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Abstract

The Internet is full of information sources provid-
ing various types of data from weather forecasts to
travel deals. These sources can be accessed via
web-forms, Web Services or RSS feeds. In order
to make automated use of these sources, one needs
to first model them semantically. Writing seman-
tic descriptions for web sources is both tedious and
error prone. In this paper we investigate the prob-
lem of automatically generating such models. We
introduce a framework for learning Datalog defi-
nitions for web sources, in which we actively in-
voke sources and compare the data they produce
with that of known sources of information. We per-
form an inductive search through the space of plau-
sible source definitions in order to learn the best
possible semantic model for each new source. The
paper includes an empirical evaluation demonstrat-
ing the effectiveness of our approach on real-world
web sources.

Introduction

input and what type of data it produces as output. In previ-
ous work[HeR and Kushmerick, 2003; Lermanal, 2004,
researchers have addressed the problem of classifying-the a
tributes of a service into semantic types (sucteipeods.
Once the semantic types for the inputs are known, we can
invoke the service, but are still not able to make use of the
data it returns. To do that, we need also to know how the out-
put attributes relate to the input. For example, a weather se
vice may return aemperaturevalue when queried with zip-
code The service is not very useful, until we know whether
the temperature being returned is the current temperdhee,
predicted high temperature for tomorrow, or the average tem
perature for this time of year. These three possibilitias ca
be described by Datalog rules as follows: (Note that the $-
symbol is used to distinguish the input attributes of a segrc

1 source($zip, temp) :- currentTemp(zip, temp).
2 source($zip, temp) :- forecast(zip, temp).
3 source($zip, temp) :- averageTemp(zip, temp).

The expressions state that the input zipcode is relatedceto th
output temperature according to domain relation catled
rentTemp forecast and averageTempespectively, each of
which is defined in some domain ontology. In this paper we
describe a system capable of inducing such definitions au-
tomatically. The system leverages what it knows about the

We are interested in making use of the vast amounts of indomain, namely the ontology and a set of known sources, to
formation available as services on the Internet. In order tdearmn a definition for a newly discovered source.
make this information available for structured querying w
must first model the sources providing it. Writing source de-l'l An Example
scriptions by hand is a laborious process. Given that differ We introduce the problem of inducing definitions for online
services often provide similar or overlapping data, it $tlou sources by way of an example. In the example we have four
be possible to use knowledge of previously modeled servicesemantic types, namelyipcode distance latitude andlon-
to learn descriptions for newly discovered ones. gitude We also have three known sources of information,
When presented with a new source of information (sucheach of which has a definition in Datalog. The first source,
as a Web Service), the first step in the process of modelingptly namedsourcel takes in a zipcode and returns the lat-
the source is to determine what type of data it requires aiude and longitude coordinates of its centroid. The second
" This research is based upon work supported in part by the De(_:alc_:ulates the great C|_rcle distance b_etween two pairs -of co
. ordinates, while the third converts a distance from kilcenet
fense Advanced Research Projects Agency (DARPA), through the . o .
Department of the Interior, NBC, Acquisition Services Division, un- into miles. Definitions for the sources are as follows:
der Contract No. NBCHDO030010, in part by the National Sciencesource1($zip, lat, long):- centroid(zip, lat, long).
Foundatiqn Under- AWard No. ”S-0324955, and in part by the Airsource2($lat1, $long1, $lat2, $long2,dist):-
Force Office of Scientific Research under grant number FA9550-04  o.¢atcircleDist(lat1, longl, lat2, long2, dist).
1-0105. The views and conclusions contained herein are those of the $dist1,dist2):- convertKm2Mi(dist1, dist2)
authors and should not be interpreted as necessarily representing t?\céurceg( 18t a ’ vertim ’ ’
official policies or endorsements, either expressed or implied, of anfrhe goal in this example is to learn a definition for a new
of the above organizations or any person connected with them.  service, calledsource4 that has just been discovered on the



Internet. This new service takes in two zipcodes as input antietween values of the type. The set of relatidhsnay in-
returns a distance value as output: clude interpreted predicates, such<asEach source € S
sourced($zip, $zip, distance) is associated with a type signature, a binding constratat (t

. o , . distinguishes input from output) and a view definition, tisat
The system described in this paper takes this type signasure 5 ¢onjunctive query over the relationsf The new source
well as the definitions for the known sources and searches fQf, e modeled*. is described in the same way, except that

an appropriate definition for the new source. The definitions yiew definition is unknown. The solution to ttource
discovered in this case would be the following conjunctibn 0 pefinition Induction Problenis a definition for this source.

calls to the known sources: By describing sources using the powerful language of con-
junctive queries, we are able to model most information
sources on the Internet (as sequential compositions of sim-
ple functionality). We do not deal with languages involving
more complicated constructs such aggregation union or
negationbecause the resulting search space would be pro-
This definition states that the output distance can be calcihibitively large. Finally, we assume an open-world seman-
lated from the input zipcodes, by first giving those zipcodedics, meaning that sources may be incomplete with respect to
to sourcel, calculating the distance between the resudting their definitions (they may not return all the tuples implisd
ordinates using source2, and then converting the distance i their definition). This fact complicates the induction plesh
miles using source3. To test whether this source definition iand is addressed in section 3.4.

correct the system must invoke the new source and the defin-

ition to see if the values generated agree with each other. TH3  Algorithm

following table shows such a test:

source4($zip1, $zip2,dist):-
sourcel(zipl,latl,longl),
sourcel(zip2, lat2, long?2),
source2(latl, longl, lat2, long2, dist2),
source3(dist2,dist).

The algorithm used to search for and test candidate defisitio

$zipl | $zip2 | dist (actual) [ dist (predicted) takes as input a type signature for the new source (alsadcalle
80210 | 90266 842.37 843.65 the target predicatp The space of candidate definitions is
60601 | 15201 410.31 410.83 then enumerated in a best-first manner, in a similar way to
10005 | 35555 899.50 899.21 top-down Inductive Logic Programming (ILP) systems like

In the table, the input zipcodes have been selected randomfyP!L [Cameron-Jones and Quinlan, 1994£ach candidate
from a set of examples, and the output from the source an roduced is tested to see if the data it returns is in some way

the definition are shown side by side. Since the output valueSMilar to the target:

are quite similar, once the system has seen a sufficient rumb
of examples, it can be confident that it has found the correg
semantic definition for the new source.

The definition above was written in terms of the source
predicates, but could just as easily have been written mger
of the domain relations. To do so, one needs to replace ea

€ 1 Invoke target with set of random inputs;
t > Add empty clause tQueue;

3 while queue # () do

a4 v « best definition fromyucue;

" 5 forall v € expand(v) do
Ns

if eval(v') > eval(v) then
| insertv’ into queue;

8 end

9 end

10 end

Algorithm 1: Best-First Search Algorithm

source predicate by its definition as follows: 7

source4($zip1, $zip2,dist):-
centroid(zipl,latl, longl),
centroid(zip2, lat2, long?2),
greatCircleDist(lat1, longl,lat2, long2,dist2),
convertKm2Mi(dist1,dist2).

Written in this way, the new definition for source4 makes .
sense at an intuitive level: The source is simply calcugatin 3-1 Invoking the Source
the distance in miles between the centroids of the zipcodes. The first step in our algorithm is to generate a set of tuples
that will represent the target predicate during the indurcti
process. In other words, we try to invoke the new source
to sample some data. Doing this without biasing the induc-
gon process is not trivial. The system first tries to involke t
ource with random combinations of input values taken from
he examples of each type. Many sources have implicit re-
strictions on the combination of input values. For examale,
geocoding service which takesnamber street andzipcode
as input, may only return an output if the address actualy ex
¥sts. In such cases, randomly combining values to form input
LThe assignment of semantic types to the inputs and outputs dHPI€s is unlikely to result in any successful invocatioAs.
a service can be performed automatically as describélérman  ter failing to invoke the source a number of times, the system

et al, 200§. In general, sources will output relations rather thanWill try to generate examples from other sources whose out-
singleton values. put contains the required combination of attribute types- F

2 Problem Formulation

We are interested in learning definitions for sources bykavo
ing them and comparing the output they produce with that o
known sources of information. We formulate the problem as g
tuple(T, R, S, s*), whereT is a set osemantic data-types

is a set ofdomain relationssS is a set of knowrsourcesand

s* is thenew source Each of the semantic types comes with
a set of example values and a function for checking equalit



guency distributions can also be associated with the exampln practice, the fact that definitions for the known sources
values of each semantic type, such that common constantsay contain multiple literals means that many different-con
(like Ford) can be chosen more frequently than less commotjunctions of domain predicates will reformulate to the same

ones (likeFerrari). conjunction of source predicates, resulting in a much large
i i search space. For this reason, we perform the search over the
3.2 Generating Candidates source predicates and rely on post-processing to remove re-

Once the system has assembled a representative set of tuptkmdant literals from the unfolding of the definition proddc

for the new source, it starts generating candidate defistio

by performing a top-down best-first search through the spac8.3 Limiting the Search Space

of conjunctions of source predicates. In other words, it be- :

gins with a very simple source definition and builds ever more-ljhhe searcg spacel generatedf by this t:l)p—dovt\)/n s?arch algo-
complicated definitions by adding one literal (source predi 'thm may be very large even for a small number of sources.
cate) at a time to the end of the best definition found so farAS the number of sources available increases, the search
It keeps doing this until the data produced by the definitionsSpace becomes so large that techniques for limiting it must
matches that produced by the source being modeled. For eke used. We employ some standard (and other not so stan-
ample, consider a newly discovered source that takes in dard) ILP techniques for limiting this space:

zipcode and a distance, and returns all the zipcodes that lie :
within that radius (along with their respective distancasje 1. Maximum clause length

target predicate representing the source is: 2. Maximum predicate repetition

3. Maximum existential quantification level
4. Definitions must be executable

5. No repetition of variables allowed within a literal

sourceb5($zip1, $distl, zip2,dist2)

Now assume we have one known source, nanselyrce4
from the previous example:

source4($zipl, $zip2,dist)
and we also have the interpreted predicate:

Such limitations are often referred toiagluctive search bias
or language biagNédellecet al., 1994. The first restriction
limits the length of the definitions produced, while the sato

<($dist1,$dist2) limits the number of times the same source predicate can ap-
The search for a definition f@ourceSmight then proceed as pear in a given candidate. The third restricts the complexit
follows. The first definition generated is the empty clause: of the definitions by reducing the number of literals that do

source5($_, 5., _, ). not contain variables from the head of the clatiJée fourth

requires that source definitions can be executed from left to
r_{ight, i.e., that the inputs of each source appear in the head
of the clause or in one of the literals to the left of that ktler
Finally, we disallow definitions in which the same variable
appears multiple times in the same literal (in the body of the
) _ ) ] clause). For example, the following definition which retrn
sourceb($zip1, $distl, ) :- sourced(zipl, ., distl). the distance between a zipcode and itself, would not be gen-
source5($zip1,$.,zip2, ) - source4(zipl,zip2,.). erated, becauseip1 appears twice in the last literal:
source5($_, $distl, ,dist2) ;- <(distl,dist2). ] ] ] ] ]
. ) . sourceb5($zip1,$_, _, dist2) :- source4(zipl, zipl,dist2).

Note that the semantic types in the signature of the target
predicate limit greatly the number of candidate definitionsSuch definitions occur rarely in practice, thus it makes eens
produced. The system checks each of these candidates tim exclude them, thereby greatly reducing the search space.
turn, selecting the best one for further expansion. Assum-
ing that the first of the three scores the highest, it would be8.4 Comparing Candidates

expanded to form more complicated candidates, such as: We proceed to the problem of evaluating candidate defini-
sourceb($zipl, $dist1, ., dist2) :- tions. The basic idea is to compare the output produced by

sourced(zipl, -, distl), <(distl,dist2). the source with that produced by the definition on the same
The size of the search space is highly dependent on the ariipput. The more similar the tuples produced, the higher the
of the sources. Sources with multiple attributes of the samecore for the candidate. We then average the score over dif-
type make for an exponential number of possible definitiongerent input tuples to see how well the candidate describes
at each expansion step. To limit the search in such casetfje source overall. In the motivating example, a single out-
we first generate candidates with a minimal number of joinput tuple (distance value) was produced for every inputtupl
variables in the final literal and progressively constrdia t (pair of zipcodes). In general, multiple output tuples may b
best performing definitions (by further equating variaples  produced by a source (as was the casestorce$. Thus the

The rationale for performing search over the source predsystem needs to compare the set of output tuples produced by
icates rather than the domain predicates is that if the Beardhe target with those produced by the definition to see if any
were performed over the latter an additioqakery reformu-  of the tuples are the same. Since both the new source and the
lation step would be required each time a definition is testedknown sources can be incomplete, the two sets may simply

The null character_j represents don'’t carevariable, which
means that none of the inputs or outputs have any restrtio
placed on their values. Literals (source predicates) ae th
added one at a time to refine this definitordoing so pro-
duces the following candidate definitions, among others:

2Prior to adding the first literal, the system checks if any output  3The existential quantification level of a literal is the shortest path
echoes an input value, e.gource5($zip1,$_, zip1, ). from that literal (via join variables) to the head of the clause.



overlap, even if the candidate definition correctly dessib representing the same entity from those representingrdiffe
the new source. Assuming that we can count the number a#nt ones. (SeéBilenko et al, 2003 for a discussion of
tuples that are the same, we can useJderard similarityto  string matching techniques.) In other cases a simple proce-
measure how well the candidate hypothesis describes the dadure might be available to check equality for a given type, so
returned by the new source: that values like “Monday” and “Mon” are equated. The ac-
tualequality procedureised will depend on the semantic type
and we assume in this work that such a procedure is given in
the problem definition. We note that the procedure need not
be 100% accurate, but only provide a sufficient level of accu-
Here I denotes the set of input tuples used to test the newacy to guide the system toward the correct definition. Iddee

sources. O, (i) denotes the set of tuples returned by theequality rules could even be generated offline by training a
source when invoked with input tuple O,(i) is the cor-  machine learning classifier.

responding set returned by the candidate definitioif we
view this hypothesis testing as an information retrievakfa 3.6 Scoring Partial Definitions

we can considerecall to be the number of common tuples As the search proceeds toward the correct definition, many
divided by the number of tuples produced by the source, andemj-complete (unsafe) definitions will be generated. &hes
precisionto be the common tuples divided by the tuples pro-definitions do not produce values for all attributes of thrgea
duced by the definition. The Jaccard similarity takes bothpredicate but only a subset of them. For example, the follow-

precision and recall into account in a single score. _ing definition produces only one of the two output attributes
The table below provides examples of the score for dif-returned by the source:

ferent output tuples. The first three rows of the table show ] ) ) )
inputs for which the predicted and actual output tuples -overs°:xce5(52ip1, §dist1, zip2, ) :-

lap. In the fourth row, the definition produced a tuple, while source4(zip1,z1p2, dist1).

the source didn’t, so the definition was penalised. In the lasThis presents a problem, because our score is only defined
row, the definition correctly predicted that no tuples wooéd ~ over sets of tuples containirgl of the output attributes of
output from the source. Our score function is undefined athe new source. One solution might be to wait until the de-
this point. From a certain perspective the definition shouldfinitions become sufficiently long as to produce all outputs
score well here because it has correctly predicted that-no tbefore comparing them to see which one best describes the
ples would be returned for that input, but giving a high scorenew source. There are two reasons why we wouldn't want to
to a definition when it produces no tuples can be dangerouslo that: Firstly, the space of complete (safe) definitiorieds
Doing so may cause overly constrained definitions that catarge to enumerate, and thus we need to compare partial defi-
generate very few output tuples to score well, while less connitions so as to guide the search toward the correct defmitio
strained definitions that are better at predicting the dupu  Secondly, the best definition that the system can generate ma
ples on average can score poorly. To prevent this from hapwell be a partial one, as the set of known sources may not be
pening, we simply ignore inputs for which the definition cor- sufficient to completely model the source.

rectly predicts zero tuples. (This is the same as setting the We can compute the score over the projection of the source
score for this case to be the average for the other cases.) Afuples on the attributes produced by the definition, but then
ter ignoring the last row, the overall score for this defoniti we are giving an unfair advantage to definitions that do not
is calculated to be 0.46. produce all of the source’s outputs. That is because it is far

1 (0,000,
6Ual(v) = |I| ; |OS(Z) UO’U(Z)|

input actual predicted Jaccard easier to correctly produce a subset of the output attrsbute
tuplei | outputO, (i) outputO,(i) | similarity than to produce all of them. So we need to penalise such de-
@) | 1z, y), (@, 2] Tz, )} 12 finitions accqrdmgly. We do thls.by.ﬂrst ca]culatmg theesiz
<c:d> {<x,’w>’, (17, | w>’7 (T, )} 1/3 of the domain of each of the missing attributes. In the ex-
le, ) | {{z,w), (z, )} | {{w,w), (z,y)} 1 ample above, the missing attribute is a distance value.eSinc
(g, B 0 {(z, )} 0 Q|stance'|s a continuous variable, we approximate the size o
<L:J> 0 0 #undef! its domain usindmax — min)/accuracy, Whereaccuracy

is the error-bound on distance values. (This cardinality ca

3.5 Approximate Matches Between Constants culation may be specific to each semantic type.) Armed with
the domain size, we penalise the score by scaling the num-

When deC|d|ng.vv'hether the two tuples produced by the tarber of tuples returned by the definition according to the size
get and the definition are the same, we must allow for som

flexibility in the values they contain. In the motivating exa of the domains of all output attributes not generated bynt. |

: . . ssence, we are saying that all possible values for these ex-
gl(eagt)l;'%ﬂ?&%ﬁéﬂi%ﬁ?&f;;ﬂﬁgﬁ [gtﬂgnggcg'&en do;;n%tcﬁa at'grlbutgs haye been “allowed” by th|_s defl_nmon. (_Thls

: . . o . technique is similar to that used for learning without esipli
same. For certain nominal types, likgppcode it makes sense pegative examples iizelle et al, 1994.)
to check equality using exact string matches. For numeric 9 P ? '
types liketemperature an error bound (liket0.5°C) or a .
percentage error (such asl%) may be more reasonable. 4 Experiments
For strings likecompanyname, edit distances such as the We tested the system on 25 different problems (target predi-
JaroWinkler score do a better job at distinguishing stringscates) corresponding teal services from five domains. The



methodology for choosing services was simply to use any seinformation, and a definition was learnt involving a similar
vice that was publicly available, free of charge, worked] an service from Yahoo. For this source, the system discovered
didn’t require website wrapping software. The domain modekhat the current price was the sum of the previous day’s close
used in the experiments was the same for each problem arahd today’s change. The fourth definition is for a weather
included 70 semantic types, ranging from common ones likdorecast service, and a definition was learnt in terms of an-
Zipcodeto more specific types such as stdidker symbols.  other forecast service. (The system distinguished higim fro
It also contained 36 relations that were used to model 35 diflow and forecast from current temperatures.) The fifth seurc
ferent publicly available services. These known sources pr provided information about nearby hotels. Certain attebu
vided some of the same functionality as the targets. of this source (like the hotel'arl andphonenumber) could

In order to induce definitions for each problem, the newnot be learnt, because none of the known sources provided
source (and each candidate) was invoked at least 20 times uftem. Nonetheless, the definition learnt is useful as is. The
ing random inputs. To ensure that the search terminated, tHast source was a classified used-car listing from Yahoo that
number of iterations of the algorithm was limited to 30, and atook a zipcode and car manufacturer as input. The system dis-
search time limit of 20 minutes was imposed. The inductivecovered that there was some overlap between the cars (make,

search bias used during the experiments wasax. clause
length: 7, predicate repetition limit: 2, max. existentjghn-
tification level: 5, candidate must be executable, max.-vari
able occurrence per literal:}1 An accuracy bound of1%
was used to determine equality betwekstance speedtem-
peratureand price values, while an error bound af0.002
degrees was used ftatitude andlongitude The JaroWin-
kler score with a threshold @f.85 was used for strings such
ascompanyhotelandairport names. A hand-written proce-
dure was used for matchirtates

4.1 Results

model and price) listed on that source and those listed on an-
other site provided by Google.

Problems | Candidates
Domain | # (#Attr.) | # (#Lit.) | Precis.| Recall
geospatiall 9 (5.7) 136 (1.9)| 100% | 84%
financial | 2 (11.5) | 1606 (4.5)| 56% | 63%
weather | 8 (11.8)| 368 (2.9)| 91% | 62%
hotels 4 (8.5) 43 (1.3)| 90% | 60%
cars 2 (8.5 68 (2.5)| 50% 50%

The table above shows for each domain, the number of
problems tested, the average number of attributes per prob-

Overall the system performed very well and was able to learf€™ (in parentheses), the average number of candidates gen-

the intended definition (albeit missing certain attriblited 9
of the 25 problems. Some of the more interesting definition
learnt by the system are shown below:

1 GetDistanceBetweenZipCodes($zip0, $zip1,dis2):-
GetCentroid(zip0, latl, lon2),
GetCentroid(zipl, lat4,lon5),
GetDistance(latl,lon2, lat4,lonb,dis10),
ConvertKm2Mi(dis10,dis2).

2 USGSElevation($lat0,$lonl,dis2):-
ConvertFt2M(dis2,disl), Altitude(latO, lonl,disl).

3 GetQuote($ticO,pril,dat2, tim3, pri4, prib, pri6, pri7,

cou8, _,pril0, _, ,pri13, _, coml5) :-
YahooFinance(ticO,pril,dat2, tim3, pri4, prib, pri6,
pri7, cou8),
GetCompanyName(ticO, com15, _, ),
Add(prib, pri13,pril0), Add(pri4, pril0, pril).
4 YahooWeather($zip0, citl,sta2, _, lat4, lonb, day6,dat7,
tem8, tem9, sky10) :-
WeatherForecast(citl,sta2, _, lat4,lonb, _, day6,dat7,
tem9, tem8, _, _, sky10, _, _, ),
GetCityState(zip0, citl, sta2).

5 YahooHotel($zip0,$_, hot2, str3, cit4, stab,,_,_,_, ) -
HotelsByZip(zip0,hot2, str3, cit4, sta5, ).

6 YahooAutos($zip0, $makl, dat2, yeal3, mod4, , , pri7, ) :-
GoogleBaseCars(zip0, makl, ,mod4, pri7, _, _, yea3),
ConvertTime(dat2, _,dat10, _, ),

GetCurrentTime(_, _,dat10, ).

erated prior to the winning definition, and the average numbe

Of literals per definition found (in parentheses). The last t

columns give the average precision and recall values, where
precision is the ratio of correctly generated attributdstie

new source) to all of the attributes generated, and rectieis
ratio of correctly generated attributes, to all of the htites

that should have beegenerated. These values indicate the
quality of the definitions produced. Ideally, we would like t
have 100% precision (no errors in the definitions) and high
recall (most of the attributes being generated). That was th
case for the 9 geospatial problems. One reason for the partic
ularly good performance on this domain was the low number
of attributes per problem, resulting in smaller search epac
As would be expected, the number of candidates generated
was higher for problems with many attributes (financial and
weather domains). In general, precision was very high, ex-
cept for a small number of problems (in the financial and cars
domains). Overall the system performed extremely well; gen
erating definitions with a precision of 88% and recall of 69%.

5 Related Work

Early work on the problem of learning semantic definitions
for Internet sources was performed [erkowitz and Et-
zioni, 1999, who defined thesategory translation problem
That problem can be seen as a simplification of the source
induction problem, where the known sources have no bind-
ing constraints or definitions and provide data that does not

The first definition calculates the distance in miles betweerthange over time. Furthermore, they assume that the new

two zipcodes and is the same as in our original examplesource takes a single value as input and returns a singke tupl

(sourced. The second source provided USGS elevation datas output. To find solutions to this problem, the authors too

in feet, which was found to be sufficiently similar to known used a form of inductive search based on an extension of the
altitude data in meters. The third source provided stockeguo FOIL algorithm[Cameron-Jones and Quinlan, 1994



More recently, there has been some work on classifying There are a number of future directions for this work that
web services into different domaifbkleR and Kushmerick, will allow the system to be applied more broadly. These in-
2003 and on clustering similar services togeti®ong et  clude (1) introducing constants into the modeling language
al., 2004. This work is closely related, but at a more abstract(2) developing additional heuristics to direct the seamh t
level. Using these techniques one can state that a new serviward the best definition, (3) developing a robust termimatio
is probably aweatherservice because it is similar to other condition for halting the search, (4) introducing hieraraito
weather services. This knowledge is very useful for servicghe semantic types, and (5) introducing functional anduncl
discovery, but not sufficient for automating service ingegr sion dependencies into the definition of the domain relation

tion. In our work we learn more expressive descriptions °fAcknowIedgements:We thank Jos Luis Ambite. Kristina

web services, namely view definitions that describe how thg ayman. Snehal Thakkar. and Matt Michelson for useful dis-
attributes of a service relate to one another. cussion:s regarding this vx;ork.

The schema integration system CL[®an et al, 2001
helps users build queries that map data from a source to References

target schema. If we view this source schema as the set (f;éilenkoet al, 2009 Mikhail Bilenko, Raymond J. Mooney,
known sources, and the target schema as a new source, thefyiiam W Cohen, Pradeep Ravikumar, and Stephen E. Fien-

our problems are simila_lr. In CLIO, the integration rules are berg. Adaptive name matching in information integratitBEE
generatedemi-automaticallyvith some help from the user. Intelligent System<.8(5):16—23, 2003.

The iIMAP system[Dhamankaet al, 2004 tries to diS-  [cameron-Jones and Quinlan, 1§9R. Mike Cameron-Jones and
cover complex (many-to-one) mappings between attribftes 0 3 Ross Quinlan. Efficient top-down induction of logic programs.
a source and target schema. It uses a sspetial purpose SIGART Bull, 5(1):33-42, 1994.
searchersto find different types of mappings. Our system [Dhamankat al, 2004 R. Dhamanka, Y. Lee, A. Doan
uses a general ILP-based framework to search for many-to- A Halevy, and P. Domingos. imap: Discovering complex
many mappings. Since our system can perform a similar task semantic matches between database schema&oteedings of
to iIMAP, we tested it on the hardest problem used to evalu- SIGMOD'04 2004.
ate IMAP. The problem involved aligning data from two on- [ponget al, 2004 X.Dong, A. Y. Halevy, J. Madhavan, E. Nemes,
line cricket databases. Our system, despite being designed  and J. Zhang. Simlarity search for web servicesvLIDB, 2004.
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