
Learning Semantic Descriptions of Web Information Sources∗

Mark James Carman and Craig A. Knoblock
University of Southern California

Information Sciences Institute
4676 Admiralty Way,

Marina del Rey, CA 90292
{carman, knoblock}@isi.edu

Abstract

The Internet is full of information sources provid-
ing various types of data from weather forecasts to
travel deals. These sources can be accessed via
web-forms, Web Services or RSS feeds. In order
to make automated use of these sources, one needs
to first model them semantically. Writing seman-
tic descriptions for web sources is both tedious and
error prone. In this paper we investigate the prob-
lem of automatically generating such models. We
introduce a framework for learning Datalog defi-
nitions for web sources, in which we actively in-
voke sources and compare the data they produce
with that of known sources of information. We per-
form an inductive search through the space of plau-
sible source definitions in order to learn the best
possible semantic model for each new source. The
paper includes an empirical evaluation demonstrat-
ing the effectiveness of our approach on real-world
web sources.

1 Introduction
We are interested in making use of the vast amounts of in-
formation available as services on the Internet. In order to
make this information available for structured querying, we
must first model the sources providing it. Writing source de-
scriptions by hand is a laborious process. Given that different
services often provide similar or overlapping data, it should
be possible to use knowledge of previously modeled services
to learn descriptions for newly discovered ones.

When presented with a new source of information (such
as a Web Service), the first step in the process of modeling
the source is to determine what type of data it requires as

∗This research is based upon work supported in part by the De-
fense Advanced Research Projects Agency (DARPA), through the
Department of the Interior, NBC, Acquisition Services Division, un-
der Contract No. NBCHD030010, in part by the National Science
Foundation under Award No. IIS-0324955, and in part by the Air
Force Office of Scientific Research under grant number FA9550-04-
1-0105. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of any
of the above organizations or any person connected with them.

input and what type of data it produces as output. In previ-
ous work[Heß and Kushmerick, 2003; Lermanet al., 2006],
researchers have addressed the problem of classifying the at-
tributes of a service into semantic types (such aszipcode).
Once the semantic types for the inputs are known, we can
invoke the service, but are still not able to make use of the
data it returns. To do that, we need also to know how the out-
put attributes relate to the input. For example, a weather ser-
vice may return atemperaturevalue when queried with azip-
code. The service is not very useful, until we know whether
the temperature being returned is the current temperature,the
predicted high temperature for tomorrow, or the average tem-
perature for this time of year. These three possibilities can
be described by Datalog rules as follows: (Note that the $-
symbol is used to distinguish the input attributes of a source.)

1 source($zip, temp) :- currentTemp(zip, temp).
2 source($zip, temp) :- forecast(zip, temp).
3 source($zip, temp) :- averageTemp(zip, temp).

The expressions state that the input zipcode is related to the
output temperature according to domain relation calledcur-
rentTemp, forecast, and averageTemprespectively, each of
which is defined in some domain ontology. In this paper we
describe a system capable of inducing such definitions au-
tomatically. The system leverages what it knows about the
domain, namely the ontology and a set of known sources, to
learn a definition for a newly discovered source.

1.1 An Example
We introduce the problem of inducing definitions for online
sources by way of an example. In the example we have four
semantic types, namely:zipcode, distance, latitudeand lon-
gitude. We also have three known sources of information,
each of which has a definition in Datalog. The first source,
aptly namedsource1, takes in a zipcode and returns the lat-
itude and longitude coordinates of its centroid. The second
calculates the great circle distance between two pairs of co-
ordinates, while the third converts a distance from kilometers
into miles. Definitions for the sources are as follows:

source1($zip, lat, long):- centroid(zip, lat, long).
source2($lat1, $long1, $lat2, $long2, dist):-
greatCircleDist(lat1, long1, lat2, long2, dist).

source3($dist1, dist2):- convertKm2Mi(dist1, dist2).

The goal in this example is to learn a definition for a new
service, calledsource4, that has just been discovered on the

Internet. This new service takes in two zipcodes as input and
returns a distance value as output:1

source4($zip, $zip, distance)

The system described in this paper takes this type signatureas
well as the definitions for the known sources and searches for
an appropriate definition for the new source. The definition
discovered in this case would be the following conjunction of
calls to the known sources:

source4($zip1, $zip2, dist):-
source1(zip1, lat1, long1),
source1(zip2, lat2, long2),
source2(lat1, long1, lat2, long2, dist2),
source3(dist2, dist).

This definition states that the output distance can be calcu-
lated from the input zipcodes, by first giving those zipcodes
to source1, calculating the distance between the resultingco-
ordinates using source2, and then converting the distance into
miles using source3. To test whether this source definition is
correct the system must invoke the new source and the defin-
ition to see if the values generated agree with each other. The
following table shows such a test:

$zip1 $zip2 dist (actual) dist (predicted)
80210 90266 842.37 843.65
60601 15201 410.31 410.83
10005 35555 899.50 899.21

In the table, the input zipcodes have been selected randomly
from a set of examples, and the output from the source and
the definition are shown side by side. Since the output values
are quite similar, once the system has seen a sufficient number
of examples, it can be confident that it has found the correct
semantic definition for the new source.

The definition above was written in terms of the source
predicates, but could just as easily have been written in terms
of the domain relations. To do so, one needs to replace each
source predicate by its definition as follows:

source4($zip1, $zip2, dist):-
centroid(zip1, lat1, long1),
centroid(zip2, lat2, long2),
greatCircleDist(lat1, long1, lat2, long2, dist2),
convertKm2Mi(dist1, dist2).

Written in this way, the new definition for source4 makes
sense at an intuitive level: The source is simply calculating
the distance in miles between the centroids of the zipcodes.

2 Problem Formulation
We are interested in learning definitions for sources by invok-
ing them and comparing the output they produce with that of
known sources of information. We formulate the problem as a
tuple〈T,R, S, s∗〉, whereT is a set ofsemantic data-types, R
is a set ofdomain relations, S is a set of knownsources, and
s∗ is thenew source. Each of the semantic types comes with
a set of example values and a function for checking equality

1The assignment of semantic types to the inputs and outputs of
a service can be performed automatically as described in[Lerman
et al., 2006]. In general, sources will output relations rather than
singleton values.

between values of the type. The set of relationsR may in-
clude interpreted predicates, such as≤. Each sources ∈ S
is associated with a type signature, a binding constraint (that
distinguishes input from output) and a view definition, thatis
a conjunctive query over the relations inR. The new source
to be modeleds∗, is described in the same way, except that
its view definition is unknown. The solution to theSource
Definition Induction Problemis a definition for this source.

By describing sources using the powerful language of con-
junctive queries, we are able to model most information
sources on the Internet (as sequential compositions of sim-
ple functionality). We do not deal with languages involving
more complicated constructs such asaggregation, union or
negationbecause the resulting search space would be pro-
hibitively large. Finally, we assume an open-world seman-
tics, meaning that sources may be incomplete with respect to
their definitions (they may not return all the tuples impliedby
their definition). This fact complicates the induction problem
and is addressed in section 3.4.

3 Algorithm
The algorithm used to search for and test candidate definitions
takes as input a type signature for the new source (also called
the target predicate). The space of candidate definitions is
then enumerated in a best-first manner, in a similar way to
top-down Inductive Logic Programming (ILP) systems like
FOIL [Cameron-Jones and Quinlan, 1994]. Each candidate
produced is tested to see if the data it returns is in some way
similar to the target:

Invoke target with set of random inputs;1

Add empty clause toqueue;2

while queue 6= ∅ do3

v ← best definition fromqueue;4

forall v′ ∈ expand(v) do5

if eval(v′) ≥ eval(v) then6

insertv′ into queue;7

end8

end9

end10

Algorithm 1 : Best-First Search Algorithm

3.1 Invoking the Source
The first step in our algorithm is to generate a set of tuples
that will represent the target predicate during the induction
process. In other words, we try to invoke the new source
to sample some data. Doing this without biasing the induc-
tion process is not trivial. The system first tries to invoke the
source with random combinations of input values taken from
the examples of each type. Many sources have implicit re-
strictions on the combination of input values. For example,a
geocoding service which takes anumber, street, andzipcode
as input, may only return an output if the address actually ex-
ists. In such cases, randomly combining values to form input
tuples is unlikely to result in any successful invocations.Af-
ter failing to invoke the source a number of times, the system
will try to generate examples from other sources whose out-
put contains the required combination of attribute types. Fre-

quency distributions can also be associated with the example
values of each semantic type, such that common constants
(like Ford) can be chosen more frequently than less common
ones (likeFerrari).

3.2 Generating Candidates
Once the system has assembled a representative set of tuples
for the new source, it starts generating candidate definitions
by performing a top-down best-first search through the space
of conjunctions of source predicates. In other words, it be-
gins with a very simple source definition and builds ever more
complicated definitions by adding one literal (source predi-
cate) at a time to the end of the best definition found so far.
It keeps doing this until the data produced by the definition
matches that produced by the source being modeled. For ex-
ample, consider a newly discovered source that takes in a
zipcode and a distance, and returns all the zipcodes that lie
within that radius (along with their respective distances). The
target predicate representing the source is:

source5($zip1, $dist1, zip2, dist2)

Now assume we have one known source, namelysource4
from the previous example:

source4($zip1, $zip2, dist)

and we also have the interpreted predicate:

≤($dist1, $dist2)

The search for a definition forsource5might then proceed as
follows. The first definition generated is the empty clause:

source5($, $, ,).

The null character () represents adon’t carevariable, which
means that none of the inputs or outputs have any restrictions
placed on their values. Literals (source predicates) are then
added one at a time to refine this definition.2 Doing so pro-
duces the following candidate definitions, among others:

source5($zip1, $dist1, ,) :- source4(zip1, , dist1).

source5($zip1, $, zip2,) :- source4(zip1, zip2,).

source5($, $dist1, , dist2) :- ≤(dist1, dist2).

Note that the semantic types in the signature of the target
predicate limit greatly the number of candidate definitions
produced. The system checks each of these candidates in
turn, selecting the best one for further expansion. Assum-
ing that the first of the three scores the highest, it would be
expanded to form more complicated candidates, such as:

source5($zip1, $dist1, , dist2) :-
source4(zip1, , dist1), ≤(dist1, dist2).

The size of the search space is highly dependent on the arity
of the sources. Sources with multiple attributes of the same
type make for an exponential number of possible definitions
at each expansion step. To limit the search in such cases,
we first generate candidates with a minimal number of join
variables in the final literal and progressively constrain the
best performing definitions (by further equating variables).

The rationale for performing search over the source pred-
icates rather than the domain predicates is that if the search
were performed over the latter an additionalquery reformu-
lation step would be required each time a definition is tested.

2Prior to adding the first literal, the system checks if any output
echoes an input value, e.g.source5($zip1, $, zip1,).

In practice, the fact that definitions for the known sources
may contain multiple literals means that many different con-
junctions of domain predicates will reformulate to the same
conjunction of source predicates, resulting in a much larger
search space. For this reason, we perform the search over the
source predicates and rely on post-processing to remove re-
dundant literals from the unfolding of the definition produced.

3.3 Limiting the Search Space
The search space generated by this top-down search algo-
rithm may be very large even for a small number of sources.
As the number of sources available increases, the search
space becomes so large that techniques for limiting it must
be used. We employ some standard (and other not so stan-
dard) ILP techniques for limiting this space:

1. Maximum clause length
2. Maximum predicate repetition
3. Maximum existential quantification level
4. Definitions must be executable
5. No repetition of variables allowed within a literal

Such limitations are often referred to asinductive search bias
or language bias[Nédellecet al., 1996]. The first restriction
limits the length of the definitions produced, while the second
limits the number of times the same source predicate can ap-
pear in a given candidate. The third restricts the complexity
of the definitions by reducing the number of literals that do
not contain variables from the head of the clause.3 The fourth
requires that source definitions can be executed from left to
right, i.e., that the inputs of each source appear in the head
of the clause or in one of the literals to the left of that literal.
Finally, we disallow definitions in which the same variable
appears multiple times in the same literal (in the body of the
clause). For example, the following definition which returns
the distance between a zipcode and itself, would not be gen-
erated, becausezip1 appears twice in the last literal:

source5($zip1, $, , dist2) :- source4(zip1, zip1, dist2).

Such definitions occur rarely in practice, thus it makes sense
to exclude them, thereby greatly reducing the search space.

3.4 Comparing Candidates
We proceed to the problem of evaluating candidate defini-
tions. The basic idea is to compare the output produced by
the source with that produced by the definition on the same
input. The more similar the tuples produced, the higher the
score for the candidate. We then average the score over dif-
ferent input tuples to see how well the candidate describes
the source overall. In the motivating example, a single out-
put tuple (distance value) was produced for every input tuple
(pair of zipcodes). In general, multiple output tuples may be
produced by a source (as was the case forsource5). Thus the
system needs to compare the set of output tuples produced by
the target with those produced by the definition to see if any
of the tuples are the same. Since both the new source and the
known sources can be incomplete, the two sets may simply

3The existential quantification level of a literal is the shortest path
from that literal (via join variables) to the head of the clause.

overlap, even if the candidate definition correctly describes
the new source. Assuming that we can count the number of
tuples that are the same, we can use theJaccard similarityto
measure how well the candidate hypothesis describes the data
returned by the new source:

eval(v) =
1

|I|

∑

i∈I

|Os(i) ∩Ov(i)|

|Os(i) ∪Ov(i)|

Here I denotes the set of input tuples used to test the new
sources. Os(i) denotes the set of tuples returned by the
source when invoked with input tuplei. Ov(i) is the cor-
responding set returned by the candidate definitionv. If we
view this hypothesis testing as an information retrieval task,
we can considerrecall to be the number of common tuples
divided by the number of tuples produced by the source, and
precisionto be the common tuples divided by the tuples pro-
duced by the definition. The Jaccard similarity takes both
precision and recall into account in a single score.

The table below provides examples of the score for dif-
ferent output tuples. The first three rows of the table show
inputs for which the predicted and actual output tuples over-
lap. In the fourth row, the definition produced a tuple, while
the source didn’t, so the definition was penalised. In the last
row, the definition correctly predicted that no tuples wouldbe
output from the source. Our score function is undefined at
this point. From a certain perspective the definition should
score well here because it has correctly predicted that no tu-
ples would be returned for that input, but giving a high score
to a definition when it produces no tuples can be dangerous.
Doing so may cause overly constrained definitions that can
generate very few output tuples to score well, while less con-
strained definitions that are better at predicting the output tu-
ples on average can score poorly. To prevent this from hap-
pening, we simply ignore inputs for which the definition cor-
rectly predicts zero tuples. (This is the same as setting the
score for this case to be the average for the other cases.) Af-
ter ignoring the last row, the overall score for this definition
is calculated to be 0.46.

input actual predicted Jaccard
tuplei outputOs(i) outputOv(i) similarity
〈a, b〉 {〈x, y〉, 〈x, z〉} {〈x, y〉} 1/2
〈c, d〉 {〈x,w〉, 〈x, z〉} {〈x,w〉, 〈x, y〉} 1/3
〈e, f〉 {〈x,w〉, 〈x, y〉} {〈x,w〉, 〈x, y〉} 1
〈g, h〉 ∅ {〈x, y〉} 0
〈i, j〉 ∅ ∅ #undef!

3.5 Approximate Matches Between Constants
When deciding whether the two tuples produced by the tar-
get and the definition are the same, we must allow for some
flexibility in the values they contain. In the motivating exam-
ple for instance, the distance values returned did not match
exactly, but were “sufficiently similar” to be accepted as the
same. For certain nominal types, likezipcode, it makes sense
to check equality using exact string matches. For numeric
types like temperature, an error bound (like±0.5◦C) or a
percentage error (such as±1%) may be more reasonable.
For strings likecompanyname, edit distances such as the
JaroWinkler score do a better job at distinguishing strings

representing the same entity from those representing differ-
ent ones. (See[Bilenko et al., 2003] for a discussion of
string matching techniques.) In other cases a simple proce-
dure might be available to check equality for a given type, so
that values like “Monday” and “Mon” are equated. The ac-
tualequality procedureused will depend on the semantic type
and we assume in this work that such a procedure is given in
the problem definition. We note that the procedure need not
be 100% accurate, but only provide a sufficient level of accu-
racy to guide the system toward the correct definition. Indeed,
equality rules could even be generated offline by training a
machine learning classifier.

3.6 Scoring Partial Definitions
As the search proceeds toward the correct definition, many
semi-complete (unsafe) definitions will be generated. These
definitions do not produce values for all attributes of the target
predicate but only a subset of them. For example, the follow-
ing definition produces only one of the two output attributes
returned by the source:

source5($zip1, $dist1, zip2,) :-
source4(zip1, zip2, dist1).

This presents a problem, because our score is only defined
over sets of tuples containingall of the output attributes of
the new source. One solution might be to wait until the de-
finitions become sufficiently long as to produce all outputs
before comparing them to see which one best describes the
new source. There are two reasons why we wouldn’t want to
do that: Firstly, the space of complete (safe) definitions istoo
large to enumerate, and thus we need to compare partial defi-
nitions so as to guide the search toward the correct definition.
Secondly, the best definition that the system can generate may
well be a partial one, as the set of known sources may not be
sufficient to completely model the source.

We can compute the score over the projection of the source
tuples on the attributes produced by the definition, but then
we are giving an unfair advantage to definitions that do not
produce all of the source’s outputs. That is because it is far
easier to correctly produce a subset of the output attributes
than to produce all of them. So we need to penalise such de-
finitions accordingly. We do this by first calculating the size
of the domain of each of the missing attributes. In the ex-
ample above, the missing attribute is a distance value. Since
distance is a continuous variable, we approximate the size of
its domain using(max −min)/accuracy, whereaccuracy
is the error-bound on distance values. (This cardinality cal-
culation may be specific to each semantic type.) Armed with
the domain size, we penalise the score by scaling the num-
ber of tuples returned by the definition according to the size
of the domains of all output attributes not generated by it. In
essence, we are saying that all possible values for these ex-
tra attributes have been “allowed” by this definition. (This
technique is similar to that used for learning without explicit
negative examples in[Zelleet al., 1995].)

4 Experiments
We tested the system on 25 different problems (target predi-
cates) corresponding toreal services from five domains. The

methodology for choosing services was simply to use any ser-
vice that was publicly available, free of charge, worked, and
didn’t require website wrapping software. The domain model
used in the experiments was the same for each problem and
included 70 semantic types, ranging from common ones like
zipcodeto more specific types such as stockticker symbols.
It also contained 36 relations that were used to model 35 dif-
ferent publicly available services. These known sources pro-
vided some of the same functionality as the targets.

In order to induce definitions for each problem, the new
source (and each candidate) was invoked at least 20 times us-
ing random inputs. To ensure that the search terminated, the
number of iterations of the algorithm was limited to 30, and a
search time limit of 20 minutes was imposed. The inductive
search bias used during the experiments was:{max. clause
length: 7, predicate repetition limit: 2, max. existentialquan-
tification level: 5, candidate must be executable, max. vari-
able occurrence per literal: 1}. An accuracy bound of±1%
was used to determine equality betweendistance, speed, tem-
peratureandprice values, while an error bound of±0.002
degrees was used forlatitude and longitude. The JaroWin-
kler score with a threshold of0.85 was used for strings such
ascompany, hotelandairport names. A hand-written proce-
dure was used for matchingdates.

4.1 Results
Overall the system performed very well and was able to learn
the intended definition (albeit missing certain attributes) in 19
of the 25 problems. Some of the more interesting definitions
learnt by the system are shown below:

1 GetDistanceBetweenZipCodes($zip0, $zip1, dis2):-
GetCentroid(zip0, lat1, lon2),
GetCentroid(zip1, lat4, lon5),
GetDistance(lat1, lon2, lat4, lon5, dis10),
ConvertKm2Mi(dis10, dis2).

2 USGSElevation($lat0, $lon1, dis2):-
ConvertFt2M(dis2, dis1), Altitude(lat0, lon1, dis1).

3 GetQuote($tic0, pri1, dat2, tim3, pri4, pri5, pri6, pri7,
cou8, , pri10, , , pri13, , com15) :-

YahooFinance(tic0, pri1, dat2, tim3, pri4, pri5, pri6,
pri7, cou8),

GetCompanyName(tic0, com15, ,),
Add(pri5, pri13, pri10), Add(pri4, pri10, pri1).

4 YahooWeather($zip0, cit1, sta2, , lat4, lon5, day6, dat7,

tem8, tem9, sky10) :-
WeatherForecast(cit1, sta2, , lat4, lon5, , day6, dat7,

tem9, tem8, , , sky10, , ,),
GetCityState(zip0, cit1, sta2).

5 YahooHotel($zip0, $, hot2, str3, cit4, sta5, , , , ,) :-
HotelsByZip(zip0, hot2, str3, cit4, sta5,).

6 YahooAutos($zip0, $mak1, dat2, yea3, mod4, , , pri7,) :-
GoogleBaseCars(zip0, mak1, , mod4, pri7, , , yea3),
ConvertTime(dat2, , dat10, ,),
GetCurrentTime(, , dat10,).

The first definition calculates the distance in miles between
two zipcodes and is the same as in our original example
(source4). The second source provided USGS elevation data
in feet, which was found to be sufficiently similar to known
altitude data in meters. The third source provided stock quote

information, and a definition was learnt involving a similar
service from Yahoo. For this source, the system discovered
that the current price was the sum of the previous day’s close
and today’s change. The fourth definition is for a weather
forecast service, and a definition was learnt in terms of an-
other forecast service. (The system distinguished high from
low and forecast from current temperatures.) The fifth source
provided information about nearby hotels. Certain attributes
of this source (like the hotel’surl andphonenumber) could
not be learnt, because none of the known sources provided
them. Nonetheless, the definition learnt is useful as is. The
last source was a classified used-car listing from Yahoo that
took a zipcode and car manufacturer as input. The system dis-
covered that there was some overlap between the cars (make,
model and price) listed on that source and those listed on an-
other site provided by Google.

Problems Candidates
Domain # (#Attr.) # (#Lit.) Precis. Recall

geospatial 9 (5.7) 136 (1.9) 100% 84%
financial 2 (11.5) 1606 (4.5) 56% 63%
weather 8 (11.8) 368 (2.9) 91% 62%
hotels 4 (8.5) 43 (1.3) 90% 60%
cars 2 (8.5) 68 (2.5) 50% 50%

The table above shows for each domain, the number of
problems tested, the average number of attributes per prob-
lem (in parentheses), the average number of candidates gen-
erated prior to the winning definition, and the average number
of literals per definition found (in parentheses). The last two
columns give the average precision and recall values, where
precision is the ratio of correctly generated attributes (of the
new source) to all of the attributes generated, and recall isthe
ratio of correctly generated attributes, to all of the attributes
that should have beengenerated. These values indicate the
quality of the definitions produced. Ideally, we would like to
have 100% precision (no errors in the definitions) and high
recall (most of the attributes being generated). That was the
case for the 9 geospatial problems. One reason for the partic-
ularly good performance on this domain was the low number
of attributes per problem, resulting in smaller search spaces.
As would be expected, the number of candidates generated
was higher for problems with many attributes (financial and
weather domains). In general, precision was very high, ex-
cept for a small number of problems (in the financial and cars
domains). Overall the system performed extremely well, gen-
erating definitions with a precision of 88% and recall of 69%.

5 Related Work
Early work on the problem of learning semantic definitions
for Internet sources was performed by[Perkowitz and Et-
zioni, 1995], who defined thecategory translation problem.
That problem can be seen as a simplification of the source
induction problem, where the known sources have no bind-
ing constraints or definitions and provide data that does not
change over time. Furthermore, they assume that the new
source takes a single value as input and returns a single tuple
as output. To find solutions to this problem, the authors too
used a form of inductive search based on an extension of the
FOIL algorithm[Cameron-Jones and Quinlan, 1994].

More recently, there has been some work on classifying
web services into different domains[Heß and Kushmerick,
2003] and on clustering similar services together[Dong et
al., 2004]. This work is closely related, but at a more abstract
level. Using these techniques one can state that a new service
is probably aweatherservice because it is similar to other
weather services. This knowledge is very useful for service
discovery, but not sufficient for automating service integra-
tion. In our work we learn more expressive descriptions of
web services, namely view definitions that describe how the
attributes of a service relate to one another.

The schema integration system CLIO[Yan et al., 2001]
helps users build queries that map data from a source to a
target schema. If we view this source schema as the set of
known sources, and the target schema as a new source, then
our problems are similar. In CLIO, the integration rules are
generatedsemi-automaticallywith some help from the user.

The iMAP system[Dhamankaet al., 2004] tries to dis-
cover complex (many-to-one) mappings between attributes of
a source and target schema. It uses a set ofspecial purpose
searchersto find different types of mappings. Our system
uses a general ILP-based framework to search for many-to-
many mappings. Since our system can perform a similar task
to iMAP, we tested it on the hardest problem used to evalu-
ate iMAP. The problem involved aligning data from two on-
line cricket databases. Our system, despite being designedto
handle a more general task, was able to achieve 77% preci-
sion and 66% recall, which is comparable to the performance
(accuracy) range of 50-86% reported for iMAP on complex
matches with overlapping data.

Finally, the Semantic Web community have developed
standards[Martin et al., 2004; Romanet al., 2005] for an-
notating sources with semantic information. Our work com-
plements theirs by providing a way to automatically generate
semantic information, rather than relying on service providers
to create it manually. The Datalog-based representation used
in this paper (and widely adopted in information integration
systems[Levy, 2000]) can be converted to the Description
Logic-based representations used in the Semantic Web.

6 Discussion
In this paper we presented a completely automatic approach
to learning definitions for online information sources. This
approach exploits definitions of sources that have either been
given to the system or learned previously. The resulting
framework is a significant advance over prior approaches that
have focused on learning only the input and outputs of ser-
vices. One of the most important applications of this work
is to learn semantic definitions for data integration systems
[Levy, 2000]. Such systems require an accurate definition in
order to exploit and integrate available sources of data.

Our results demonstrate that we are able to learn definitions
with a moderate size domain model and set of known sources.
We intend to scale the technique to much larger problems. We
note that the system is already applicable for many domain-
specific problems. For example, in the area of geospatial data
integration where the domain model is naturally limited, the
technique can be applied as is.

There are a number of future directions for this work that
will allow the system to be applied more broadly. These in-
clude (1) introducing constants into the modeling language,
(2) developing additional heuristics to direct the search to-
ward the best definition, (3) developing a robust termination
condition for halting the search, (4) introducing hierarchy into
the semantic types, and (5) introducing functional and inclu-
sion dependencies into the definition of the domain relations.

Acknowledgements: We thank Jośe Luis Ambite, Kristina
Lerman, Snehal Thakkar, and Matt Michelson for useful dis-
cussions regarding this work.

References
[Bilenkoet al., 2003] Mikhail Bilenko, Raymond J. Mooney,

William W. Cohen, Pradeep Ravikumar, and Stephen E. Fien-
berg. Adaptive name matching in information integration.IEEE
Intelligent Systems, 18(5):16–23, 2003.

[Cameron-Jones and Quinlan, 1994] R. Mike Cameron-Jones and
J. Ross Quinlan. Efficient top-down induction of logic programs.
SIGART Bull., 5(1):33–42, 1994.

[Dhamankaet al., 2004] R. Dhamanka, Y. Lee, A. Doan,
A. Halevy, and P. Domingos. imap: Discovering complex
semantic matches between database schemas. InProceedings of
SIGMOD’04, 2004.

[Donget al., 2004] X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes,
and J. Zhang. Simlarity search for web services. InVLDB, 2004.

[Heß and Kushmerick, 2003] Andreas Heß and Nicholas Kushmer-
ick. Learning to attach semantic metadata to web services. In
2nd International Semantic Web Conference (ISWC), 2003.

[Lermanet al., 2006] Kristina Lerman, Anon Plangprasopchok,
and Craig A. Knoblock. Automatically labeling data used by
web services. InProceedings of AAAI’06, 2006.

[Levy, 2000] Alon Y. Levy. Logic-based techniques in data integra-
tion. In Jack Minker, editor,Logic-Based Artificial Intelligence.
Kluwer Publishers, November 2000.

[Martin et al., 2004] D. Martin, M. Paolucci, S. McIlraith,
M. Burstein, D. McDermott, D. McGuinness, B. Parsia, T. Payne,
M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara. Bringing
semantics to web services: The owl-s approach. InProceedings
of the First International Workshop on Semantic Web Services
and Web Process Composition (SWSWPC 2004), 2004.

[Nédellecet al., 1996] C. Nédellec, C. Rouveirol, H. Ad́e,
F. Bergadano, and B. Tausend. Declarative bias in ILP. In
L. De Raedt, editor,Advances in Inductive Logic Programming,
pages 82–103. IOS Press, 1996.

[Perkowitz and Etzioni, 1995] M. Perkowitz and O. Etzioni. Cate-
gory translation: Learning to understand information on the in-
ternet. InIJCAI-95, 1995.

[Romanet al., 2005] D. Roman, U. Keller, H. Lausen, J. de Bruijn,
R. Lara, M. Stollberg, A. Polleres, C. Feier, C. Bussler, and
D. Fensel. Web service modeling ontology.Applied Ontology,
1(1):77–106, 2005.

[Yanet al., 2001] Ling Ling Yan, Reńe J. Miller, Laura M. Haas,
and Ronald Fagin. Data-driven understanding and refinement of
schema mappings. InSIGMOD’01, 2001.

[Zelleet al., 1995] J. M. Zelle, C. A. Thompson, M. E. Califf, and
R. J. Mooney. Inducing logic programs without explicit negative
examples. InProceedings of the Fifth International Workshop on
Inductive Logic Programming, 1995.

