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ABSTRACT
Recent work on information integration has yielded novel and
efficient solutions for gathering data from the World Wide Web.
However, there has been little attention given to the problem of
providing information management capabilities that closely model
how people interact with the web in productive ways - not only
collecting information, but monitoring web sites for new or
updated data, sending notifications based on the results, building
reports, creating local repositories of information, and so on.
These needs are unique to the dynamic nature of information in a
networked environment.  In this paper, we describe Theseus, an
efficient plan execution system for information management
agents.  Through its plan language, Theseus supports a number of
capabilities which enable practical information management,
including repeated and periodic query execution, conditional plan
declarations, query result aggregation, and flexible comm-
unication of results.  The Theseus executor system focuses on
efficiency, with support for data pipelining, and dataflow-based,
event driven parallel execution.  With Theseus, users can
automate the complex but practical ways in which they interact
with the web, for both information gathering and management.

1. INTRODUCTION
Gathering information from the World Wide Web is a research
problem that has been receiving substantial attention in recent
years.  There now exist a number of promising systems [9, 13, 14]
and approaches towards automating this process, including work
on data extraction [15, 17], query planning [1, 16], data materiali-
zation [2], and methods for handling data inconsistency [3].

While gathering data is unquestionably an important task, there
are also challenges related to the effective management and use of
this data.  We believe that information gathering is a piece of a
larger puzzle called information management, a problem which
involves topics such as conditional plan execution, continuous

querying,  progressive query result aggregation, and the linking of
other actions to the results of queries. The problem of web
information management thus encompasses issues which are at the
heart of how users query the web today to retrieve meaningful
information and the way such data is put to practical use.

For example, consider how people use the web today for locating
houses for sale which meet a particular set of criteria (e.g., price
and location).  This process means more than simply executing a
particular query once and returning a long list of data.  More likely,
searching for a house means executing that same query
periodically, say on a daily basis, over the course of a few weeks or
months.  Perhaps it even entails changing the query over time if
only a few houses are found.  Furthermore, the search process
usually involves gathering only new or updated listings (meeting
the specified criteria) upon every query execution.  Users are rarely
interested in being reminded of houses about which they have
already been notified. Furthermore, with the explosive growth in
mobile networking, there are many users who would prefer to have
their query results distributed through various messaging means
(i.e., pager, cellular phone, fax) and reported in a variety of formats
(i.e., XML, HTML, WML, text, voice).  Finally, many users want
to do more than simply be notified of results.  It is often desirable
to have newly gathered information trigger a variety of other
actions.  For example, if a very specific house search yields a
result, a user may want to immediately send an automated e-mail to
the corresponding real-estate agent, declaring interest in the house
and suggesting a time at which to meet (based on the users’
personal schedule, also kept online).

The information management paradigm is obviously not limited to
those looking for a new house. There are numerous other instances
where such automation is not only useful, but perhaps essential:
newswire tracking, online auction participation, and stock/portfolio
management, to name a few.  Users want more than to simply
retrieve data.  They want to be able to monitor web sites, to receive
query result updates periodically when useful information in
retrieved, and to link other actions to the results of these continuous
queries.   The dynamic nature of the web invites this style of
information management.

In this paper, we describe Theseus, an efficient plan execution
system for agents which addresses many such challenges.  Based
on a parallel dataflow-based architecture, the Theseus executor is
designed for high performance and information throughput.  Its
plan language supports the expression of loops, conditionals, and
synchronization primitives.  Through its language and execution
system, Theseus enables agents to perform useful information
management tasks, such as periodic execution, query result
aggregation, and flexible result communication, as a way of
addressing practical ways in which users interact with the web.



1.1. Challenges
Perhaps the most basic challenge of web information management
is to design an infrastructure which enables many of the features
described above.  Such a system requires plan operators which lie
beyond those for simply specifying a query.  Users need to have
operators which can communicate information to them via a
variety of devices.  There is also a requirement to store past query
results, so that future queries can distinguish new or updated data
from that which has already been seen.  Enabling information
management also involves empowering users so that they can
specify plans which execute periodically and conditionally.

Beyond the need of enabling basic information management, there
is the challenge of making the execution system efficient.  Data
integration already faces substantial performance challenges,
primarily due to the nature of integrating remote data sources.
For example, there are the costs of network latencies for accessing
external web sites, the costs associated with navigating through
multiple web pages to gather a set of logical data, and the
cost/risks of availability, performance, and reliability aspects of
these external sites.  Since it is not feasible to control any of these
external variables, an interesting challenge is to design an
execution system which is efficient despite these constraints.

Finally, a related challenge has to do with providing a means for
simplifying the declaration and execution of complex information
management tasks.  For example, one complex task has to do with
collecting a logical set of data from multiple web pages, accessing
each set of tuples in various ways (forms, “next page” links, etc.).
Querying a set of logical data (such as houses for sale) from a web
site might involve a number of steps: (a) filling out the initial
web-based query form, specifying price and location, to return the
first page of results, (b) extracting the data from this initial results
page, (c) detecting the potential presence of “NEXT PAGE” links,
(d) following those links, (e) extracting subsequent data, and
finally (f) accumulating all of that data so that a single result can
be returned to the user. With many existing data integration
mechanisms, this type of result accumulation interleaved with
navigation is not a simple task, the complexity of which is
described further in [9].  Theseus aims to make this type of
complex information gathering and management  easy to specify,
as well as efficient to execute.

1.2. Theseus
Theseus has evolved from research related to the Ariadne [14]
project at USC.  Ariadne is an information mediator that
integrates multiple heterogeneous data sources, including local
databases, web sources, and knowledge bases so that the
combined data can be accessed from a single, logical model.  To
extract data from the web, Ariadne uses data source wrappers to

query web sites as if they were SQL databases.

Ariadne provides a framework from which to build information
integration applications. We believe Theseus is a logical next step:
it builds on the integration Ariadne enables, allowing users to do
something useful with information that is gathered. By designing a
system specifically for the execution of information management
plans, we can better address complex integration and efficiency
challenges.

2. MOTIVATING EXAMPLE
To describe our motivations for designing Theseus, we now
consider an example application.  We will focus on monitoring the
HomeSeekers web site (http://www.homeseekers.com), which
allows users to locate available houses for sale.  In our example, we
will monitor the site for the ongoing availability of houses which
match our location and price constraints.

The initial HomeSeekers page consists of a form-based query
interface, shown in Figure 2.1(a).  Submitting this form returns a
page containing up to three houses, as in Figure 2.1(b).  At the
bottom of this page, there may also be a "Next Listings" URL that
leads to another page of three houses, and so on - until all the
houses that match this query are shown.  A further complication
arises because in order to get detailed information from each of
these house listings, we must follow an additional URL for each
house.  This detail page is shown in Figure 2.1(c).

By simply examining the layout of the HomeSeekers site, we can
identify the need for conditionals and looping when performing
data extraction.  For example, notice that Figure 2.1(b), the listings
page, shows that users can only view three houses at a time before
needing to click on the “NEXT” link.  At some point, we will have
reached the last page of results and there will be no such link.
Thus, support for conditional execution is necessary.  Furthermore,
extracting the results means collecting the URL and whatever
information is present on the listings page.  Later,  or in an
interleaved fashion, the details of each house  will need to be
extracted.  This requires either iterating through each set of three
houses or eventually looping through the entire accumulation.

Another observation of the HomeSeekers example is that we will
be making multiple data retrievals.  For example, we will be
collecting house listings as well as detailed information about each
house.  Since network access tends to be a major bottleneck in data
integration systems, it would be preferable to parallelize as much of
this data gathering as possible.

Figure 2.2 shows the Theseus plan for monitoring the HomeSeekers
site.  Essentially, the plan notifies us when it becomes aware of new
houses which meet our criteria.  The plan is invoked with a location
and price limit from the user.  The Retrieve operator (which

(a) (b) (c)
Figure 2.1: Querying HomeSeekers from the Web



retrieves data from web sites via a wrapper) takes these initial
constraints, posts them to the initial HomeSeekers query form,
and extracts a relation with house_id, house_url, and next_link
attributes.  Retrieve then passes this relation to two different
loops.  One loop, shown at the top of Figure 2.2 has the purpose
of following the NEXT links at the bottom of each listings page,
and passing these links to a second loop, shown near the bottom
of Figure 2.2.  This loop iterates through the listings sent from the
first loop, comparing each with those stored in a local database,
and then potentially extracts more detailed information for each
new house.   The plan shows the concurrent queuing of listings
with the investigation of house details, a plan which assumes
asynchronous, parallel execution and data pipelining for efficient
performance.

3. SYSTEM DESIGN
The two key components of the Theseus system are its plan
language and execution system.  The former allows complex
information management plans to be easily expressed while the
latter supports a multi-threaded, event-driven architecture,
supporting parallel execution and asynchronous data queuing for
improved efficiency.

3.1. Plan Language
The Theseus plan language is composed of a set of operators,
each of which is associated with a set of input, output, and error
enablements.  Operator execution is triggered by one or more
enablements, some of which may be carrying data.  An operator
only executes after receiving all of its required enablements.
Upon completing execution, an operator returns either TRUE,
FALSE, or an error condition. Depending on the result state,
another set of enablements may be activated.

A Theseus plan consists of a set of operators and their
enablements. Plans can be viewed as parallel execution graphs,
where operators act as nodes and enablements are edges.  Each
node can be modeled as a quintuple node = <op, persistent-in,
non-persistent-in, true-out, false-out, err-out>, where op is the
name of the operator, persistent-in is the set of persistent
enablements required for execution, non-persistent-in is the set of
non-persistent enablements required, and true-out, false-out, err-
out are the sets of enablements which are activated based on the
TRUE/FALSE/error execution result of that operator. The order in

which enablements are activated describes both the execution path
and the dataflow path.

A plan is initialized with a set of initial input enablements which
trigger the execution of one or more operators in the plan.  When
these initial operators complete execution, they may generate new
enablements which in turn may trigger the execution of other
operators.  This process continues until all previously enabled
operators have completed execution.

3.1.1. Enablements
Enablements can simply be thought of as “signals”  which are
generated during plan execution.  They are activated either at the
start of execution or when various operators complete their
execution.  Each TRUE/FALSE/error result state of an operator can
be associated with a set of enablements.

For example, consider the behavior of the Project operator.
shown in the lower, right-hand side of Figure 2.2.  If the execution
of Project results in TRUE, the operator sends enablements
which are consumed by the Retrieve operator that extracts house
details.  Project does not generate any enablements when it
returns FALSE or encounters any error states.  In contrast, the
Compare operator (upper, right-hand side of Figure 2.2) only
generates an enablement when it returns FALSE.  The point here is
to show that the execution status of an operator can be associated
with different sets of output enablements. This is one way in which
Theseus supports conditional execution.

Enablements may or may not carry data.  For example, the
Project operator (middle of Figure 2.2) associates a relation with
the  enablement sent to the Iterate operator, whereas all of the
Compare operators in the plan simply provide enablements (no
data). An operator producing a data-carrying enablement and an
operator which consumes that same enablement (and the data it
carries) describes how data is transmitted through the system from
one operator to another.

3.1.1.1. Enablement Persistence
Enablements can either be persistent or non-persistent.  The
former, once generated, remain active for the duration of plan
execution.  Furthermore, if they carry data, that data is continually
available for the operator to use upon every invocation.  If, as
execution progresses, another operator generates the same
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persistent enablement, but with new data, that new data is
henceforth used for all future invocations of that operator.

Non-persistent enablements, on the other hand, are simply those
which are only alive until they are consumed.  Thus, once an
operator executes based on enablements E1 and E2, those
enablements no longer exist in the system and must be
regenerated in order for the operator to execute again. However,
unlike persistent enablements, non-persistent enablements (signals
and data) can be queued.  Since Theseus is a parallel execution
environment, it is often possible to have data queuing at multiple
operators which accept non-persistent enablements.  This creates
the effect of asynchronous data pipelining during plan execution.

3.1.1.2. Uses of Enablements
Enablements have four functions in the Theseus plan language: to
provide a mechanism for control flow, to provide synchronization
during execution, to provide a way to pass data between
operators, and to provide a way to label data in the system. In
terms of control flow, enablements are the basis for how a plan is
executed.   Although many operators have an implicit number of
enablements necessary for execution (corresponding to how many
input arguments those operators require), the Theseus plan
language allows one to associate additional enablements as pre-
requisites for the operator to execute.  These enablements then are
simply being used as extra (non-data carrying) criteria necessary
to trigger operator execution.

Enablements can also be used to implement looping behavior
during plan execution.  For example, notice that the Iterate
operator in the HomeSeekers plan enables itself upon returning
TRUE.  To understand what is happening here, and how this is
not an infinite loop, we need to briefly describe the semantics of
Iterate.  Upon execution, Iterate attempts to remove the first
tuple from a relation. If this was possible (i.e., the relation
contained at least one tuple), Iterate returns TRUE and
produces at least two new enablements: one containing the tuple
extracted and the other containing the input relation minus that
tuple.  In our example plan, the latter object is sent back to
Iterate.  Obviously, at some point, all tuples in the relation will
have been removed, at which point Iterate will return FALSE.

In a similar fashion, enablements can be used to provide
synchronization during execution.  For example, if the plan author
wants operator OP3 to execute after both OP1 and OP2 complete
their execution, he simply adds an enablement E1 to the set of
output enablements for OP1, an enablement E2 to the set of
output enablements for OP2, and E1 and E2 to the set of input
enablements for OP3.  Thus, OP3 will not execute until both OP1
and OP2 have completed their execution.

Finally, enablements are used as the basis for passing data
between operators and as a way to uniquely identify that data.
This is useful in order to identify dataflow through the system.
Data labeling through enablements provides a way to organize
inputs from multiple operators into a new operator for execution.

3.1.2. Operators
Operators are the mechanism for specifying functionality in
Theseus plans.  Typically, they take some input data, perform a
useful operation on that data, and then return a new set of data or
perform some external action (such as send e-mail containing that
new data to a particular person).

For example, Theseus supports a Project operator, which cor-
responds to the relational algebra operator of the same name.  As
input, Project takes two arguments: a relation and a set of
attributes to be projected.  As output, Project provides a relation
which contains only the projected attributes. Project thus requires
at least two distinct enablements in order to execute: the relation to
be projected and the projection criteria.  To avoid cluttering the
HomeSeekers plan in Figure 2.2, we omitted this second
enablement.

Tables 3.1 summarizes most of the Theseus operators.  Notice that
they fall into three groups: data manipulation, control, and
communication.  The first type focus on more traditional,
relational-style operators for processing data.  The second group
provides support for conditional execution, loops, and

synchronization.  The third type enables external input and output
of data., including operators for extracting data, interacting with
external databases, and notifying users via e-mail or pager.  This
last group of operators essentially provides the mechanisms for
specifying input and output to Theseus plans.

3.2. The Execution System
Two key strengths of the Theseus execution environment are its
support for parallelism and data pipelining.  Each operator is
implemented as a thread that begins execution when its enablement
criteria are met.  Since each operator is independent, it is often the
case that multiple operators will execute in parallel.  When
execution is complete, operators enable other operators through
output enablements.  Thus, the execution system is highly parallel
and event driven.

We can best illustrate the pipelining and parallelism available in
Theseus by examining the portion of the HomeSeekers plan in
which we navigate the through the listing pages via next buttons
and retrieve (house_id, house_url, next_link) tuples from the page.
Figure 3.1 shows an approximation of the operator scheduling for

this portion of the plan.  The figure shows how the data retrieved
from the house listings page is sent to two parts of the plan which
are executing in parallel: one part which explores house details

Retrieve

Project

RetrieveProject

Project

Project Retrieve

Project

Project

Remainder of plan to
gather house listings

Remainder of plan to
gather house listings

...

...

time

Figure 3.1: Approximation of operator scheduling

Control
Iterate

Compare
Fork
Wait

Queue
Null

Communication
Notify

Db-Retrieve
Db-Store
Db-Insert
Db-Delete

Data Manipulation
Select
Project

Join
SetDifference

Union
Aggregate

Sort
Concat

Table 3.1: Theseus operator classifications



further (via the house_url) and one part which follows the
next_link URL. The key advantage shown is that houses can be
explored in detail as to whether they meet selection criteria while
another part of the plan asynchronously extracts more house
references and queues them for the same investigation.

This example demonstrates how the Theseus execution system
compliments its plan language.  While the latter allows plan
writers to focus on the simple declaration of complex integration
and management tasks in terms of data flow, the former permits
highly concurrent execution and asynchronous data queuing.

4. RELATED WORK
There exist a few notable general plan execution systems,
including PRS [10] and RAP [6]. These systems focus on real-
time plan execution and interleaved planning and execution.
They differ from Theseus in that plan execution is sometimes
reactive, as in PRS, whereas Theseus is not concerned with the
runtime modification of plans.  Also, Theseus focuses purely on
problems related to information management while the others are
more commonly associated with robot-style plan execution.

An interesting vision for a plan execution system, closer to the
design of Theseus, is that of [18], which explores information
gathering using a “sensing”  approach.  The system described
supports repeated execution of information gathering plans and,
like Theseus, is interested in web site monitoring. Theseus differs
from this system in that it defines an efficient architecture for
executing these types of plans.  Also, Theseus is concerned with
other information management challenges, such as external
communication with users and query result aggregation.

There has also been recent work describing approaches to the
challenge of efficient information gathering from the Web [7].
Friedman and Weld describe a parallel execution system which
optimizes sub-optimal plans for low cost execution. A related
project, and one which bears similarity to Theseus in terms of its
quest for execution efficiency, is the Tukwila system [12].
Tukwila bridges aspects of planning and database research in
search of an execution system for data integration.

Theseus is also related to work in parallel databases [4], since it
describes an architecture for operator execution in a parallel
environment and part of its plan language is devoted to data
manipulation operators, the same type that are found in such
systems as GAMMA [5] and Volcano [11].  However, parallel
database systems typically operate on local data sources and focus
on optimized query processing in a parallel environment.  In
contrast, Theseus focuses on efficiently integrating multiple
remote information sources and supporting mechanisms for
practical, automatic, information management.

5. DISCUSSION
In this paper, we have presented the Theseus information
management system.  We have demonstrated that Theseus is a
useful tool for building efficient agents which can gather
information from the web and put that data to practical use.
Because our planning language allows complex plans for
managing information to be easily expressed, users can build
powerful agents.  Furthermore, since the execution system
described is based on a dataflow paradigm, and supports data
pipelining and a high degree of parallelism, these agents can obtain
a high level of performance.  While our system is currently very
useful, we are working towards improving its user interface and

optimization capabilities, for improved performance and scalability.
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