan. Meanwhile, note ttiet speedups on the first tuple remained high
(though there was some minor impact). This is beee0% of the predictions were correct —
thus, some tuples predicted (and those derived fhase tuples) did not require correction.

Finally, for purposes of clarity, it is useful teuvisit the definitions of “optimistic” and
“average” in the experiments. Note that for caswadspeculation, the “optimistic” case
assumed thadll predictors in the modified plan are 100% correctheir predictions, all of the
time. In contrast, the “average” case assumed ahapredictors are 50% correct. This is
equivalent to having said that (a) the plan inpatads repeated 100% (or 50%, in the average
case) of the time and that (b) no generalizatiocl{sas learning, discussed below) is performed.
This means that, to an extent, the boundaries eandwed as somewhat “over optimistic” and
“over pessimistic”, depending on the applicatiddevertheless, these assumptions allow us to
get a sense for the impact of speculative execugigen varying degrees of accuracy, and
underscore the importance of making good predistauring speculative execution.

4. Learning Value Predictors

The challenge of value prediction is to leveragewedge about the set of past hints when
making a prediction about a new hint. More spealfy, the goal is to use some source tuple
as hint for issuing a predicted target tupleOne approach to value prediction is to simplshea
the association: we can note that particular hintorresponds to a particular targgtso that
future receipt ohy can lead to prediction of,. Caching is one simple and safe solution to the
problem of value prediction. It requires no newoaithms and can be applied to any value
prediction opportunity.

However, since the type of speculative executi@t tie have described occurs at the plan
level, where the values being predicted are relaiptes of data, there are often opportunities
where it is possible to do much better. For examipl the CarInfo plan, the full review URL is
simply just a transformation of the summary URL.e Would like to learn this transformation
function because it would enable us to make priedisteven when evaluating new hints, ones
which are not associated with a prior predictidm.addition, this type of predictor would also be
smaller and bounded in its space requirements gt@age of the function).

In this section, we introduce an approach to valagliction that combines caching with the
techniques of classification and transduction. Tasulting predictors learned are not only
capable of both predicting values based on reaypast hints, but are also capable of making
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predictions for new hints and synthesizing new jatezhs if necessary. As a result, the
predictors can issue predictions more often. Awvasy the predictions are correct, this leads to
better average plan speedups.

4.1 Value prediction strategies

There are several potential methods that can ke togeredict values, each differing in terms of
their design complexity, space efficiency, and p@ee capabilities. The last metric is
especially important because better predictionsuatime translate into better speedups. To
better compare methods of prediction, there aeetbcenarios to consider:

* Predictionsof past values based on recurring hints: Given the past association of
an input with an output, future receipt of thatoprinput can be treated as a higt
justifying prediction of that prior output valug;. More compactly, this can be
described as the case wherg |(hy).

» Predictions of past values based on new hints. In cases where a many-to-one or
many-to-many relationship exists between hints pratlictions, receipt of a new
hint hyq O H, whereH = {h,...hym} and q > m can lead to a predictiow; [ V, a
previously collected set of predictioW's= {vy...wyn}, Wwhere 1<i < n. Equivalently,
this is the casev; | hyg).

» Predictions of novel values based on new hints: In cases where it can be observed
that (i | hy) and thatv,; = F(hy), we can learn functiok and therefore be able to
compute a prediction for some ndwy U H, specifically to computé&(hy) = w;.
Thus, this is the cas&(hy) | hy).

In this section, we discuss three strategies farevprediction — caching, classification, and
transduction — and evaluate their accuracies wgpect to these three categories.

4.1.1 Caching

The simplest strategy for value prediction is tohginput and output values for the operator to
be predicted, replaying outputs for repeated inpétsache is simply a table that associates hint
with predicted value(s). When multiple hints caaprtio the same prediction, a slightly more

efficient cache associates a list of hints with onenore predictions. In general, over time, the
recall cache increases (as does its size).

For example, consider use of a cache in Carinforédict the output ofGldsmobile Alero,
Dodge Stratus, Pontiac Grand Am, Mercury Coydaonm the Edmunds wrapper based on the
input (Midsize coupe/hatchback, 2002, $4000, $1200Based on this input, the cache would
simply consist of a one row, two column table ibated these two values:

Prediction
Midsize coupe/hatchback, Oldsmobile Alero, Dodge Stratus,
2002, $4000, $12000 Pontiac Grand Am, Mercury Cougar

Table 4.1: Cachefor the Edmundswrapper in Carlnfo after one example

Future observations that did not already exishendache would be added. For example, the
input (Midsize coupe/hatchback, 2002, $16000, $13a8at returns Klonda Accord, Pontiac
Grand Prix, Toyota Camry, Chevrolet Camamgould be appended. Note that this process also
applies to cases where a similar (but not exadgytical) hint leads to the same predicted value.
For example, it is also true that the inpMidsize coupe/hatchback, 2002, $5000, $120600
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which differs from the first hint only on the minum price — returns the same result as the first
hint. If we now take all three instances and stbesn in the cache, the result is Table 4.2.

Hint Predictions

Midsize coupe/hatchback, Oldsmobile Alero, Dodge Stratus,
2002, $4000, $12000 Pontiac Grand Am, Mercury Cougar

Midsize coupe/hatchback, Honda Accord, Pontiac Grand Prix,
2002, $16000, $18000 Toyota Camry, Chevrolet Camaro

Midsize coupe/hatchback, Oldsmobile Alero, Dodge Stratus,
2002, $5000, $12000 Pontiac Grand Am, Mercury Cougar

Table 4.2: Cachefor Edmunds based on three examples

From these examples, it should be clear that cgadbkifimited in that it can only respond to
past hints. Furthermore, the minimum size of thehe required to store Table 4.2 is 184 bytes
(counting only the unique data values needing g&rplus the data required to store information
about the structure of the cache. However, froenetkamples seen, storing all of this data is not
necessary — the same predictions can be made stoxe only the key parts of information that
distinguish one prediction from the others. We raegcribe alternative techniques to caching
that can also be used for value prediction.

4.1.2 Classification

Classification involves extracting knowledge fronset of data (instances) that describes how
the attributes of those instances are associatdd aviset of target classes. Given a set of
instances, classification rules can be learned hsd tecurring instances can be classified
correctly. Once learned, a classifier can alsoanmalasonable predictions about new instances,
even instances that are a combination of attribataes which had not previously been seen.
The ability for classification to accommodate newstances makes it a useful method of value
prediction for speculative plan execution becausdike caching, classification rules allow
predictions to be made about new hints. A nunodfbelassification techniques exist (Mitchell,
1997; Duda et al., 2001).

As an example, consider again the prediction ofntlake and model of a car in the Carinfo
plan. It turns out that Edmunds returns the sansmvar QOldsmobile Alero, Dodge Stratus,
Pontiac Grand Am, Mercury Couggafor the criteria iidsize coupe/hatchback, 200®at also
include any minimum price of $9912 or less and araximum price of $11944 or more. This
explains why the third hint in the example abovbiclr had a minimum price of $5000, returned
the same answer as the first. Thus, we see thieitase of the Edmunds wrapper, multiple
search criteria can be associated with the sanét.res

Intuitively, we know that certain features of thimthwill always lead to a different result
than previous hints. For example, if we had attdres type or class of car, we know that we
would not get the same set of results returned, (@nfct, we do not). However, intuition also
suggests that there are ranges of prices thatretilrn the same result oDldsmobile Alero,
Dodge Stratus, Pontiac Grand Am, Mercury Coygaut we do not know exactly what those
ranges are. More important is the issue of engpthis knowledge into a predictor. Unlike
classifiers, elementary caching approaches doupast any way to express rules under which
hints can map to certain predictions.

Given a set of examples, a classifier can be uséelarn rules for prediction that are based
on features of the hint. The basic idea involvakudating the information gain that hint
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attributes provide in terms of determining an asgmn to a particular target class (the

prediction). The more closely associated a pderdeature of a set of training instances is with
the target classes for each of those instance$getiter that feature is at classifying the instance

For example, when considering the examples destribéhe caching section above, a decision
tree classifier like C4.5 (Quinlan 1986) could induhe following rules:

min < 5000: Oldsmobile Alero, Dodge Stratus, Pontiac Grand AMarcury Cougar
min>5000: Honda Accord, Pontiac Grand Prix, Toyota Camry, @Gloéet Camaro

When presented with an instance previously sea as Midsize coupe/hatchback, 2002,
$4000, $1200p both the cache and the classifier would resuthe same prediction. However,
when presented with a new instance, suchvidsfze coupe/hatchback, 2002, $4500, $12000
the cache would be unable to make a prediction @#dsethe classifier would issue the correct
prediction. Note that even when classificatiordeto an errant prediction, the Confirm operator
would prevent errant data from leaving the plan.

The decision tree above is also more space effithem a cache for the same data. Recall
that the cache requires storing at least 184 byldge decision tree above requires storing only
132 bytes (nearly a 30% improvement) plus the médron required to describe tree structure
and attribute value conditions (i.e., price < 18000’ he space required for the tree structure
varies based on the ratio of possible hints to iptesgredictions. The higher this ratio (i.e.,
many hints, few possible predictions), the lessspaquired to describe the tree. However, as
this ratio approaches 1, the classifier graduathylates a typical association table. In extreme
cases where the ratio is nearly 1, it will oftenrbere efficient to use simple caching than to
learn a classifier. In short, classifiers can mfygeld huge space savings and allow us to also
make predictions about novel hints. However, thera point of diminishing returns for some
cases, especially as the number of possible predécapproaches the number of possible hints.

4.1.3 Transduction

Transducersare finite state machines that transform inpubtput by using the former to
iteratively proceed through a series of states phagjressively produce the latter. One type of
transducer is a string-to-strisgquential transducedefined by (Mohri 1997) a6= (Q, i, F, Z,

A, 3, 0), whereQ is the set of states[] Q is the initial statef [0 Q is the set of final stateg,
andA are finite sets corresponding to input and ougiiphabetsd is the state-transition function
that map x = to Q, andao is the output function that ma@sx = to A*.

A more general type of subsequential transducénagp-subsequentiafransducerwhich
extends the definition of a sequential transducgrabbowing the final state to include
additional output arcs. This simply allows thensducer to append on additional characters (i.e.,
a suffix). Transducers are used in many sub-diseip of computer science, including natural
language processing, where they have been appligek tproblem of automatically translating a
source string to a target string.

Value prediction by transduction makes sense forbVW#ormation gathering plans
primarily because of how Web sources organize métion and how Web requests (i.e., HTTP
gueries) are standardized. In the case of the égrieb sources often use predictable
hierarchies to catalog information. For examptethie Carinfo example, the summary URL for
the Dodge Stratus wadttp://cg.com/summ/20812.htrand the full review was at
http://cg.com/full/20812.htm Notice that the second URL contains the key giet dynamic
information 0812 found in the first URL. One could construct ansducer that extracts that
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information from the first URL and combines it witther static data to yield the full review
URL, as shown in Figure 4.1. By learning suchiamgducer, we can then predict future full
review URLs for other summary URLSs previously umsde addition to URLS, transducers can
also be used to predict HTTP query parameters.ekample, an HTTP GET query for the IBM
stock chart isttp://finance.yahoo.com/q?s=ibm&d=8y exploiting the regularity of this URL
structure, the system can predict the URL for thec&€ Systems (CSCO) chart. Our use of
transducers here is thus similar to existing methofl extracting information from semi-
structured sources (Ashish and Knoblock, 1997; Kuwesick 1997; Freitag 1998), with the
additional point that we want to use the extradtdarmation to generate a new predicted value.
An important feature of our approach is that amngducer learned will always be 100%
accurate with respect to the training data.

In this section, we define two new types of trartsaa that extend the traditional definition
of p-subsequential transducers. The first is a higktansducer, calledvalue transducethat
constructs a predicted value based on the reguland transformations observed in a set of
examples of past hints and values. Value transdubeild the predicted value through
substring-level operationd gsert, Cache, Classify, Transduce}. Insert constructs the static
parts of predicted valuesCache recalls past values associated with the hint k&fassify
categorizes hint information into part of a preééitivalue. FinallyTransduce transforms hint
information into part of a predicted valu@.ransduce uses a second type of special transducer,
called ahint transducey in which the operationsAccept, Copy, Replace, Upper, Lower} all
function on individual characters of the hint aretfprm the same transformation as their name
implies, with respect to the predicted value. diference between the value transducer and the
hint transducer is that the former coordinatespttoeluction of the prediction (possibly using the
latter, as well as other higher level techniqueBgmas the latter is simply a tool that may be
used to extract out relevant information (suchhas“20812” substring, in Figure 4.1) as part of
the value transduction process.

To illustrate, consider the process shown in Figu& which can be applied to predicting
the full-review URL in the Carinfo example. Thgudre shows two transducers. The upper one,
the value transducer, performs high-level operatiogluding the insertion of substrings and the
call to a lower-level transduction process. Theose transducer (in abbreviated form) is a hint
transducer. The example shown usesAlkeept and Copy operations to transform the hint
value fittp://cg.com/summ/20812.htamto its proper point in the predicted value. stimmary,
the value transducer first builds thiettp://cg.com/full/ part, the hint transducer is then applied

http://cg.com/summ/20812.htm

To create full review URL:

1. Start with "http://cg.com/full/"

2. Append the dynamic part of the
summary URL (e.g., 20812)

3. Append ".htm"

http://cg.com/full/20812.htm

1 2 3

Figure4.1: Full review URL transduction is part extraction, part production
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INSERT("h‘;tp ://cg.com/full/") IN§ERT(" .htm™)

O—0O

TRANSDUCE (hint)

U:ACCEPT  /:ACCEPT  .:ACCEPT

€:ACCEPT €:ACCEPT €:COPY €:ACCEPT

Figure 4.2: Valuetransducer for thefull-review URL in Carlnfo
to fill in the dynamic part “20812” via copyingfitom the hint value, and finally the third value
transducer operation appends tharfi’ suffix.

The key idea this example shows is that synthdsaspoediction can consist of several sub-
operations. Some of these sub-operations, sudimsest, are independent of the hint value.
Others, such abransduce, Classify, andCache are a function of the hint value. Together, both
types of sub-operations enable values to be gexttraven from never-before-seen hints.

Transducers lend themselves to value predictioaumsof the way information is stored by
and queried from Web sources. They are a natutaédause URLs are strings that are often the
result of simple transformations based on earhipui. Thus, for sources that provide content
that cannot be queried directly (instead requimginitial query and then further navigation),
transducers serve as predictors that capitalizéhenregularity of Web queries and source
structure.

In terms of space efficiency, a learned transdiggenerally very compact because what is
learned is a set of transformation rules for thet.hiFor example, once the value transducer
shown in Figure 4.2 is learned, it can be appliecat new hints. It should be noted that
transducers in other areas of computer sciencédy aacnatural language processing, are not
always compact and do grow as more examples are deecontrast, the types of transducers
common to Web information gathering plans, in gattr those useful for URL prediction, tend
to be more like small functions. As a result, spdemands typically remain fixed over time.

4.1.4 Comparison of techniques

In this section, we have discussed three valueigired techniques: caching, classification, and
transduction. Each has it advantages and disaalyasit Basic caching is simple, always works
when given a recurring hint, but is useless wheeiuwng new hints; it also has the worst space
efficiency of the three. Nevertheless, it is a @j@dternative when no other learning algorithm
can be applied.

Classification has better space efficiency and daal with new hints, mapping multiple
hints to values that have been previously ssemth&umore, if necessary, can roughly emulate a
cache for cases where all hint features are eqgathg/bad in terms of prediction.

Transduction is the most space efficient of theehis capable of dealing with new hints as
well as making novel predictions, and is especiadlgvant for Web agent plans because of its
applicability at predicting URLs. The only disadvage to transduction is that it is not always
relevant for all speculative opportunities (i.eon® predictions arassociatedwith hints, not
computedbased on hints). Table 4.3 compares all technig@lesg the categories specified
earlier including space efficiency.
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Predicts past Predicts past Predicts novel Space
Strategy values from @ values from values from new  efficiency:
past hints new hints hints growth rate
Caching Yes No No Linear
Classification Yes Yes No Sub linear
Transduction Yes Yes Yes Constant

Table 4.3: Comparing value prediction strategies

Note that while we have discussed three possilkesgfies, other strategies do exist. For
example, one could use a more advanced form ofragcbuch as semantic caching (Dar et al.,
1996; Adali et al., 1996), or an alternative fuantiearning algorithm to transduction. We
focused on the three strategies above becauseatbegasy to understand and demonstrate the
key differences in the prediction scenarios intcmtliearlier.

4.2 A Unifying Learning Algorithm

In this section, we present a set of algorithmst thescribe how to combine caching,
classification, and transduction in order to geteerafficient and accurate predictors. By
combining all three strategies, there is an in@eaghe flexibility for prediction synthesis. For

example, with the algorithms we present, it is giedo learn a predictor that synthesizes a new
prediction through a combination of caching, cl#saiion, and transduction of the hint received.

4.2.1 Value Transducers

Our approach to value prediction involves inducangalue transducer (VT) that describes how
to generate a prediction from a hint, using subrafpens that include classification,
transduction, and caching. To learn a VT for thecsilative execution of information gathering
plans, the following is required:

1. For each attribute of the answer tuple, identif{static/Dynamic (SD) Template that
distinguishes the static parts from dynamic paftshe target string by analyzing the
regularity between values of this attribute foraalbwers.

2. For each static part, add bamsert arc to the VT.

3. For each dynamic part, determine if transductiom loa used; if so, add ransduce arc
to VT.

4. If no transducer can be found, classify the dyngpait based on the relevant attributes of
the hint and learn a classifier.

5. If classifier accuracy is at or above a predefimbdeshold add aClassify arc to the VT.

6. If the classifier accuracy is beloWhreshold(possible when one or more hint features are
continuous), build a cache of the data and a@ddche arc to the VT.

These steps are implemented in the algoritlEmRiN-VALUE-TRANSDUCER shown in Figure
4.3. The algorithm takes a set of hints, a sebofesponding answers, and returns a VT that fits
the data. In this algorithm, learning a classiftan be achieved by decision tree induction
(Quinlan, 1986). Learning the SD template andtimé transducer, however, requires unique
algorithms. Note that, for purposes of simplifioat parts of the EARN-VALUE-TRANSDUCER
algorithm assume correspondence between elemetntdfifferent lists (e.gt andDA when
calling LEARN-HINT-TRANSDUCER H andDA when calling IEARN-CLASSIFIER, etc.).
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01 Function LEARN-VALUE-TRANSDUCERT eturns ValueTransducer
02 Input: set of hintH, corresponding set of answeks

03 VT DO

04 tmpl — LEARN-SD-TEMPLATE (A);

05 Foreach element in tmpl

06 If eis a static element

07 Add Insert g.valug arc toVT

08 Elseif eis a dynamic element

09 DA - the set of dynamic strings Afor thistmpl element
10 HT — LEARN-HINT-TRANSDUCER(H, DA)

11 IfHT =0

12 Add TransduceHT) arc toVT
13 else

14 CL — LEARN-CLASSIFIER (H, DA)
15 acc= TeST-CLASSIFIER (CL, H, A)
16 If acc< Threshold

17 CH < BuiLb-CacHE (H, DA)
17 Add Cache CH) arc toVT

18 Else

18 Add Classify CL) arc toVT

19 ReturnVT

20 End /* LEARN-VT */

Figure 4.3: The LEARN-VALUE-TRANSDUCER algorithm

4.2.2 Learning string templates

To identify a static/dynamic template, we first abe the static parts by comparing the target
values to each other. Substrings of charactetsalh#arget values share are considered static
parts. The dynamic parts of the template are thestsings of varying characters between two

static parts (or the start and end of the templafByus, each SD template will consist of an

alternating sequence of static and dynamic parts.

To identify the static parts of a template, wetfiocate the common substrings in the set of
target values. To do this, we first sort the dettongs by length in ascending order. We then
find the common substrings between the first twings, forming a template (we can use a
special character to separate substrings). If ramoon template is found, we then find the
common substrings between the template identifress far and the successive strings. We
continue until either we have exhausted the sedtrrfigs or the template is null (because we
encountered a case where no common substringeard)t

For example, using the special character $ to agpa@ommon substrings in the template
(and thus representing the dynamic part), and gitren strings {oo.com?i=10&p=home
foo.com?i=20&p=rome foo.com?i=21&p=nay, we would first identify the template
foo.com?i=$0&p=%$ome Using this and iterating to the next string, fimel the template reduced
to foo.com?i=$&p=% This is the template we would return. The aldponi that implements this,
LEARN-SD-TEMPLATE, is shown in Figure 4.4.
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01 Function LEARN-SD-TEMPLATE returns Template
02 Input: set of string$s

03 S — sort strings by length in ascending order
04 tmpl- 0O

05 Foreachiin 1.length(S'length)-1

06 tmpl —« FIND-COMMON-SUBSTRINGS (tmpl, S[i] )
07 Iftmpl==0

08 break;
09  Endif
10 End

11 Return tmpl
12 End /* LEARN-SD-TEMPLATE */

Figure 4.4: The LEARN-SD-TEMPLATE algorithm

4.2.3 Learning hint transducers

To learn a hint transducer, we also make use oplm identification. However, instead of
identifying an SD template that fits all answefrs tlgorithm identifies a template tHas all
hints That is, we try to identify hint regularity —rfexample, that all hints are prefixed with
http://cg.com/summ/Based on one of these templates, and the comdsppdynamic strings
passed from the HARN-VALUE-TRANSDUCER algorithm (line 9), the algorithm constructs a
lower-level hint transducer that accepts the staauds of the hint string and performs character-
level transformationsAccept, Copy, Replace, Upper, or Lower) on the dynamic parts. A
sketch of the algorithm that implements thisARN-HINT-TRANSDUCER is shown in Figure 4.5.

01 Function LEARN-HINT-TRANSDUCER returns HintTransducer

02 Input: the set of hint and result string paik R)

03 ht-0O

04 htmpl — FIND-COMMON-SUBSTRINGS (H)

05 Foreach H,Rpair (, 1)

06 h’ extraction fromh, based omtmpl replacing each static character with the accepbtationA

07 hra — alignment of k', r) based on string edit distance

08 Annotatehra with character level transformation required (e@ppy), ignoring previouA annotations
09 End

10 RE ~ Build regular expression tira values that summarizes annotations

11 IfRE!=0O

12  ht — transducer based &Ethat accepts static subsequenced ahd transduces dynamic subsequences.
13 Endif

14 Returnht

15 End /* LEARN-HINT-TRANSDUCER*/

Figure 4.5: The LEARN-HINT-TRANSDUCER algorithm

For example, suppose prior hints Df. Tom Smith; “Dr. Jane Thomag had
corresponding observed valuesdin_s”, “jane_t"}. The algorithm would first identify the
static part of the hints and rewrite the hints gdime Accept operation, i.e. AAAATom Smith
AAAAJane Thoms} whereA refers to the operation Accept. It would themgmleach hint and
value based on string edit distance and annotdte ckiaracter level operations that reflect the
transformation to the observed values, resulting IHAAAALCCRLDDDD,
AAAALCCCRLDDDDD}. Next, it would identify common substrings toilslithe regular
expression A*LC*RLD*} fitting these examples and ensure that intermedaperations of
indeterminate length (thA* and C* in this example) share a common character uponhwhic
they stopped. From this, a general predictivestlaner can be constructed, a partial form shown
in Figure 4.6. For purposes of describing this gdarter in text form, we can abbreviate Figure
4.6 as PwrougE<SP>, L, Cyne=<SP>, A, L} which means “accept through the first space,
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€:ACCEPT <SP>:ACCEPT ¢&:LOWER

Figure 4.6: Partial form of hint transducer for the names example

lowercase the next character, copy successive aeasauntil the next space, accept the space
and then lowercase the next character.

To better illustrate how a predictor is learned hwihe LEARN-VALUE-TRANSDUCER
algorithm, we describe how the second predictothi@ Carinfo plan, which generates the
ConsumerGuide summary URL, is learned. In thismgda, the source value is a tuple
consisting of the make, model, and year of a can{fa list of cars returned by Edmunds). The
target value to be predicted is the summary URIt thanormally discovered by querying
ConsumerGuide.com with the make, model, and yetreotar.

It is important to note that the target value alsdudes the input attribute values - make,
model, and year. That is, the target tuple has &iibutes. The reason for this is that the
Wrapper operator that queries ConsumerGuide.comailty performs a dependent join on the
output from the source with the input data. Howewhis means that theERRN-VALUE-
TRANSDUCERalgorithm will be used four times — once for eatthibute — so that a hint results in
four different value transductions in creating piedicted tuple.

Learning is continuous in the sense that it carebapplied offline after each run. Continual
learning is desirable because (1) it allows newdipt®ns to be made and (2) to allow the
predictors to be refined over time, as more examplave been collected. For purposes of
example, suppose that the source and target exansplewn in Tables 4.4a and 4.4b are
observed by the system over successive runs ahte#raing/re-learning occurs after every run.
We also note that our algorithm does not overfdause because what is deduced is common to
all of a single vector of data (it does not getdhwed by other, irrelevant attributes).

€:COPY  <SP>:ACCEPT  ¢:LOWER

€:ACCEPT

Make Model Year
Honda Accord 1999
Honda Accord 2000

GMC Sonoma 1997
Acura NSX 2000

Table 4.4a: The sequence of sour ce examples
(inputsto the Consumer Guide sear ch operator)

Make Model Year Summary URL

Honda Accord 1999 http://cg.com/summ/2289.html
Honda Accord 2000 http://cg.com/summ/2289.html|
GMC Sonoma 1997 http://cg.com/summ/2247.html
Acura NSX 2000 http://cg.com/summ/1997.html

Table 4.4b: The sequence of target examples
(outputs from the Consumer Guide sear ch operator)

Let us now describe the learning as it would odapie by tuple. After the second run of
the speculative CarInfo plan, only the first twples (Honda, Accord, 1999 (Honda, Accord,
1999, http://cg.com/summ/2289.hymand (Honda, Accord, 2000), (Honda, Accord, 2000,
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http://cg.com/summ/2289.hjnwould have been observed by the systemeEARN-VALUE-
TRANSDUCERWould then identify a VT for each attribute of ttaget tuple. As the algorithm
specifies, the first step is to define a templatd then, based on that template, possibly learn
additional transducers or classifiers as necessaince two very similar examples are seen
initially, the template for the target “make”, “meld, and “summary URL" attributes consists of
only a single static element, the template abbtegiaere as$tatic}. As a result, the resulting
VTs for make, model, and summary URL consist ofy@nsingle Insert operation.

However, since there is no common substring betwbkertwo target year examples, the
template for that attribute iDynamic}. Next, the source tuple attribute values armpared
against the target attribute values in order tosipbg identify a valid hint transducer. The first
target attribute value is the year “1999”. TheaBest edit distance between any of the
corresponding source attributddofpnda, Accord, 1999and this year value is the source “year”
attribute (also “1999"), which has a distance abzeNext, a case-independent alignment is done
between the two strings, the transduc@&C{C} is learned, and then the generalized form
Transduce(year: C*) is retained. This transducer is then verifiedtfee remaining examples:
since it correctly produces “2000” from the cormsging source tupleHonda, Accord, 2000
of the remaining example, the transducer is deevaéid and incorporated into the VT for the
year attribute. Details about the complete set s ®fter the first run are shown in Table 4.5:

Attribute Value Transducer

Make INSERT("HONDA")
Model INSERT("ACCORD")
Year TRANSDUCE(year: C¥*)
Summary URL| INSERT("http://cg.com/summ/2289.htm")

Table4.5: VTsfor the Consumer Guide search predictor after two examples

After the next run, the system receives a thirdnga: (GMC, Sonoma, 1997 (GMC,
Sonoma, 1997http://cg.com/summ/2247.hfm The predictors are once again re-learned, but
this time the target “make”, “model”, and “yeartrdtutes are refined. Because the common
substrings for the stringsipnda, Honda, GME=[1, a dynamic template is identified and a VT
consisting offransduce(make:C*) is learned. The templates for “model” and “ye&dwever,
are a bit more complicated.

Because the common substring féic§ord Accord Sonoma = “0”, the template for the
“model” attribute is Pynamic, Static, Dynamic}. Even though we intuitively realize that the
correct VT for this attribute should be to simpbpg all of the characters of the source “model”
attribute, the limited number of examples seen tamamly suggest otherwise. Two hint
transducers are learned. The first copies allaztars from the source model attribute up to the
first ‘'0’. Next, an Insert operation inserts ari ‘@and then a second hint transducer accepts all of
the source model characters through the “0” befoggying the rest. In short, the fact that an “0”
existed in all three examples temporarily madetridwesducer more complex than it needed to be.
The same is somewhat true of the Summary URL at&ib since all examples thus far included
a “22”, the system assumed that this substring ldhioe present in all predictions. Table 4.6
shows the state of the VTs after three examples.
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Attribute Value Transducer

Make TRANSDUCE(make: C*)
TRANSDUCE(model: Cy0=[0]),

Model INSERT("0"),
TRANSDUCE(model: Asrough=[0], C*)
Year TRANSDUCE(year: C*)

INSERT("http://cg.com/summ/22"),
CLASSIFY(make, model, year),
INSERT(".htm")

Summary
URL

Table 4.6: VTsfor the Consumer Guide search predictor after three examples

Finally, the (Acura, NSX, 1997 (Acura, NSX, 1997 http://cg.com/summ/1997.hfm
example eliminates the static artifacts that affécboth the “model” and “year” attributes,
allowing the VTs to settle into their correct stakable 4.7 shows the VTs for this predictor.

Attribute Value Transducer

Make TRANSDUCE(make: C*)
Model TRANSDUCE(model: C*)
Year TRANSDUCE(year: C*)

INSERT("http://cg.com/summ/"),
Summary URL| CLASSIFY(make, model, year),
INSERT(".htm")

Table4.7: VTsfor the Consumer Guide search predictor after four examples

As this detailed example has shown, the value pt@di learned rely on a hybrid of
techniques to predict likely target tuple valu&ach predictor consists of VTs that may combine
Insert, Transduce, and Classify operations as sacgs Note thatransduces a character-level
transduction, as opposed to the higher level tnaciszth done by the VT that includes it.
Predictors can be learned after only two exampidthough as our example predictor has
revealed, the final form of the value transducersafpredictor may require a few more examples
in order to correctly identify the regular (i.etatsc) and irregular (i.e., dynamic) parts.

4.3 Experimental results

To measure the effectiveness of the approach, wdumbed experiments on a representative set
of typical Web agent plans modified for speculatexecution (a subset of the plans described
earlier). The goal was to compare the benefitsto€tly caching versus the benefits of the
learning the hybrid predictors we have introduc&pecifically, the goal was to verify that our
approach to learning value predictors resulted in:

* Improved accuracy: Predictions based on classification and/or traosdn makes
it possible to speculate on recurring as well ag hmts, and support the issuing of
recurring or novel predictions.

* Improved space-efficiency: Since the predictors we learn are more like fions
that describe a general process for producing digiren from a hint, their storage
does not necessarily increase linearly as the nuofexamples seen increases. In
contrast, strictly caching predictors do grow ligasince they capture the
association of past source tuples with past tauges.
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» Faster average agent performance: Learning hybrid predictors that combine
classification, transduction, and caching allovtasbtain faster agent performance,
on average, even when dealing with new hints orrwheeding to issue novel
predictions.

We now describe the details of the experimentalpsaind the results found using the Carinfo
and Replnfo agent plans described in Section 3. aWe add a new example, the Phonelnfo
agent. We describe Replnfo and Phonelnfo in greateaikidielow, since the discussion that

follows will refer to specific operators and instas of speculation. Furthermore, we summarize
our experimental setup in Table 4.8, showing tlaag| the number of operators, and the original
average execution time.

CarlInfo 7 3 3296 5201
Replnfo 8 4 4440 5008
Phonelnfo 4 3 4910 4910

Table 4.8: Summary of agent plans used in experiment

4.3.1.1 Repinfo

This agent uses Congress.ohtfg://www.congress.ojgto identify the congressional members
based on zip code, Yahoo Newstf://news.yahoo.confor headlines about each member, and
Open Secretshftp://www.opensecrets.orgor funding charts for each member. Figure 4.7a
shows the original Repinfo plan while Figure 4. Hows the plan modified for speculative

execution. Note that querying both Congress.org tned chart from Open Secrets requires
navigating from links derived from an initial querythus, interleaved navigation is required in
order to obtain an answer during plan execution.

WRAPPER JOIN Rep
Yahoo > —> info
nine<ig WRAPPER | [ wrapPer | | sELECT i
zip code —> Cogq;::csﬁorg e Congl;efzs.org i 'Re;t!)er':Sen' f
WRAPPER WRAPPER WRAPPER
Open Secrets _> Open Secrets _> Open Secrets
Search Info Funding

Figure 4.7a: The RepInfo agent plan

E J |=»1 CONFIRM
el

Figure 4.7b: The modified Replnfo agent plan

® Note that our experiments look at a relevant subisthe plans described earlier. Our goal waseimonstrate the
potential efficiency and accuracy benefits of qupraach to value prediction.
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4.3.1.2 Phonelnfo

The Phonelnfo agent returns demographic informdtomhe geographic location of a particular
phone number. The agent takes any phone numbefirshdloes a reverse lookup of that
number using the Verizon SuperPages (http://wwvemggges.com) service. The returned state
is then used to query a U.S. Census site (httpcktacts.census.gov) in order to obtain
demographic data (e.g., population trends, aveiageme) for that location. During the
gathering of demographic data, navigation is reglfrom a link on the initial “state summary”
page to a subsequent “demographic details” pade ofiginal plan for Phonelnfo is shown in
Figure 4.8a and the same plan transformed for $q@eelI execution is shown in Figure 4.8b.
The Phonelnfo agent is added to the set of plastedebecause it demonstrates classification
with numeric hint attributes, specifically, the elehination of state based on area code.

Demographic
hone WRAPPER | | WRAPPER | | WRAPPER | | WRAPPER Demog
anmeer —»| superPagescom [P  consusgov [P censisgov ] Censusgov InfOrLr?atllon fc.)r f
Search State search State info Demographic info geographic location o
phone number

Figure 4.8a: The Phone Info agent plan

4 L v 4
> W > SPEC W SPEC [—» W |- SPEC |—>{ W CONFIRM
| 1

N

Figure 4.8b: Speculative version of Phonelnfo

4.3.2 Thelearning cycle

After each agent plan was modified for speculagixecution, successive runs of the transformed
plan predicted data when possible and always gadherore examples so that the predictors
learned could be improved. Thus, for the secordl fature runs, prediction became possible
more often, as more examples had been observepracessed by the system.

All learning was done offline. Generally, learnings possible every runs, wherek was
customizable. Prior to each intervalkpdata would be collected by the system. Thesesept
the set of training examples which would be latet fo the learning algorithm. After eveld)
run, the system would use the training data teaed all of the predictors.

The LEARN-VALUE-TRANSDUCERalgorithm was successfully applied to each opmaitun
each plan, yielding value transducers that predictalues based on hint transduction,
classification, or caching. Table 4.9 gives nameesach predictor and summarizes the primary
technique used in generating predictions from hints

Overall, Table 4.9 shows three important things. sHows that the learning algorithms
successfully learned a predictor for each spesdatpportunity (i.e., there was never a time that
the algorithm could not learn a predictor). Sec¢dhd table shows that the algorithms resulted
in value transducers based on different primaryhoes of prediction, as a function of past
hint/value relationships observed. Third, even nvhgansduction was impossible and
classification was not relevant (i.e., hint coreisobf only a single, non-continuous feature),
caching could still be used. In short, the tabdievss how our approach to learning value
predictors allows either transduction, classificati or caching to be applied to a given
speculative opportunity, based on the nature atiaiship between the source and target data.
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Predictor Plan Hint (source value) Prediction (target value) Predictor type
List of matching cars from

Edmunds.com Classification

Car-List Carinfo  |User car preferences

Car-Summary Carinfo  |Car make, model, and year |ConsumerGuide.com summary page Classification

Car-Full Carlnfo ConsumerGuide.com ConsumerGuide.com full review page Transduction
summary page

List of federal representatives from

Rep-List RepInfo |User 9-digit zip code Congress.org Classification
Rep-Cand Replnfo URL to fedgral . Representative name and title Caching
representative bio
Rep-Summary Replnfo ;thleepresentatlve name and Open Secrets summary page URL Caching
Rep-Graph Replnfo Open Secrets summary Open Secrets funding graph URL Transduction
page URL
Phone-State Phonelnfo |User phone number State of origin, as identified by Classification

Superpages.com
Census summary page URL located at

Phone-Summary | Phonelnfo |State QuickFacts.census.gov Caching
Phone-Detail Phonelnfo Sgrll_sus summary page Census demographic details page URL Transduction

Table4.9: Summary of predictorslearned

4.3.3 Measurements of predictor accuracy
One of our goals is to compare the accuracy ofipi@d learned via the algorithms presented in
this section versus predictors that operate spribyy cached data. We define accuracy as
follows. For a given prediction consisting of @ gseone or more tuples, recall is the number of
tuples in that prediction set that are in the amsset, divided by the number of tuples in the
answer set. Precision is the number of tupleberprediction set that are also in the answer set,
divided by the number of tuples in the predictieh sThus, if a predictor generates (A, B, C, D)
when the answer is (A, X, Y), the recall is 33%e firecision is 25%. As usual, high precision
or high recall alone is not a good measure of tilgyuof a predictor; the combination of both
(e.g., an F-measure) yields a better charactevizati

In comparing the accuracy of predictors, it is imiant to assess the accuracies with respect
to the three prediction scenarios described eather cases of the (I) recurring hint / recurring
prediction, (1) novel hint / recurring predictioand (111) novel hint / novel prediction. Note tha
not all of these scenarios are relevant to eacbusaéve opportunity. For example, there is no
case (ll) for the Cayy predictor because each unique summary page corréspo a unique full
review URL. Similarly, there is no case (lll) fire Cagummarypredictor because more than one
car could correspond with the same summary pages ndiv describe the accuracy of the
predictors in Table 4.9 for each of the predictemenarios. When learning each predictor,
instances were drawn from typical distributions tbat domain; for example, instances for
Repinfo were drawn from a list of addresses ofvitllials that contributed to presidential
campaigns (obtained from the FEC) — a distributibat closely approximates the U.S.
geographic population distribution. Similarly, theone numbers used in Phonelnfo came from
a distribution of numbers for common last names.

Casel: Recurring hints, recurring predictions

Regardless of what type of predictor (transductmassification, or caching) was settled upon
by the LEARN-VALUE-TRANSDUCER algorithm, recall and precision with respect tocureing
hints was as high as desired. For caching predig¢guch as PhoRQgmary, this is obviously
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because we stored a table of past hints and comdspm past results. Future prediction based
on this data is simply a matter of looking up tesult associated with the recurring hint.

For classification and transduction predictors, thEARN-VALUE-TRANSDUCER
algorithm ensures that accuracies uf ktwesholdare maintained. Choosing a classification or
transduction based predictor did not result inifaerg the ability to respond to recurring hints
when compared to cachind.hresholdcan be fixed or it may vary over time, with fast@uch
as cache size or information about the likelihobiot recurrence possibly becoming relevant.
For example, if one knows that hints will nevereap a classifier that cannot be completely
validated using its own training data may stilldreacceptable solution (because caching will do
no better). However, for simplicity in our expeants,Thresholdwas set at 100%.

Casell: New hints, recurring predictions

When presented with new hints, simple caches caissae predictions, even if they map to
recurring hints. This is because caching assaciisginct source values with target values and
is not designed to infer anything about a new sauedue.

In contrast, classifiers can handle situations wlikere is a many-to-one mapping between
hints and predictions and thus allow reasonabldigtiens to be made from a new hint. In Table
4.9, Cayummary Repst, and Phongye are such predictors. We measured the recall of on
previously unseen hints, as the number of traimixgmples increased. The results were based
on averaging a 10-fold cross-validation samplehef data in each case. Figure 4.9 shows the
results for each of the classifiers Gamary Refist, and Phongste

The figure shows that, generally, as the numbéraaiing examples increased, the precision
on unseen examples also increased for each ofrélaicfors. Note that the Phqpe classifier
performance improves significantly just after 60@mples. This appears to be due to the fact
that the precision of the classifier for a few bé tlarger states (like California, Florida, New
York, and Texas) improves significantly around th@nt. Since instances from larger states
appear more often then file (a representative saynpitecision correspondingly improves.

Caselll: New hints, novel predictions
The approach we present also allows certain p@didd issue novel predictions for new hints.
Such opportunities occur when the cardinality betwsource and target value is one-to-one and

100.00%

90.00% —0— Car-summary
.00% -

---A-- - Rep-list
80.00% - — 3¢ Phone-state
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60.00% -

50.00% -
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Figure 4.9: Recall of Cargymmary, R€Piist, and Phoneyqe classifiers
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when the target value can be produced through $gpeeof hint attribute value transduction. In
Table 4.8, only the Caii, Repraph and Phong:i predictors rely purely on hint transduction. In
contrast, a predictor like Cammary(Which computes the summary URL from search cajas
not in this category; it must see a value beforadgable to issue that value again as a prediction.
We have previously described the input data toptioblem (the hint and target tuples) for
the Cay, predictor. In Table 4.10a, we show examples ef itiput data for the other two
predictors. The data extracted and then useddargémeration of output is presented in bold,
with underline (e.g., the “06”) in the first Phodetail example.

Output
http://factfinder.census.gov/serviet/A
http://quickfacts.census.gov/ [CSSAFFFacts?_event=Search&_lang
gfd/states/06000.html =ené&_sse=on&geo_id=04000US06&

state=04000US06

http://factfinder.census.gov/serviet/A

http://quickfacts.census.gov/ |CSSAFFFacts?_event=Search&_lang

gfd/states/32000.html =en&_sse=on&geo_id=04000US32&

state=04000US32
http://www.opensecrets.org/ |http://www.opensecrets.org/politicians

Rep-graph politicians/summary.asp?cid |/sector_img.asp?id=N00007665&cycl
=N00007665 e=2006

http://www.opensecrets.org/ |http://www.opensecrets.org/politicians

politicians/summary.asp?cid |/sector_img.asp?id=N00009677&cycl

=N00009677 e=2006

Table 4.10a: Sample data used by Phone-detail and Rep-graph predictors

Phone-detail

Once learned, these transducers have accuracid9086. They essentially capture a
function and then perform that function on all nlewts. The only time when these transducers
make mistakes are when too few examples have besm and EARN-VALUE-TRANSDUCER
identifies an incorrect template. For examplesrga that the first three attributes of the
Phoneepredictor were direct copies of input attributéues (i.e., the definition of a dependent
join) required more than two examples for somehef attributes because an common substring
“artifact” was caused by learning based on a fawenber of examples.

To understand the difficulty of identifying the cect transducer, we investigated how many
examples were required (on average) to learn tmesducers Cali, Regraph and Phongui In
doing so, we first identified the correct transduéar each case. Then, using 10 different
randomized orderings of sample source/target valwesaveraged the number of examples
required before the correct transducer was leariiathle 4.10b shows these results.

Avg number of

Predictor .
examples required
Car-Full 3
Rep-Graph 8
Phone-Detail 3

Table 4.10b: Average number of examplesrequired to learn Car sy, R€graph, aNd PhoNeyesi

4.3.4 M easurements of predictor space-efficiency

In addition to comparing the approach describethis paper to caching in terms of accuracy,
we also compared the space efficiency of the twebrtgjues. Specifically, we measured the
space efficiency of three classification-based gtets (Cagimmary R€fst, and Phongyd and
three transduction-based predictors (@aReRrpn and Phongwi) as well as the space required
by strictly caching predictors for the same dafhe process involved forming the predictor



39

based on a set of training data and then expottiagtructure to the file system for future runs.
The space measured was the total number of byjesed by the data structure.

Table 4.11a shows the results for each classifindtased predictor, its cache counterpart,
and the number of training instances seen by eachtp the exporting of the data structure. In
addition to a bytes-to-bytes comparison, the tadg® shows the resulting space-efficiency
“savings” provided. Table 4.11b shows the samermétion for the transduction-based
predictors.

. Cache size Decision tree .
Predictor Examples seen . Space savings
bytes size (bytes
200

Car-summary 24817 16399 33.92%
Car-summary 400 48577 29675 38.91%
Car-summary 600 72563 42521 41.40%
Car-summary 800 95923 54840 42.83%
Car-summary 1000 119420 67005 43.89%
Rep-list 200 20791 13725 33.99%
Rep-list 400 40654 25867 36.37%
Rep-list 600 60531 37277 38.42%
Rep-list 800 80312 48272 39.89%
Rep-list 1000 100177 58892 41.21%
Phone-state 200 21729 13638 37.24%
Phone-state 400 42729 25883 39.43%
Phone-state 600 63729 38088 40.23%
Phone-state 800 84729 52482 38.06%
Phone-state 1000 105729 64939 38.58%

Table 4.11a: Space efficiency of classification-based predictorsvs. caches

Cache size |Transducer size

Predictor Examples seen bvies bvtes Space savings
Car-full 2 310 58 81.29%
Car-full 10 1550 58 96.26%
Car-full 100 15500 58 99.63%

Rep-graph 2 202 58 1.00%

Rep-graph 10 1010 58 94.26%

Rep-graph 100 10100 58 99.43%

Phone-detalil 2 192 58 69.79%
Phone-detail 10 960 58 93.96%
Phone-detail 100 9600 58 99.40%

Table 4.11b: Space efficiency of transduction-based predictorsvs. caches

4.3.5 Effects on average runtime perfor mance

In addition to comparing a hybrid and strict cachapproaches in terms of accuracy and space
efficiency, we also conducted experiments that destrate the resulting performance benefits
from a hybrid approach. Specifically, we now disx the results of using a hybrid predictor
vS. one based strictly on caching to improve thdopmance of the Carinfo, Replinfo, and
Phonelnfo agents.

For each of the agents tested, we used a smabsesaf the possible inputs that each agent
could receive. We did this to limit the numberesfamples we would need to run to show the
resulting effect, and also to avoid disrupting #ite with (tens of) thousands of requests. For
each agent, we chose well-defined subsets: for pbearm the Carlnfo agent, we looked only at
gueries involving compact cars produced in 200022@8 various price ranges occurring
between $4000 and $18000. For the Repinfo and éthfinagents, we looked at randomly
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ordered lists of valid 9-digit zip codes and vahidone numbers, respectively, in the states of
Arizona and Colorado.

The results obtained from Carinfo agent executienshown in Figure 4.10. The figure is
broken up into a set of “performance groups”. Eacbup contains three bars, each one
corresponding to the average time-to-emit the,fagerage, and last tuple. The “time to emit the
average tuple” means the average time at whicpla tmas available (different inputs resulted in
varying numbers of cars found). For example, iééhtuples were produced at the times (3s, 5s,
19s), the time to average tuple would be (27/39m}¥. The first performance group shows the
first, average, and last tuple performance for @arith no speculative execution. The groups
succeeding to the right show the same informatidh speculative execution for inputs 1-25,
26-50, and so on. The figure is composed in trasmer to show the progressive performance
improvement due to learning. For example, one woehsonably expect predictive precision to
gradually improve for performance groups to thétiigince more examples have been seen to
that point. Interpretation of these results istcared in the discussion section that follows.

The results from the Replinfo agent are shown iniféig.11. Recall that these runs describe
the performance given a randomly ordered list diivaine digit U.S. zip codes for the states of
Arizona and Colorado. The performance results shiowigure 4.11 are also broken up into the
same set of performance groups as was the Cargediat performance in Figure 4.10. The only
difference is that the speculative execution ruesgaouped for every 20 inputs.

Finally, Figure 4.12 shows the results from the i&iofo agent. Similar to the Replinfo
agent, these runs were conducted using a randordbrexd list of valid phone numbers for
businesses in Arizona and Colorado. One impod#fgrence between Phonelnfo and the other
two plans is that the former only outputs a sirgigle — thus, there is no need to measure the
time to output the average tuple or last tuple.

4.3.6 Discussion

The results related to accuracy and space-effigigggnerally show that, when possible, the
approach we have introduced produces smaller, mtakigent predictors than a predictor based
strictly on caching. On one hand, theaRN-VALUE-TRANSDUCERalgorithm makes 100% recall
and precision possible for recurring hints, ideadtto what would be obtained from an approach
based solely on caching. However, the real vafuthe approach is shown when it comes to
dealing with new hints and making novel predictioith caching, new hints cannot be acted
upon, even if there is an obvious relationship leetwhint and prediction. In contrast, learning a
generalized transducer affords this opportunity.abidition, when there is a many-to-one
relationship between source and target valuese€targlues apply to various combinations of
source values), classification can be an effedi@ebnique for reasoning about certain features
of that new hint which can be used to justify adcgon. Further, as more examples are seen,
the recall and precision of these classifiers cus to improve.

When there is a one-to-one relationship betweemcsoand target values and when the
target value is simply a manipulated form of onenmwre source attribute values, the results
show that transduction can be an effective soluti@y capturing the functional relationship
between the source and target, Table 4.10b shatdrdnsducers allow novel predictions to be
made on new hints. After only a few examples,ddariction precision reaches 100%. Although
it is a technique particularly well-suited to pretthn of URL strings, interleaved navigation
occurs so frequently in online information gathgrthat many types of agents can benefit from
this type of learning.
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Figure 4.12: Impact of learning on Phonelnfo

The results also show that the predictors learhealigh the approach we have introduced
increase the utility of speculative agent executid@iven a mix of recurring and new hints,
prediction is generally more accurate with a hybapproach that adds classification and
transduction. As a result higher average plandygeeare possible.

In addition to being more accurate, the predicteasned through the algorithms described
in this paper are more space efficient. Becausg§ #ncode rules or functions — and not
associations of data — these predictors requirenntess storage than caches for the same set of
source/target values. For example, Table 4.11lwslioat value transducers that involvesert
or hint Transduce operations require only a fraction of the spaca oache — more importantly,
once learned, it is always correct and the size temains bounded (i.e., it does not continue to
increase with the presence of more examples).

Finally, Figures 4.10-4.12 show that learning pcems that combine classification,
transduction, and caching is effective at signiitbaimproving the performance of agents —
even when the input to those agents is almost 10@%ue. In particular, the benefits of
classification (able to predict a past value witheav hint) and transduction (able to predict a
new value given a new hint) play an important rolenaking this possible. Each of Figure 4.10-
4.12 shows a similar trend: an initial performanoeprovement due to quickly-learned
transducers and then gradually better performaadéeclassifiers involved in each agent sees
more examples. A good example of this is the Rephigent, which shows sharp improvement
initially because the senators from each staterelaively easy to learn with only a few
examples — thus, the time to first tuple improveanthtically within having seen only a few
examples. However, the representatives from eachat quickly learnable, since they vary per
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zip code Figure 4.12 shows that over time, howexdes can be learned that allow this
prediction to be made even for nine-digit zip codespreviously seen.

5. Related Work

In this section, we survey the related work. Wmstfdiscuss previous work related to agent
execution, focusing on existing approaches to [mrarocessing. We focus next on the
technique of speculative execution itself, covenmgrk in both the Al and database research
communities. Finally, we discuss how our work @tue prediction relates to previous work on
speedup learning, action prediction, and transdieegning.

5.1 Agent execution

The work in this paper is most closely related astpvork on agent execution, as it represents a
new type of run-time parallelism for agents. Salexisting agent execution architectures and
techniques exist, some focusing more on the nekdsftware agents while others are focused
more on the needs of robots and other hardware @émbats of agents. In both types,
improving performance through parallel executios haen of interest. However, thus far, there
has been no significant work on speculative pdrsifie

In terms of software agents, our work is most dioselated to information agents. While
earlier work introduced information agents suchtlas Internet SoftBot (Etzioni and Weld,
1994), it did not focus on parallel execution.cbmtrast, systems like InfoSleuth (Bayardo et al.,
1997), BIG (Lesser et al., 2000), DECAF (Grahanalet2003), and RETSINA (Sycara et al.,
2003) did recognize the importance of concurresk/&ction execution, particularly for 1/0O
operations. Later, in Theseus (Barish and Knohl@05), we presented an architecture for
streaming dataflow style execution that leverageth lmperator parallelism (via dataflow) and
data parallelism (via streaming). The work herédsuon streaming dataflow, extending it to
support speculative execution.

Many robot agent execution systems, such as the &a@m (Firby, 1994) and PRS-LITE
(Myers, 1996), also allow plan execution to be |p@liaed. For example, PRS-LITE supports
the SPLIT and AND modalities as two different watgs specify parallel goal execution.
However, as is the case with information agentsteths very little past work on parallel robot
agent execution beyond simple task/action parsitel

5.2 Speculative execution

Historically, speculative execution has been asgedi with lower level execution. It is a
strategy addressed frequently in the context ofgssor architecture and compiler design. Less
attention has been given to the use of speculatreeution at higher levels of execution, even
though more significant capabilities exist (e.9e bpportunity to apply sophisticated machine
learning techniques for prediction) and greaterloead can be tolerated. In this subsection, we
focus on past work in the Al and database commasiitlated to those presented in this paper.

5.2.1 Executing anticipated actionsin advance

Speculative plan execution shares the same mativas the more general notions of continual
computation (Horvitz, 2001) and time-critical decrs making (Greenwald and Dean, 1994) —
specifically, the desire to leverage idle compuésources to execute anticipated actions. In the
case of time-critical decision making, the chalieng to manage a finite amount of
computational cycles in a dynamic planning envirenin For example, the work describes the
challenge of managing air traffic control for a pasrport where there are busy periods and slow
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periods. By exploiting the regularity of theseipds, on-line deliberation time can be better
scheduled. The use of available cycles for onliediberation about future problems is
somewhat analogous to the use of idle cycles irapproach to speculative plan execution.

Horvitz presents continual computation principlesl atrategies (Horvitz 2001) that have
relevance to the work described here. For exantp&e $ECREWRITE strategy of identifying
the MEP and evaluating costs of various speculatigasformations are directly related to
Horvitz’ notion of calculating the expected valué mrecomputation and ranking the most
productive use of idle time. Horvitz also idergsfi general issues of precomputation that
encapsulate some challenges raised in this worr ekample, the overhead of speculation
discussed here is an example of the cost of “shiftittention” in the landscape of continual
computation. Overall, speculative plan executisnbest characterized as an example of
continual computation.

Finally, past work on predicting user actions irnvatce is also relevant. (Motoda and
Yoshida, 1998) and (Davison and Hirsh, 1998) dbsciapproaches to predicting the next
command a user will issue. In the case of theedathe work describes an approach that
analyzes the regularity in sequences of UNIX comusan order to predict the next command
that the user will issue. Predicting user actioas be used for speculative execution, but an
important difference is thatser idle times being exploited instead sfstem idle timeas is the
case in this work. Another subtle difference is @tverall goal of command line prediction is to
create a more helpful command shell that anticgpateat future actions will be needed, a goal
similar to that of other intelligent interfacesdik etizia (Lieberman, 1995). In contrast, the use
of speculative execution here is strictly for imyrg performance.

5.2.2 Execution based on partial and approximate results

The work here is related to past research on psouggpartial or approximate results. The use of
approximation has been shown to be an effectivé famocommunicating the likely result of
gueries that involve online aggregation of datamstve sources (Hellerstein et al. 1997). The
general idea is to communicate estimations (anchasbn confidences) of otherwise expensive
aggregate queries to the user through an interface.

Inspired by this work, some research on networkyjeagines has focused on the use of
partial results to speed up query plan processihg.Niagara (Naughton et al., 2001), for
example, a partial results approach is used tetbetrallelize the execution of a query plan
(Shanmugasundaram et al., 2000) — this is exdo#ysame as the motivation described in this
paper. The Niagara approach involves communicatppyoximations of aggregate operators to
downstream operators as execution proceeds. lgistream operators update their predictions
as necessary by routing differentials or re-evabnat to downstream operators. The goal of
Niagara’s approach to partial results is to extapgroximation techniques to arbitrary blocking
operators. For example, while traditional databgsery languages support blocking operators
like Average or Max, newer languages have diffetgpés of blocking operators (such as those
for nesting XML), motivating the need for a morengeal strategy in terms of approximation.

The major difference between our speculative execuapproach described here and
Niagara’'s partial result strategy is that the lalgemeant to be applied to operators that block on
input tuples, not remote 1/0. For example, pantedults can be obtained from a sort or nest
operator, which require all of their inputs befgenerating output. However, partial results
cannot be obtained from a Wrapper operator beadatsiés to meet the requirements for partial-
results capable operators, as listed in (Shanmuodasam et al. 2000). For example, the
“Anytime” output property does not make sense toe Wrapper operator because it is not
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possible for this operator can produce a partishan before its remote request is filled. In
contrast, the speculative execution approach herebe applied to nearly any operator in a plan
(as long as the operator does not affect the eadtevarld in unrecoverable ways). Thus, it can
be used to optimize plans that suffer from a slaapper operator or a slow aggregate function,
like Sort.

Telegraph (Hellerstein et al., 2000) is anothemoet query engine that uses a partial
results strategy to increase the performance ofptbeessing of its queries to online sources.
(Raman and Hellerstein, 2002) describe an apprtethallows partial tuples (tuples with some
values “deferred”) to be emitted in order to updateuser as soon as possible. The idea behind
the strategy is to limit the set of deferred infatman to only those cells of result tuples that
remain to be gathered. Overall execution time residne same with this approach; the key gain
is the improved performance for those parts of yumarswer tuples that have already been
computed. Emitting sub-tuples as soon as posgdépends to some extent on Telegraph’s use of
eddies (Avnur and Hellerstein, 2000) which bear sagiationship to speculative execution in
that operators are allowed process intermediateygasults out of order.

The Telegraph approach is different from both saime execution and Niagara’s partial
results strategy in that it is targeted, like oalaggregation, at returning as many correct results
to the caller as soon as possible. There is nooappation in this approach, so there is no
chance of suffering from the processing of errattd At the same time, the approach cannot
return entire answers any earlier than normal. cdntrast, speculative plan execution can
potentially return entirely correct answers muclstéa than the original plan and is also
guaranteed not to return errant answers. Whileduires a small degree of overhead, the
resulting plan speedups can significantly outwelggse costs.

5.2.3 Prefetching data

In a narrow sense, speculative execution can hagtitoof as a mechanism for prefetching, the
gathering of data in advance of its request. &laee many uses of prefetching in information
systems research, from the construction of maieehlviews (Chaudhuri et al., 1995; Levy et
al., 1995) in databases to remote Web site padetpning (Padmanabhan and Mogul, 1996;
Horvitz, 1998). As a whole, the purpose of allfptehing systems is to gather data that will
likely be needed before it is requested, as a missneducing the I/O-penalties involved during
the execution of the actual request. Prefetchiag be viewed as an indirect method of
speculation in the sense that it does not invdieepre-execution of inevitable plan operations
ahead of schedule, but instead increases thetpoéliemote (or expensive to access) dikely

to be requested (but not necessarily requested).

The main difference between prefetching data aedsgieculative plan execution technique
described in this paper is that the former is dsafn just one application of the latter.
Speculative execution is a general technique that lwe applied to any plan, to any set of
operators, provided that the operators being sptEmilabout do not permanently mutate a
separate data source. Otherwise, speculative gaeaan be used for prefetching network data
or any other type of costly procedure/operatiort ttmuld put spare CPU cycles to use before
such resources are actually needed.

5.3 Value prediction

The contributions of this paper in terms of valuediction are (a) the hybridization of caching,
classification, and transduction for value preaicti(b) the algorithms for learning two types of
transducer, value transducers and hint transducérsus, in this section we discuss other
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techniques for value prediction at various levdiexecution. We also focus specifically on
other approaches for learning transducers. Howaeverstart by first considering the broader
relationship of value prediction for speculativeeetion to previous work on speedup learning.

5.3.1 Value prediction as speedup learning

To predict values for speculative execution, we lbm@ machine learning techniques and

caching to learn hybrid predictors that are usualtyre accurate and more space efficient than
simply caching alone. The overall goal of our @agh to value prediction is to improve the

utility of speculative execution. More specifigalbetter accuracy leads to better speedups.

Thus, to some extent, our approach can be condider®rm ofspeedup learning In
speedup learning, the goal is to improve probleiisg performance through experience. Past
research has focused on a number of areas, ingludarning “macro operators” for future
problem solving (Fikes et al. 1972), learning hstics for determining which operators to apply
to a given subproblem (Mitchell, 1983), and leagn@ontrol knowledge to aid in choosing what
operators to execute next (Minton, 1988).

Our approach to learning value predictors is simidamuch of this past work. For example,
the learning of classifiers and hint transduceteva the results of past executions to be
leveraged for “new” executions (i.e., previouslysean plan inputs or intermediate data). For
example, we described how new “full review” URLsQ@arInfo could be accurately predicted
based on previously unseen summary review URLSs Kihd of function learning is similar to,
for example, the application of learned macro-ofpesato new problems. It should also be
noted that strictly caching for value predictionlass related to speedup learning in this sense,
because its knowledge cannot be applied to newudres.

The utility problem (Minton, 1990) is another irgeting point of comparison. In past work
on speedup learning, the utility problem descrifescase where the matching costs of a concept
outweigh its savings when applied. Matching caggerally increase as the number of rules
learned increases. While the utility problem id nelevant in our approach with respect to
cachind and hint transduction because both have constattthing costs, it can be a factor with
respect to classification. For example, as a detigee grows, the costs to make a prediction
may increase (more branches may need to be takanfurn, this leads to greater speculative
overhead and subsequently less applicability cdasformation.

Overall, value prediction for speculative executt@m be seen as very similar to, or even a
form of speedup learning. While the process ohagéan execution does not involve “problem
solving” in the traditional sense, learning can dmplied to past executions to improve the
performance of future executions.

5.3.2 Other approachesto learning transducers
In this subsection, we focus specifically on induetof transducers. As stated earlier, our
hybrid approach to value prediction is novel indéesign. However, some of the techniques that
our approach relies on, such as classification cawhing, are already well-understood. Still,
much of our approach to value prediction involvesrhing transducers that can both synthesize
predictions and translate the hint string throulgaracter level transduction.

Surprisingly, there has been little work on theréag of subsequential transducers. One
existing algorithm is OSTIA (Oncina et al.,, 1993yhich is able to induce traditional
subsequential transducers capable of, for examaptemating translations of decimal to Roman

" Assuming caching works by hashing a hint tupldetermine a set of predicted tuples.
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numbers or English word spellings of numbers tarttlecimal equivalents. For instance, with
the proper examples, OSTIA can learn that the Roiil” is equivalent to the Arabic “20”.

Our approach differs from OSTIA mainly in that ttansducers learned withERRN-
VALUE-TRANSDUCER capture thegeneral proces®f a particular type of string transformation.
After learning from only a few examples, the altfunm can achieve a high degree of precision
and recall for subsequent predictions. The allgorits also well suited to URL prediction, since
URLs (and more generally, HTTP GET and POST regliestuired to query dependent sources
often contain manipulations of structured data aoteéd from earlier sources (or from plan
input). In contrast, while OSTIA can learn morengex types of subsequential transducers, it
can require a very large number of examples betocan learn the proper rule (Gildea and
Jurafsky, 1996).

The transducer learning algorithm suggested by @&l Chang, 1999) viewed transduction
as a means for information extraction. Our ussimsilar in that one part of our approach
involves extracting dynamic values from hints. Hwer, the type of transducers we have
introduced describe go beyond extraction — thegsftam the source string so that it can be
integrated into a predicted value. In doing sa, tansduction process is two level: the first
level makes use of classification and the seconclldocuses on the character-level
transformations of substrings.

Finally, while the use of classification appliespgredicting any type of data value in an
information gathering plan, our typical use of sduction is for the prediction of URLs. Other
approaches have explored point-based (Zukermah, 1999) or path-based (Su et al., 2000)
methods of URL prediction, attempting to understeegliest models based on either time, the
order of requests, or the associations betweerestsju However, unlike our approach, these
techniques do not try to understand very genertibes in request content and thus cannot
predict previously un-requested URLS.

6. Conclusion and futurework

In this paper, we have described an approach tospieeulative execution of information
gathering plans. We have shown how this approagresents a new form of run-time
parallelism that can lead to significant executspeedups without sacrificing fairness or safety
during execution. In addition, we have presentigbrdhms that enable any information
gathering plan to be automatically transformed ome capable of speculative execution.

Successful speculative execution of informationhgahg plans is fundamentally linked
with the ability to make good predictions. In tipaper, we have described how a hybrid
approach based on two simple techniques — claasific and transduction — can be combined
and applied to the problem. The approach we descepresents a hybridization of not only
classification and transduction, but also of caghisince classifiers effectively function as
caches when no classification is possible.

Our experimental results show that learning spobdictors can lead to significant
speedups when gathering information from the Wee believe that a bright future exists for
data value prediction at the information gatherlagel, primarily because of the potential
speedup enabled by speculative execution and beasfuthe availability of resources (i.e.,
memory) that exist at higher levels of executiamalding more sophisticated machine learning
techniques to be applied.

There are many avenues of future work to expldbme is to look at new types of value
predictors, perhaps taking inspiration from compuéechitecture researchers on branch
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prediction and iteration prediction (stride predrs). Another area to explore is the placement
of the Confirm operator. The algorithm in this pafavors the Confirm operator at the longest
possible safe distance from the Speculate operhtawever, that is not necessarily the most
optimal in all cases. More work needs to be damainiderstand the cost model involved.

Additional work can be done to make the transdatgorithm more robust to noise. Finally, yet

another avenue to explore is the problem of thngttspeculative parallelism: when can this type
of parallelism get out of control and lead to sfipaint overhead that outweighs the gains it
provides? With proper controls and careful placeinod operators, speculative execution is a
powerful technique that can yield significant pagecution speedups.
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