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Abstract Recent growth of the geospatial information on the web has made it
possible to easily access a wide variety of spatial data. The ability to combine various
sets of geospatial data into a single composite dataset has been one of central issues of
modern geographic information processing. By conflating diverse spatial datasets,
one can support a rich set of queries that could have not been answered given any of
these sets in isolation. However, automatically conflating geospatial data from
different data sources remains a challenging task. This is because geospatial data
obtained from various data sources may have different projections, different accuracy
levels and different formats (e.g., raster or vector format), thus resulting in various
positional inconsistencies. Most of the existing algorithms only deal with vector to
vector data conflation or require human intervention to accomplish vector data to
imagery conflation. In this paper, we describe a novel geospatial data fusion
approach, named AMS-Conflation, which achieves automatic vector to imagery
conflation. We describe an efficient technique to automatically generate control point
pairs from the orthoimagery and vector data by exploiting the information from the
vector data to perform localized image processing on the orthoimagery. We also
evaluate a filtering technique to automatically eliminate inaccurate pairs from the
generated control points. We show that these conflation techniques can automatically
align the roads in orthoimagery, such that 75% of the conflated roads are within
3.6 meters from the real road axes compared to 35% for the original vector data
for partial areas of the county of St. Louis, MO.
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1 Introduction

With the rapid improvement of geospatial data collection techniques and the growth
of Internet, large amount of geospatial data are now readily available on the web.
The examples of well-known vector datasets are US Census TIGER/Line files1 and
NAVSTREETS from NAVTEQ.2 The National Map,3 Google Map,4 and Microsoft
TerraService5 [3] are good examples of map or satellite imagery repositories. The
users of these data products often want these geospatial data and other related data
to be displayed in some integrated fashion for knowledge discovery. Instead of
simply being able to display all of the related data in a single framework, we need to
actually fuse the data to provide additional inferred information that is not
contained in any single information source.

In fact, geospatial data fusion has been one of the central issues in GIS6 [24].
Geospatial data fusion requires that the various datasets be integrated, and then a
single composite dataset from the integrated elements be created. Towards
geospatial data fusion, a vital step is reducing the spatial inconsistencies among
multiple datasets. Figure 1 shows an example of combining a road network
(NAVTEQ NAVSTREETS) and an image (geo-referenced USGS color imagery
with 0.3 m/pixel resolution). Certain geospatial inconsistencies between the road
network and imagery are noticeable (as shown in Figure 1(a)). An integrated view
of the imagery with the aligned road network of the area (as Figure 1(b)) can
annotate streets in the imagery with detailed attribution information often
contained in vector dataset. In addition, recent advances in satellite imaging
technology are making it possible to capture imagery with ever increasing precision
and resolution (0.3 m/pixel or better). Once the road network is aligned to higher
accuracy imagery, its relatively poorer positional accuracy can be improved.

One cannot rely on a manual approach to align diverse geospatial datasets, as the
area of interest may be anywhere in the world and manually aligning a large region
(e.g., the continental United States) is very time consuming and error-prone.
Moreover, performing alignment offline on two geospatial datasets is also not a
viable option in online GIS-related applications as both datasets may be obtained by
querying different information sources at run-time. However, automatically and
accurately aligning geospatial datasets is a difficult task. Essentially, the challenge is
that various geospatial datasets may not align due to multiple reasons: they may use
different spheroids, projections or coordinate systems; they may have been collected
in different ways or with different precisions or resolutions, etc. If the geographic
projections of both datasets are known, then both datasets can be converted to the
same geographic projections. However, the geographic projection for a wide variety

1 http://www.census.gov/geo/www/tiger/
2 http://www.navteq.com/
3 http://seamless.usgs.gov/
4 http://maps.google.com/
5 http://terraserver-usa.com/
6 http://www.cobblestoneconcepts.com/ucgis2summer2002/researchagendafinal.htm
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of geospatial data online is not known. Furthermore, converting datasets into the
same projection does not address the issue of different inaccuracies between two
spatial datasets.

Conflation is often a term used to describe the integration or alignment of
different geospatial datasets.7 The conflation process can be divided into the
following subtasks: (1) Feature matching: Find a set of conjugate point pairs, termed
control point pairs, in two datasets, (2) Match checking: Detect inaccurate control
point pairs from the set of control point pairs for quality control, and (3) Alignment:
Use the accurate control points to align the rest of the geospatial objects (such as
points or lines) in both datasets by using the triangulation and rubber-sheeting
techniques. Please note that finding accurate control point pairs is a very important
step in this kind of feature-based conflation process as all the other points in both
datasets are aligned based on the control point pairs.

Traditionally, the problems of vector and imagery conflation have been in the
domain of image processing and GIS. The focus of the image processing techniques
has been on automatic identification of objects in the image in order to resolve
vector-image inconsistencies. However, these techniques require significant CPU
time to process an image in its entirety and still may result in inaccurate results.
Moreover, various GIS systems, such as ESRI ArcView,8 ESEA MapMerger,9 and
Able R2V10 provide the functionality to perform different layers of geospatial

7 In this paper, we use the terms conflation, integration and alignment interchangeably.
8 http://www.esri.com/
9 http://www.esea.com/products/

10 http://www.ablesw.com/r2v/

Figure 1 The vector and imagery integration.
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dataset integration. However, these products do not provide automatic vector and
imagery conflation, and manual intervention is needed to consolidate multiple
geospatial datasets. The goal of our research is to develop an automatic, efficient
and accurate vector to imagery conflation technique to align vector and imagery for
GIS-related applications. Once the vector datasets are aligned to higher accuracy
imagery, their positional information can be updated. Furthermore, the aligned
vector data can annotate spatial objects in the imagery with detailed attributions
information often contained in vector datasets.

Particularly, in this paper, we consider the automatic conflation of road network
and orthoimagery (i.e., this imagery is altered from original photos so that it has the
geometric properties of a map). We propose our approach, a geospatial information
integration approach, named Automatic Multi-Source conflation (AMS-conflation),
to automatically integrate vector data and imagery. AMS-conflation exploits
information from each of the sources to be integrated to automatically identify
control points for aligning datasets. Furthermore, rather than processing each source
of information separately in isolation, AMS-conflation processes the sources and
exchanges information obtained from one source to help the processing of the other
source and vice-versa. Essentially, there are three general sources of information for
automatically identifying control points: (1) inferences on the data source (e.g.,
analyzing road vector to detect intersections or classifying imagery to identify road
regions), (2) metadata/attributes about the data sources (e.g., resolutions/coordi-
nates of imagery and road width information of vector data), (3) other sources of
data that can be linked to the source (e.g., the online telephone books that store the
addresses of a named point in the imagery). These automatically exploited
information are dynamically exchanged and matched across these geospatial
datasets to accurately identify corresponding spatial features as control points in
AMS-conflation.

Figure 2 shows the overall approach for conflating vector and imagery. AMS-
conflation is a multi-step data alignment process that involves identification of
matching features as control points, filtering of misidentified control points and
local transformation of other spatial objects. In fact, AMS-conflation is based on the
preliminary techniques that we proposed in [7]. We enhanced our techniques in
several ways: (1) we proposed a histogram-based classifier to more accurately
identify road intersections as control points on median resolution (about 1 m/pixel)
to high resolution (up to 0.3 m/pixel) color orthoimages,11 (2) we improved our
localized image processing technique by exploiting road vector directions and
widths to generate templates to match against the orthoimages, (3) we presented a
novel evaluation methodology evaluate our conflation results based on three
different metrics, and (4) we used different accuracy level real-world vector datasets
and images of different resolutions for evaluation.

The remainder of this paper is organized as follows. Section 2 describes the
algorithm to automatically identify control point pairs in two types of geospatial

11 Our approach could apply to low resolution imagery as well. However, low resolution imagery is
not the focus of our research. This is because natural objects in the imagery become vague with the
decrease of imagery resolution. Furthermore, high resolution imagery becomes more and more
available today and provides clearer ground truth information (hence often poses more challenging
automatic spatial object recognition issues). In addition, the misalignments between vector data and
low resolution imagery are rather imperceptible.
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datasets. Section 3 describes the algorithm to filter out inaccurate control point pairs
from the automatically generated control point pairs. Section 4 describes an
enhanced conflation process to align two geospatial datasets. Section 5 presents
our evaluation methodology and provides results of utilizing our approach to align
real world data. Section 6 discusses the related work and Section 7 concludes the
paper by discussing our future plans.

2 Finding control points

A control point pair consists of a point in one dataset and a corresponding point in
the other dataset. Finding accurate control point pairs is a very important step in the
conflation process as all the other points in both datasets are aligned based on the
control point pairs.

Consider the conflation of road network and orthoimagery. Road intersections
are good candidates for being control points, because road intersections are salient
points to capture the major layouts of road network and the road shapes around
intersections are often well-defined. In addition, various GIS researchers and
computer vision researchers have shown that the intersection points on the road
networks are good candidates to be identified as an accurate set of control points
[7], [10], [13]. In fact, several image processing algorithms to detect roads in the
imagery have been utilized to identify intersection points in the imagery.
Unfortunately, extracting road segments directly from the imagery is a difficult
task due to the complexity that characterizes natural scenes [1]. Thus, extracting
roads from the imagery is error-prone and may require manual intervention.
Moreover, processing an image of a large area to extract roads requires a lot of
processing time.

Figure 2 Overall approach to align vector with orthoimagery.
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Integrating vector data into the road extraction procedures alleviates these
problems. In this section, we describe our technique, called localized template
matching (LTM) [6], which takes advantage of the vector data, image metadata as
well as the color of imagery to accurately and efficiently find the road intersections
in the imagery. Conceptually, the spatial information on the vector data represents
the existing knowledge about the approximate location of the roads and intersection
points in the imagery, thus improving the accuracy and running time to detect
intersection points in the image. The entire process of locating road intersections in
imagery using road network data is shown in Figure 3. We discuss the detailed
procedure in the following sections.

2.1 Road networks intersection detection

The process of finding the intersection points on the road network from the vector
data is divided into two steps. First, the system examines all line segments in the
vector data to label the endpoints of each segment as the candidate points. Second,
the system examines the connectivity of these candidate points to determine if they
are intersection points. In this step, each candidate point is verified to see if there
are more than two line segments connected at this point. If so, this point is marked
as an intersection point and the directions of the segments that are connected at the
intersection point are calculated.

2.2 Imagery road intersection detection

Towards the objective of identifying road intersections on imagery, the vital step is
to understand the characteristics of roads on imagery. In low resolution imagery,
roads are illustrated as lines, while in high resolution imagery, roads are exposed as
elongated homogeneous regions with almost constant width and similar color along
a road. In addition, roads contain quite well-defined geometrical properties. For
example, the road direction changes tend to be smooth, and the connectivity of
roads follows some topological regularities.

Road intersection can be viewed as the intersection of multiple road axes that are
located at the overlapping area of these elongated road regions. These elongated
road regions form a particular shape around the intersection. Therefore, we can
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match this shape against a template derived from road network data (discussed
next) to locate the intersection. Based on the characteristics of roads, the formation
of this shape is either from detected road-edges or homogeneous regions. In our
previous work [7], an edge detector (such as [20]) was utilized to identify linear
features from imagery to match against vector data to locate intersections. However,
on high resolution imagery (such as up to 0.3 m/pixel, as an example shown in
Figure 4(a)), more detailed outlines of spatial objects, such as edges of cars and
buildings, introduce noisy edges. Hence, in some cases the system may obtain
fragmented edges that include real road edges, building edges, tree edges, etc
(Figure 4(b)). This makes grouping-based method (i.e., the method that groups
pixels belonging to the same edge as a line or a curve) used for road-edges linking to
identify road intersections a difficult task. As the example shown in Figure 4(b), the
system must exploit auxiliary constraints (e.g., the road sides of the same roads are
often in parallel) to eliminate the impacts from noisy edges. However, we can make
use of other useful information about roads, such as the color of roads, to alleviate
this problem. Therefore, in contrary to traditional edge-detection approach, we
propose a more effective way to identify intersections on imagery. Our approach
uses the Bayes classifier, a histogram based classifier [11], [18], to classify images_
pixels as on-road or off-road pixels (as in Figure 4(c)). In Section 2.2.1, we discuss
the method to pre-classify image pixels, and in Section 2.2.2, we describe the
localized template matching algorithm in detail.

2.2.1 Labeling imagery using the Bayes classifier

The histogram-based classification is based on the assumption of consistency of
image color on road pixels. That is, road pixels can be dark, or white, or have color
spectrum in a specific range, however; for the imagery set whose images were taken
around the same time period using similar remote sensing equipments, we expect to
find the same representative color on nearby road pixels. We construct the statistical
color distribution (called class-conditional density) of on-road/off-road pixels by
utilizing a histogram learning technique as follows. We first randomly train the
system on a small area of the imagery by interactively specifying on-road regions
and off-road regions respectively. From the manually labeled training pixels, the
system learns the color distribution (histograms) for on-road and off-road pixels.

Figure 4 An example of edge-detected image and road-classified image.
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The off-line learning process requires manual labeling to obtain conditional
density functions, but it is performed only when a new imagery dataset is introduced
to the system. In addition, we can apply the learned results to automatically identify
intersections of the area that is much larger than the area we learn from. In order to
determine whether new training is needed for a given image or the current learning
is sufficient for the classification of the new area, in the future, we plan to develop
an automatic approach based on the statistical analysis of the color distribution of
the target imagery.

Figure 5 shows the hue probability density and saturation probability density,12

after conducting the learning procedure on nearly 500 manually labeled rectangles
from a set of USGS 0.3 m/pixel imagery (covering St. Louis County in Missouri).
There are 250 rectangles for each category (On-road and Off-road) and totally three
are 50,000 pixels within these rectangles. It is about 0.05% of our target imagery. It
only took about 1 h to perform the labeling process. Reducing the amount of
training samples may result in a narrower range of learned roads color. Thus, it may
not provide sufficient color information for road classification. Figure 5(a) shows the
conditional probabilities Prob(Hue/On-road) and Prob(Hue/Off-road), respectively.
The X-axis of this figure depicts the hue value grouped every 10 degrees. The Y-axis
shows the probability of on-road (and off-road) pixels that are within the hue range
represented by the X-axis. For a particular image pixel, we can compute its hue
value h. Given the hue value h, if the probability for off-road is higher than on-road,
our system would predict that the pixel is an off-road pixel. As shown in Figure 5,
these density functions depict the different distribution of on-road and off-road
image pixels on hue and saturation dimensions, respectively. Hence, we may use

12 We eliminated the intensity (i.e., brightness of HSV model) density function. There is no obvious
difference between the brightness distribution of on-road and off-road pixels, since these images
were taken at the same time (i.e., under similar illumination conditions).

Figure 5 Learned density function on HSV color space for On-road/Off-road pixels.
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either of them to classify the image pixels as on-road or off-road. In our
experiments, we utilized hue density function for classification. In general, we can
utilize all color components, hue, saturation and brightness, with a more effective
classifier (e.g., the machine learning classifier Support Vector Machines) to classify
these higher dimensional datasets.

Based on the learned hue density functions, an automated road-labeling is
conducted as follows. A particular image pixel whose hue value is h is classified as
road if

Pr ob h=On�roadð Þ
Pr ob h=Off�roadð Þ � q, where q is a threshold. q depends on the application-specific

costs of classification errors and it can be selected using ROC technique discussed in
[18].

2.2.2 Analyzing imagery using road network data (localized template matching)

Using the classified image (an example is shown in Figure 6(b)(c)) as input, the
system can now match it with a template determined from the road network data to
identify intersections. First, our LTM technique finds the geo-coordinates of all the
intersection points on the road network data. Since the system also knows the geo-
coordinates of the images (from image metadata), it can obtain the approximate
location of intersections on the imagery (as in Figure 6(c)). For each intersection
point on the road network data, LTM determines the area in the image where the
corresponding intersection point should be located by picking a rectangular area
(with width W and height H) in the image centered at the location of the
intersection point from the road network data. Meanwhile, as an example shown in
Figure 6(a), a template (with width w and height h) around an intersection on road
network data is generated by the presence of regions inferred from the road
network data using information, such as the road directions and road widths. LTM
will then locate regions in the road-labeled image (see Figure 6(c)) that are similar
(in shape) to the generated template (as in Figure 6(a)) as follows. Given a road-
labeled image I with W�H pixels a template T with w�h pixels, the system then
moves the template around the image and compares the template against the
overlapped image regions. The adapted similarity measure is a normalized cross
correlation defined as:

C x; yð Þ ¼

Ph�1

y0¼ 0

Pw�1

x0¼ 0

T x0;y0ð ÞI xþx0;yþy0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ph�1

y0¼ 0

Pw�1

x0¼ 0

T x0;y0ð Þ2
Ph�1

y0¼ 0

Pw�1

x0¼ 0

I xþx0;yþy0ð Þ2
r

where T(x,y) equals one, if (x,y) belongs to a road region in the template T,
otherwise; T(x,y) equals zero. I(x,y) equals one, if (x,y) is pre-classified as a road
pixel, otherwise; I(x,y) equals zero. C(x,y) is the correlation on the pixel (x,y). In our
implementation, we set that W equals to H (i.e., a square area).

The highest computed correlation C(x,y) implies the location of the best match
between the road-labeled image and the template. Furthermore, C(x,y) determines
the degree of similarity between the matched road-labeled image and the template.
An intersection will be identified, if C(x,y) is greater than a similarity threshold t
(0ete1.0). When setting t to 0.5, the system keeps the detected intersection that has
higher similarity value (i.e., C(x,y)) than its dissimilarity value(i.e., 1.0jC(x,y)).
Hence, in our experiment, we set the threshold t to 0.5.
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The square area dimension (i.e., the width W) can be determined based on the
accuracy and resolution of the two datasets. One option is to utilize the domain
knowledge about maximum error or offset between two datasets. If this kind of
knowledge is inaccessible, we can conduct experiments for a small set of these
datasets to determine the area dimension by using various sizes and selecting the
size that has better performance. More precisely, as an example shown in Figure 7,
we utilized a high quality road network, NAVTEQ NAVSTREETS, and the
proposed LTM technique with various area sizes to identify intersections in a 1.5 km
by 1.5 km USGS high resolution color imagery (with 106 real road intersections).

Figure 7 shows the performance of LTM with different area dimension by
applying a Bbuffer method^ to calculate recall and precision of identified
intersections. Road intersection can be viewed as the intersection of multiple road
axes that are located at the overlapping area (called buffer) of elongated road

Figure 6 An example of the localized template matching.
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regions. Identified road intersections that fall within the buffer are considered as
Bcorrectly identified intersections^. Using this term, we define:

Recall ¼ Number of correctly identified intersections

Number of intersections in the image
ð1Þ

Precision ¼ Number of correctly identified intersections

Number of identified intersections
ð2Þ

As shown in Figure 7, we increase the area dimension from 60 m to 180 m with
the incremental dimension value 30 m. Then, we calculate the precision and recall.
We also compute the normalized intersection detection running time (with respect
to the running time of using 180 m as area dimension). The results show that the
detection time dramatically increases as area dimension increases.

As shown in Figure 7, the precision decreases when the area dimension increases.
This is because that larger area may involve more road intersections that have
similar shape as the road template (e.g., some urban areas where roads are
sometimes constructed in a grid shape). In addition, there could be more
misclassified pixels for a larger area, thus detecting some incorrect intersections.
Due to the same reason, the recall also slightly decreases as the area dimension
increases from 90 m to 180 m. However, we obtained lowest recall when setting
dimension size to 60 m. This implies that dimension 60 m is not large enough to
capture most of the positional displacements between the vector and imagery.
Therefore, based on these experimental results, we can select 90 m as our area
dimension to identify intersections on other neighboring areas. This is because
setting the area size to 90 m, we achieved 84% precision and 64% recall. Although it
is slightly smaller than the precision (86%) obtained using 60 m as area dimension,
we have much better recall (64 v.s. 52%).

The histogram-based classifier, as illustrated in the previous section, may
generate fragmented results due to noisy objects, such as cars, tree-clusters and
building shadings on the roads. Furthermore, some nonroad objects whose color is
similar to road pixels might be misclassified as roads. However, LTM can alleviate
these problems by avoiding exhaustive search of all the intersection points on the
entire image and usually locates the intersection point on the image that is the
closest intersection point to the intersection point on the road network data.
Moreover, this technique does not require a classifier to label each pixel for the
entire region. Only the areas near the intersections on the image need to be pre-
classified. In addition, when utilizing localized template matching, it implicitly
implies that the topology constraint (such as adjacency) is considered. This is
because the template is generated based on the connectivity of several road
segments merging at the same intersection point.

Furthermore, note that the objective of histogram-based classifier is not to
extract the roads by correctly classifying every single pixel of the image as off-road
or on-road. Therefore, it is not essential to apply morphology techniques (e.g.,
dilation or erosion) to resolve the fragmented classification results. Instead, as long
as a majority of on-road pixels are identified so that the intersection-shape on the
image is captured, LTM can successfully match it to the corresponding vector
template. Even in the worst case, if we miss an entire intersection, still the entire
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conflation process may be successful as long as enough number of intersections is
identified. Moreover, due to some noisy information in the imagery, applying
morphology techniques to the fragmented classification results can produce road
shapes that are inconsistent to the original road shapes. This may in turn result in
poorer performance of LTM.

In sum, the running time for the LTM technique is dramatically lower than tra-
ditional image processing techniques due to performing image processing on localized
areas. Furthermore, exploiting the road direction information improves both the
accuracy and efficiency of detecting road intersections in the image. Figure 8 shows
an image indicating the intersection points on road network data and the
corresponding intersection points identified from the imagery.

3 Filtering control points

Due to the complexity of natural scene in the imagery, the LTM technique may still
misidentify intersections as control points. For example, in Figure 9, the detected
control point pairs 1, 2 and 3 are inaccurate control point pairs. It is essential to use
a filter to eliminate misidentified intersections and only keep the accurately
identified intersection, hence improving the precision with the cost of reducing
recall. To address this issue, we can exploit the fact that there is a significant amount
of regularity in terms of the relative positions of the controls points across data sets.
This is due to the fact that we are not trying to correct individual errors, but rather
to determine some local transformations across datasets that allow us to integrate
two separate data sources. More precisely, while there is no global transformation
(or systematic behavior of the offsets) to align imagery and vector data, in small

Figure 8 The intersections
(rectangles) on road network
data and the corresponding
intersections (circles) on
imagery.
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areas the relationship between the points on the imagery and the points on the
vector data can be described by some similar transformations. These trans-
formations can be attributed to different projections, accuracies, or coordinate
systems used in the imagery data and the vector data. Due to the above-mentioned
nature of the datasets, in a small region the control points on the imagery and the
counterparts on vector data should be related by similar transformations. Therefore,
the inaccurate control point pairs can be detected by the filters that identify those
pairs with significantly different relationship as compared to the other nearby
control point pairs. Vector Median Filter (VMF) [2] is an example of such filter.
VMF is a mathematical tool for signal processing to attenuate noise, and it is a
popular filter to do noise removal in image processing. The VMF perceives the data
points as vectors and filters out the data point with vectors significantly different
from the median vector (i.e., outliers).

VMF first interprets the coordinate displacement between the points of each
control point pair as a 2D vector, termed as control-point vector. Assuming that N
control point pairs are generated in a small area by LTM. Hence, there are N control-
point vectors denoted as { x!i

�
x!i ¼ PiQi

��!
(i=1, 2, 3, ... N), where the tail Pi is an

intersection point on the vector dataset, and the head Qi is the corresponding point
on the imagery}.

Since vectors are invariant under translation, it is convenient to consider the tail
Pi as located at the origin. Hence, the tail of each control-point vector coincides to
the same origin. For example, the control-point vectors for the 17 detected control
point pairs of Figure 10(a) are illustrated in Figure 10(b) as the arrows (vectors).
Due to the similarities of these control-point vectors in a local area, the directions
and magnitudes of them can be represented by the vector median. We modified the

Figure 9 The intersections
(rectangles) on road network
data and the corresponding
intersections (circles) on
imagery (intersections 1, 2
and 3 are misidentified
points).
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vector median filter as follows to identify the control-point vectors that are
significantly different, hence obtaining the best matching set of control points.

The vector median of these N vectors x!i (i=1, 2, 3, ... N) is defined as the vector
x!vm such that

(1) The sum
PN

i¼1

x!vm � x!i

�
�

�
� is minimized.

Here || || stands for L2 norm (Euclidean distance).
(2) x!vm 2 x!i; i ¼ 1; 2; 3; . . . ;N

Vector median has similar properties as the median operation. Intuitively, the
median vector is the vector that has the shortest summed distance (Euclidean
distance) to all other vectors.

The inputs for a vector median filter are N vectors x!i i ¼ 1; 2; 3; . . . Nð Þ and the
output of the filter is the vector median x!vm. We revised the output of vector
median filter to accommodate not only x!vm, but also k closest vectors to the vector
median. We defined the distance D:

D ¼ x!k � x!vm

�
�

�
�

2
where x!k is the k<th closest vector to x!vm:

Then, the output of modified vector median filter is

x!i where x!i � x!vm

�
�

�
� � D and i ¼ 1; 2; 3; . . . N

�
�

� �

As a result of the modified Vector Median Filter, k closest vectors to the vector
median are selected (because they have similar directions and magnitudes to the
vector median) and the other control-point vectors are filtered out. The possible
value of k is an integer between 1 and N. Large value of k provides more control-

Figure 10 VMF filter.
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point vectors, but may not filter out all inaccurate control point pairs. Based on our
experiments of tuning different values for k, VMF filter performs well when setting
k to N

2

	 

. Hence, the system kept the k ¼ N

2

	 

closest vectors to the vector median

and filtered out the rest of the control point pairs. As a result, some accurate
control-point vectors may be lost. However, the missing control point pairs would
not greatly affect the conflation results, as some of the selected control point pairs
close to the lost accurate control point pairs have the similar directions and
displacements.

Figure 10 graphically shows how the Vector Median Filter works. For example, to
determine whether the control point pair 1 (Figure 10(a)) is an outlier or not, its
corresponding control-point vector would be compared to other control-point
vectors nearby. The 17 neighboring control-point vectors within a radius of
300 meters to the control point pair 1 are shown in Figure 10(b) as the arrows. The
thickest arrow is the vector median among these control-point vectors. After
applying the modified Vector Median Filter, only nine (k=9) closest vectors to the
vector median are not categorized as outliers. The control point pair 1 will be
filtered out (see Figure 11), because its corresponding control-point vector
(represented as OW

��!
in Figure 10(b)) is categorized as an outlier. The system

repeats the same process to filter out other outliers.

4 Conflating imagery and vector data

After filtering the control point pairs, the system identifies an accurate set of control
point pairs. Each point of the control point pair from the vector data and imagery
indicates the same position. Transformations are calculated from the control point

Figure 11 After applying
VMF on Figure 10(a). The
circles mark the control points
categorized as outliers by
VMF.
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pairs. Other points in both datasets are aligned based on these transformations. The
Delaunay triangulation [4] and piecewise linear rubber sheeting [26] are utilized to
find the appropriate transformations. The Delaunay Triangulation is discussed in
Section 4.1, and rubber-sheeting is explained in Section 4.2.

4.1 Space partitioning using Delaunay triangulation

To achieve overall alignment of imagery and vector data, vector data must be
adjusted locally to conform to the imagery. The system can align the two datasets
based on local adjustments, because small changes in one area usually do not affect
the geometry at long distances. To accomplish local adjustments, the domain space
is partitioned into small pieces based on accurately identified control point pairs.
Then, the system applies local adjustments to each individual piece. Triangulation is
an effective strategy to partition the domain space into triangles to define local
adjustments.

One particular type of triangulation, Delaunay triangulation, is especially suited
for conflation systems [23]. A Delaunay triangulation is a triangulation of the point
set with the property (called BINCIRCLE^ property) that no point falls in the
interior of the circumcircle of any triangle (the circle passing through the three
triangle vertices). The Delaunay triangulation maximizes the minimum angle of all
the angles in the triangulation, thus avoiding triangles with extremely small angles
[4]. More precisely, an incremental Delaunary triangulation algorithm to partition
the space (based on the point set P) works as follows: (1) initialize triangulation TR
with a big bounding triangle that contains all points P, (2) randomly choose a point
p_ from P, (3) find the triangle Tin in TR which contains p_, (4) subdivide Tin into
smaller triangles that have p_ as a vertex, (5) fix up neighboring regions by
performing diagonal swaps on edges based on the INCIRCLE property test, (6)
repeat steps 2 to 5 until all points have been added to TR.

Our system performs the Delaunay triangulation with the set of control points on
the vector data, and makes a set of equivalent triangles with corresponding control
points on the imagery. Figure 12 shows an example of a resulting Delaunay
triangulation on some detected control points.

The time complexity of performing Delaunay triangulation is O(n*log n) in worst
case, where n is the number of control points. The details of the triangulation
algorithms are discussed in [4], [23].

4.2 Piecewise linear rubber-sheeting

Imagine stretching a vector dataset as if it were made of rubber. Our system
deforms algorithmically, forcing registration of control points over the vector data
with their corresponding points on the imagery. This technique is called BPiecewise
linear rubber sheeting^ [26]. There are two steps to rubber sheeting. First, the
transformation coefficients (i.e., the affine transformation that is composed of
translation, rotation and scaling) to map each Delaunay triangle on vector data onto
its corresponding triangles on the imagery are calculated. Second, the system applies
the same transformation coefficients to transform the endpoints of each vector line
segment within each Delaunay triangle to the imagery. Consider the example shown
in Figure 13(a). White lines represent the road network. The rectangles are the
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control points on the road vector data and the circles are the corresponding control
points on the imagery. The two triangles shown are Delaunay triangles formed by
three corresponding control point pairs and one endpoint A of the original road
segments is located within the triangle on the road vector data. The rubber sheeting
technique transforms endpoint A to the point B on the imagery (B becomes a road
endpoint on the image). The conflated road network is constructed by connecting
these transformed endpoints (see Figure 13(b)).

Piecewise linear rubber sheeting based on triangles with extremely small angles
(i.e., long and thin triangles) results in distorted conflation lines. Since the Delanuay
triangulation avoids triangles with extremely small angles, it reduces the problem.
The detailed piecewise linear rubber-sheeting algorithms can be found in [23], [26].

5 Performance evaluation

In this section, we evaluated AMS-conflation by conducting several experiments on
various real world data. Section 5.1 describes the test datasets in details. The
purpose of the experiment is to evaluate the utility of our algorithms in integrating
real world data. We are interested in measuring the improvement in the accuracy of
the integration of road vector and imagery using AMS-conflation. To that end, we
performed experiments to validate the hypothesis: using AMS-conflation, we can
automatically improve the alignments of different accuracy level road vectors with
orthoimagery.

Section 5.1 describes the experimental setup and the test datasets. Section 5.2
presents our evaluation methodology to measure the performance. Section 5.3
discusses the experimental results.

5.1 Experimental setup

We used the following two different datasets for our experiments:

(1) Orthoimagery
The imagery used in the experiments is the geo-referenced USGS color

orthoimagery (0.3 m/pixel resolution) and geo-referenced USGS gray-scale

Figure 12 An example of Delaunay triangulation.
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DOQ imagery with lower resolution (1 m/pixel). In particular, we tested the
color imagery that covers some areas of county of St. Louis, MO, and the gray-
scale imagery that covers some areas of the city of El Segundo, CA. This
imagery is available online and queryable from Microsoft TerraService web
service [3].

(2) Vector data (road networks)

Three road networks from different data providers were used as the vector data:

& TIGER/Lines from U.S. Census: The TIGER system was developed by the U.S.
Bureau of the Census. The Bureau provides the public with the TIGER/Line
files, which are extractions of selected geographic and cartographic information
from the TIGER database. In particular, we focus on the road networks queried
from TIGER/Line files (called TIGER/Lines henceforth).

& NAVSTREETS from NAVTEQ: NAVSTREETS is a commercial product and
is high quality vector data with highly accurate geometry. It is regularly updated
by NAVTEQ using some base maps acquired from a variety of sources including
local governments, commercial mapping agencies and other public agencies.
Many online street map services, such as Google Map, utilize NAVSTREETS as
the base dataset for road route planning.

& Road network data (called MO-DOT henceforth) from department of trans-
portation, St. Louis, MO [24]. It is also a high quality road vector dataset.

In general, all these road network data listed above have rich attribution; however,
TIGER/Lines has both poor positional accuracy and road geometry. With TIGER/
Lines and MO-DOT, the number of lanes can be inferred from the attribute BCFCC
(Census Feature Class Codes)^ associated with each road segment, while the number
of lanes can be obtained from the attribute BLANE_CAT^ in NAVSTREETS.
Furthermore, the locations of road intersections and the road directions around
each intersection are calculated by analyzing these road networks using the algo-

Figure 13 An example of rubber-sheeting.
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rithms described in Section 2.1. In general, NAVSTREETS and MO-DOT are high
quality road vectors, but with various accuracy levels. As some sample images
shown in Figure 14, there are some spatial inconsistencies between the USGS high
resolution color imagery and the three different vectors.

Our automatic conflation system was developed in C#. The algorithm allows the
user to specify the two datasets to conflate (e.g., Bimagery and TIGER/Lines^,
Bimagery and NAVSTREETS^ or Bimagery and MO-DOT^). The output of our
conflation system was a set of conflated roads for the three different types of vector
datasets. The experiment platform is Pentium III 1.2 GHz processor with 512 MB
memory on Windows XP (with .NET framework installed). In order to evaluate our
approach on various real world data, we applied AMS-conflation to diverse areas as
summarized in Table 1. In addition, we manually plotted the real road axes (called
reference roads) as the ground truth with which we compare our conflated roads.

5.2 Evaluation methodology

We compared the reference roads with conflated roads by developing an evaluation
schema to measure (1) The percentage of the reference roads in imagery for which we
generated conflated roads, (2) The percentage of correctly conflated roads with
respect to the total conflated roads, (3) The percentage of the total length of the
conflated roads that is within a specific distance of the reference roads.

In the computer vision literature on automatically extracting roads from imagery,
there are many methodologies proposed to evaluate the extracted roads against real
roads [14], [27]. Due to the natural similarity between the problem of evaluating
extracted roads and our problem of evaluating conflated roads, we can utilize these
existing algorithms to evaluate our conflation results. In particular, we adapted the
Broad-buffer method^ proposed in [27]. The road-buffer method is utilized to
measure the accuracy of automatically extracted roads with respect to real roads.
We revised this method to measure the accuracy of conflated roads with respect to
real roads.

According to the algorithm proposed in [27], to compare two road networks (in
our case, they are reference road network and conflated road network), the first step
is to split both networks into short pieces of equal length. Then, a constant
predefined road-width is constructed around the reference road network. Every
portion of the conflated road network within the given distance (i.e., the buffer
width) from the reference road network is considered as matched. Furthermore, the

Figure 14 Original road vector (white lines) superimposed with imagery.
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direction difference between matched road axis and reference road axis must be less
than a pre-defined threshold d (d was set to 20 degree in [27]). The drawback of this
procedure is that the performance is highly affected by the predefined constant buffer
width. Instead of using the constant buffer width for each road segment, we used the
real road widths in the imagery as the buffer. Hence, the roads with different widths
have different buffer widths. The pieces of the conflated roads within the buffer to the
reference roads with consistent direction are considered as matched.

Table 1 Tested datasets used in the experiments.

Test area 1 Test area 2 Test area 3 Test area 4

Area covered* Latitude: 38.5808

to 38.5947

Latitude: 38.5703

to 38.5842

Latitude: 38.5962

to 38.6101

Latitude: 33.914

to 33.932

Longitude:

j90.4049 to

j90.388

Longitude:

j90.543 to

j90.526

Longitude:

j90.490 to

j90.473

Longitude:

j118.4209 to

j118.399

Width: 1.5 km Width: 1.5 km Width: 1.5 km Width: 2 km

Height: 1.5 km Height: 1.5 km Height: 1.5 km Height: 2 km

Total road

length of

TIGER/

Lines (m)

23,534.52 21,443.96 7,966.62 46,580.64

Total road

length of

NAVSTREETS

(m)

24,360.00 21,921.29 9,876.02 N/A**

Total road

length of

MO-DOT (m)

24,759.3 21,796.92 9,431.68 N/A**

Total road

length of

reference

roads (m)

25,471.63 21,999.00 9,252.01*** 46,660.2

Area features 0.3 m/pixel color

imagery.

Suburban area

(covering some

urban area) with

high road density

(11.3 km/km2)

and high house

density

0.3 m/pixel color

imagery.

Suburban area

with high road

density (9.7 km/

km2) and high

house density.

Perceptually, the

majority of road

color in this area

is different from

the road color in

test area 1

0.3 m/pixel color

imagery. Rural

area with

medium road

density (4 km/

km2). 12% of

the roads are

highways

1 m/pixel gray-

scale imagery.

Urban area with

high road

density

(12.83 km/km2)

and high house

density

* Test area 1, 2, and 3 cover partial areas of the county of St. Louis, MO. Test area 4 covers a partial
area of the city of El Segundo, CA.

** These road vector datasets were inaccessible at the time the experiments were performed.

*** These reference roads are shorter than vector data because some straight reference roads are
depicted as curves in vector datasets.
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Figure 15(a) shows the examples of matched conflated roads with respect to
reference roads. Segments AB is calculated as matched conflated roads, while BC is
not. Figure 15(b) shows the example of matched reference roads with respect to
conflated roads. Segments AB is categorized as matched reference road, since the
conflated road segment A_B_ can be used to Bcomplete^ (or Bmatch^) the reference
road segment AB. Segments BC is unmatched reference road.

Using this term, two measurements, completeness and correctness, are defined as
follows [27].

Completeness ¼ Length of matched reference roads
Total length of reference roads

Correctness ¼ Length of matched conflated roads
Total length of conflated roads

Basically, the completeness is the percentage of the reference roads in imagery for
which we generated conflated roads. On the other hand, correctness is the percentage
of correctly conflated roads with respect to the total conflated roads. However, the
other measurement, RMS (root-mean-square error), described in [27] does not meet
our requirements to compute how far the conflated road network is from the
reference road network, since it only measures how far the matched conflated road
network is from the reference road network. Instead of computing a number (e.g.,
average distance) to illustrate how far from each other the two networks are, we
would like to measure the percentage of the total length of the (conflated) roads
that is within a specified distance x to the reference roads (e.g., 95% of the conflated
roads are within 5 meters of the reference roads). The method proposed in [12] is a
technique to assess this positional accuracy. As an example shown in Figure 16, we
consider a buffer with width x around the reference road network, then compute the
proportion p of the conflated roads that lies within the buffer [12]. Using this
technique, only the distance difference between two roads is considered. The errors
due to the difference of directions between roads are captured by completeness and
correctness.

Buffer width x
A

B

C
Conflated roads

Reference roads

degree < 20

Buffer width
x

A

A’

B

B’

C

degree < 20

Reference roads

Buffer width
x

A’

C

(a) Segment AB: matched conflated road (b) Segment AB: matched reference road 

Conflated roads

Figure 15 Buffer method for evaluating completeness and correctness.
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We conducted our experiments as follows for test area 1, 2 and 3:

Step 1: Learn the histogram (as shown in Figure 5) from nearly 500 manually
labeled rectangles13 from some color orthoimages covering partial areas of
the County of St. Louis, MO.

Step 2: Apply AMS-conflation algorithm to conflate each area (image) with
TIGER/Lines, NAVSTREETS and MO-DOT respectively.

In particular, for test area 1, 2 and 3, we conducted experiments to measure the
accuracy of original road vectors and conflated road vectors generated by AMS-
conflation. Then, we compare the evaluation results for conflated road vectors with
the results for original road vectors. Additionally, we also measured the quality of
detected control points (before and after applying filtering techniques) by the
precision and recall metrics defined in Section 2.2.2 (Eq. 1 and Eq. 2). For the fourth
test area (covering partial area of city of El Segundo, CA), basically, we repeated
the same process as above, but we learned road color information from the lower
resolution black–white images that covers some areas of El Segundo and we only
conflated TIGER/Lines. We discuss the detailed experimental results in the
following section.

5.3 Experimental results and interpretations

Since finding accurate control point pairs is an important step in the conflation
process, Section 5.3.1 describes the performance of LTM and VMF to detect control
points. Section 5.3.2 describes the overall performance of AMS-conflation.

13 There are 50,000 pixels covered by these rectangles and it took about 1 h to perform the labeling
process.

x x

Roads to 
be tested

Reference roads

Buffer zone
of buffer width x

x x

Figure 16 Positional accuracy
evaluation.
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5.3.1 Experimental results of precision and recall of identified intersections
using LTM

Finding accurate control point pairs is a very important step in the conflation
process as all the other points in both datasets are aligned based on the control point
pairs. Hence, we evaluated the LTM performance by calculating precision and recall
of detected control points (before and after applying filters). The results are listed in
Table 2. We also included the precision/recall of original road network in Table 2 to
demonstrate that our LTM improved both precision/recall of original vector data.

As shown in Table 2, our LTM performed differently for various real world
scenarios. This is because these vectors have different qualities and the orthoima-
gery has various levels of complexity. Hence, we obtained high precision (up to
98%) control points in some areas (such as test area 1), while medium precision
(about 70%) in other areas (such as the alignment of TIGER/Lines and imagery in
test area 3). In general, we improve the precision after applying filtering techniques.
The filtering techniques improve the precision at the cost of reducing the recall.
However, for the conflation process higher precision is more important than higher
recall, since we are not trying to correct individual errors, but rather to determine
the local transformations to align vector and imagery.

5.3.2 Experimental results of completeness and correctness of conflated roads

The experimental results of completeness and correctness for each vector dataset
are listed in Figure 17(a)–(f). Intuitively, the completeness corresponds to the users_

Table 2 Results of identified intersections.

Test area 1 Test area 2 Test area 3 Test area 4

(a) Precision/recall of identified intersections for TIGER/Lines

Original road network Precision 7.1% 8.7% 4.8% 3.8%

Recall 6.7% 7.7% 4.5% 3.7%

Without filtering Precision 72.3% 82.1% 57.9% 78.9%

Recall 68.1% 24.2% 52.4% 52.1%

Using VMF filtering Precision 87.1% 83.1% 69.2% 94.8%

Recall 45.4% 21.2% 42.9% 34.0%

(b) Precision/recall of identified intersections for NAVSTREETS

Original road network Precision 15.6% 23.3% 19.1%

Recall 15.2% 23.1% 18.2%

Without filtering Precision 87.7% 82.1% 64.7%

Recall 76.2% 40.7% 52.4%

Using VMF filtering Precision 97.1% 92.6% 83.3%

Recall 54.1% 27.5% 47.6%

(c) Precision/recall of identified intersections for MO-DOT

Original road network Precision 57.1% 32.2% 28.6%

Recall 55.2% 31.9% 27.2%

Without filtering Precision 83.8% 82.1% 83.3%

Recall 73.9% 50.5% 71.4%

Using VMF filtering Precision 98.1% 97.1% 90%

Recall 42.9% 37.3% 43%
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demands: how much is missing in the original road network or in the conflated road
network with respect to reference road network. The correctness, on the other hand, is
related to the probability of the original or conflated road segments to be considered
as reference road segments. We showed the completeness (and correctness) for each
utilized vector dataset respectively. In addition, the completeness (and correctness)
values are grouped by tested areas as the X-axis of Figure 17. The Y-axis in Figure
17(a)(c)(e) shows the completeness for original road vector and conflated road
vectors using VMF-filtered intersections as control points. Furthermore, in Figure
17(b)(d)(f), the Y-axis depicts the correctness. For example, as shown in Figure
17(a) and Figure 17(b), when utilizing VMF-filtered intersection points to generate
conflated TIGER/Lines for test area 1, we improved the completeness from its
original value of 19 to 59.15%, and correctness from its original value of 25 to 55%.
Another example, as the results for test area 4 shown in Figure 17(a)(b), we
improved the completeness and correctness 2.5 times better than the original
TIGER/Lines. In addition, there are some immediate observations from this figure:

& The data quality of MO-DOT is superior to NAVSTREETS and much better
than TIGER/Lines, which is consistent with our prior knowledge about these
three different datasets. Moreover, from the diverse completeness and correct-
ness in each vector dataset for different test areas, we concluded that each vector
dataset itself has various accuracies. This is also consistent with the vector data
quality statements quoted by the data providers.

& Consider TIGER/Lines as the vector data source. The shapes (and geometry) of
the original TIGER/Lines are sometimes inconsistent with the corresponding
roads in the imagery, because large portions of curve-shaped roads were
simplified as straight lines. Hence, as shown in Table 2 and Figure 17, original
TIGER/Lines has low completeness/correctness and low precision/recall for the
intersections. For a particular road segment, if the shape of the original vector
data is inconsistent with roads in the imagery (as the example of TIGER/Lines),
our system may not align them well, although the majority of intersections might
be aligned. This is mainly because our matching is at the point level, not at the
edge level. As the example of TIGER/Lines in test area 1 (see Table 2(a)), we
improved the node (intersection) alignment (as the precision improved from
original 7 to 87.1%), while we achieved completeness and correctness to 55%.
However, recently, not only is the imagery quality enhanced, the quality of
vector data is also significantly improved. Consider the conflation of high quality
imagery and high quality vector dataset, such as NAVSTREETS. The road
shapes of NAVSTREETS are very similar to the road shapes in the imagery.
Hence, the major issue is that there are some local inconsistencies between
them. AMS-conflation can capture these local transformations (based on
intersection to intersection matching information) and maintain the road shapes.

& On average, good improvements were achieved for TIGER/Lines (as shown in
Figure 17(a)(b)). For NAVSTREETS, we perform 1.3 to 1.9 times better than
the original data (as in Figure 17(c)(d)), while we only gain marginal improve-
ments for MO-DOT data on test area 1 and 3 (see Figure 17(e)(f)). This is due to
high completeness (92.54%) and correctness (93.38%) of the original MO-DOT
data in test area 1. In addition, some roads are not aligned well around highways
in test area 3. The road widths of highways vary and are difficult to predict. The
problem could probably be addressed by integrating other information sources
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Figure 17 Evaluation results for completeness and correctness.
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(a) Positional accuracy assessment for test area 1
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(b) Positional accuracy assessment for test area 2
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(c) Positional accuracy assessment for test area 3

Figure 18 The percentage of original/conflated roads lying within the buffer versus the buffer width
(all conflated roads were generated based on VMF-filtered control points).
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with those details. In fact, after visual examination, we found many misaligned
road segments are close to the margins of road buffers (i.e., roadsides). When
relaxing the Bbuffer-widths^, we can obtain higher completeness and correctness.
This kind of assessment is illustrated by our Bpositional accuracy^ evaluation
described next.

5.3.3 Experimental results of positional accuracy of conflated roads

The experimental results of Bpositional accuracy^ categorized by road vectors for
each test area are illustrated in Figure 18(a)–(c). Intuitively, the Bpositional
accuracy^ corresponds to the users_ demand: how far is the conflated road network
from the centerlines of the real (reference) road network. We evaluated these
displacements between two networks by gradually increasing the buffer-widths
constructed around reference road network. The buffer-width was increased by
3.6 meters (i.e., the U.S. standard lane width). As shown in the X-axis of Figure 18, the
displacement values are grouped every 3.6 meters. The Y-axis shows the percentage
of conflated roads lying within the displacement range represented by the X-axis.
For example, as shown in Figure 18(a), when utilizing VMF-filtered intersection
points to generate conflated NAVSTREETS for the first test area, about 75% of the
conflated roads are within 3.6 m from the reference roads, and only 35% of the
original NAVSTREETS are within 3.6 m displacement. Although we did not
achieve significant improvements on completeness/correctness for MO-DOT data
(as stated earlier), we achieve better positional accuracy: On average, 91% of the
conflated MO-DOT roads are within 7.2 m of the reference roads compared to
80.3% of the original MO-DOT.

Even higher improvements were achieved for TIGER/Lines and NAVSTREETS.
On average, 76% of conflated NAVSTREETS are within 7.2 meters displacement
versus 54.6% of original NAVSTREETS and 53.96% of conflated TIGER/Lines
are within 7.2 meters versus 25.93% for the original TIGER/Lines. In particular,
comparing to NAVSTREETS and MO-DOT data, again, TIGER/Lines have poor
positional accuracy and poor geometry. For such kind of severely distorted
original TIGER/Lines segments, our approach is limited in aligning imagery
curves and vector lines, although the detected intersections are matched (as shown
in Table 2). Hence, only about 47% of conflated TIGER/Lines in test area 2 and
3 are within 7.2 meters from reference roads, while 70 to 85% of conflated
NAVSTREETS and MO-DOT are within 7.2 meters displacement. However,
comparing to the original TIGER/Lines, our approach significantly improved the
positional accuracy.

Particularly, in the first test area, there are about 25% streets in grid shape and
all three road vectors provide accurate road shapes over these street grids.
Therefore, we have better performance in test area 1. The issue of quality of the
vector data can be addressed by starting with higher quality data such as
NAVSTREETS or MO-DOT data. However, there are small portions of our
conflated roads not aligning well to the imagery. This is mainly because the color of
these misaligned roads are very different from what we learned or the roads are
close to the conflation area margins where long and thin Delaunay triangles were
constructed. These issues could be alleviated by doing more training based on all
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available color components to recognize a wider range of road colors and applying
the conflation on larger areas.

In the fourth test area, AMS-conflation achieved high improvement for TIGER/
Lines. 85% of conflated TIGER/Lines are within 8 meters displacement versus 43%
of original TIGER/Lines (see Figure 19). This demonstrates the utility of our
approach to conflate vector data with black–white and lower resolution imagery.

5.3.4 Experimental results using filtered control points vs. using unfiltered
control points

Finally, we also compared the performance of running the conflation algorithm with
filtered control points and unfiltered control points. We conducted experiments to
measure positional accuracy for original MO-DOT and conflated MO-DOT in the
tested area 2. As the results shown in Figure 20, conflated roads generated by
filtered control points outperforms those generated by unfiltered control points.
This is because the conflation process does not require a large number of control
point pairs to perform an accurate alignment. In fact, a set of sufficient amounts of
control points with higher accuracy would serve better for the conflation process,
which is what our filtering technique performs. Therefore, we only consider our
conflation performance (as illustrated in Figure 17 and Figure 18) by utilizing the
filtered control points.
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assessment for test area 4.
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5.3.5 Execution time and summary

Since the running time of AMS-conflation was mainly dominated by the LTM
routine to detect road intersections, we used the running time of LTM as the overall
execution time (the query time for retrieving online images or vector dataset was
ignored). On average, the execution time for locating an intersection in a localized
area was about 3 to 5 s (it depends on the radius setting for LTM). For example, the
total running time for generating conflated roads for a small area of 1 km by 1 km
with 20 intersections is about 1 min. When users manipulate a GIS system, they
often navigate from a small area to another small area. Therefore, it is possible to
apply our approach to better align imagery and vector data on the fly for GIS data
navigation.

Figure 21 shows some sample images, after applying conflation to each of the
three road vectors, respectively. In sum, AMS-conflation automatically and
efficiently improved the alignments of various vector datasets with orthoimagery.
This validates our experimental hypothesis.

6 Related work

Conflation was first proposed and implemented in 1988 by Saalfeld [22], and the
initial focus of conflation was to eliminate the spatial inconsistency between two
overlapping vector maps in order to improve the spatial accuracy of vector maps.
From then, various conflation techniques have been proposed and many GIS
systems have been implemented to achieve the alignments of geospatial datasets
with different resolutions or different types.

Geospatial datasets conflation is a complex process that may utilize work from a
broad range of disciplines that include GIS, cartography, computational geometry,
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graph theory, image processing, pattern recognition, and statistical theory. In
general, based on the types of geospatial datasets dealt with, the conflation
technologies can be categorized into following three groups:

& Vector to vector data conflation: For example, the integration of two road
networks of different accuracy levels.

& Vector to raster data conflation: For example, the integration of road network
and imagery or road network and raster maps.

& Raster to raster data conflation: For example, the integration of two images with
different resolutions or the integration of raster maps and imagery.

Figure 21 Vector-Imagery conflation (white lines: original road network; black lines: after applying
conflation).
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Many vector to vector conflation techniques have been proposed [8], [23], [25],
[28] and various GIS systems (such as ESEA MapMerger ) have been implemented
to achieve the alignments of vector datasets with different accuracies. However,
there are few research activities on vector to imagery data conflation. Due to recent
advances in remote sensing technology to capture high resolution imagery, vector to
imagery conflation has become one of the central issues in GIS. Utilizing vector to
imagery conflation, this accurate imagery can be used to update vector datasets.
Moreover, the abundant information often contained in diverse vector data can be
utilized to annotate objects, such as roads and buildings, in the imagery.

In this section, we review related work on vector to imagery data integration. In
particular, Section 6.1 reviews the techniques that detect some counterpart elements
on the datasets and apply traditional conflation algorithm (i.e., establishing the
correspondence between the matched entities and transforming other objects
accordingly). Section 6.2 describes the approaches that utilize active counter models
[19] to align each vector road segment to corresponding road edge in the imagery.

6.1 Aligning vector data and imagery using some (automatically) identified features

Hild and Fritsch [16] process vector data to extract vector polygons and performed
image segmentation on imagery to find image polygons. Then, a polygon matching
algorithm is applied on both images and vector to find a set of 2D conjugate points.
In order to obtain a successful matching between an image and vector data, the
datasets must contain polygonal features like forest, villages, grassland or lakes. This
approach will fail when polygonal features cannot be found, such as in high
resolution urban areas.

Filin and Doytsher [9] propose a linear conflation algorithm to align vector and
imagery. First, all edges (such as road edges and building edges) are detected from
the imagery (without using the existing vector data as prior knowledge) and
converted to vector format. Then, their approach matches the detected edges with
vector data to identify real road edges. Based on the influence regions formed by the
matched edges, their system then transforms other vector data where there is no
corresponding edge detected in the imagery. However, their approach suffers from
the difficulties of extracting and converting features directly from imagery as vectors.
There exists many algorithms for extracting roads utilizing the characteristics of
roads and context of imagery as prior knowledge [17], [21], while none of them give
good results in all circumstance [1], [15] and most of them are heavily CPU intensive.

Flavie et al. [10] try to find all the junction points of all detected lines in the
imagery , then match the junction points of the road vector with the image junctions.
Then, the vector lines are moved according to the matched junctions (i.e., no space
partition method is used to build the influence regions of matched junctions). Finally,
their system applies the active contour models technique [19] (discussed next) to
refine the matched road segments. However, their method sufferers from the high
computation cost of finding all possible junctions of detected lines on images.

Our AMS-conflation significantly differs from the work mentioned above in terms
of our approach to locate matched entities. To the best of knowledge, AMS-
conflation is the first vector to imagery conflation approach that automatically
exploits auxiliary structured data (such as image color, image metadata, road
directions, road intersections and road coordinates provided by vector data) to
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improve the feature recognition techniques on imagery. In addition, AMS-conflation
performs a template matching around each road intersection (i.e., a localized area,
instead of the entire image). This will improve both the accuracy and efficiency.

6.2 Aligning vector data and imagery using Snakes-related techniques

In the computer vision literature on automatically aligning vector lines with imagery
edges, the active contour models (i.e., Snakes [19]) is one of the most prevalent
methods to Battach^ vector dataset (e.g., road segments) to the corresponding
features (e.g., road edges) in the imagery (often with the objective to detect changes
of roads or detect real road edges to update pre-existing vector data). Snakes is a
parametric curve and it is often modeled as a spline linked by multiple control
points. The active contour models evolve their shape by moving their control points
towards the image features and maintaining their smoothness at the same time. The
evolution is based on the principle of energy (including internal and external
energy) minimization. The Binternal energy^ enforces geometric constraints, such
length and smoothness of the Snakes, while the Bexternal energy^ pushes the Snakes
towards images features. By minimizing internal and external energy simultaneous-
ly, image information and geometric properties are fused to accomplish the
evolution of the Snakes. The Snakes method requires some seed points as control
points to start the evolution and these seed points should be close to the real roads.
One option is utilizing pre-existing vector data as the (initial) approximate outline
of the roads. However, the Snakes method is not appropriate for aligning roads in
highly textured areas such as urban areas, due to the following weaknesses: (1) The
Snakes might attach to noisy pixels and this prevents the Snakes from converging on
the desired edges, (2) It is a greedy algorithm and demands a lot of calculations
when trying all possible (and local) solutions and picking the best one, (3) If the
placement of the Snakes is not well initialized, the Snakes will diverge, (4) Relaxing
the internal energy tends to destroy the shape of the Snakes.

Furthermore, each vector road segment needs to perform the Snakes evolution to
accomplish the alignment, while the conflation techniques (described in previous
section) only detect some corresponding features (e.g., points, lines or polygons) and
transform other features accordingly. Particularly, comparing our AMS-conflation to
the Snakes method, our matching mechanism is not based on entire road segments but
on partial road segments around the intersections. For a particular road segment, if the
shape of the original vector data is inconsistent with roads in the imagery, AMS-
conflation may not align them well (although the intersections might be aligned).
Considering the Snakes techniques, this type of poorly aligned original vector will also
harm the evolution of Snakes. In a worst case, it may cause the Snakes to diverge.
However, recently, not only the imagery quality is enhanced, the quality of vector data
is also significantly improved. Consider the conflation of high quality imagery and high
quality vector dataset, such as NAVSTREETS. Most road shapes of NAVSTREETS
are consistent to the road shapes in the imagery. Therefore, using some local
transformations can significantly reduce the positional inconsistencies (and maintain
the road shapes) between them, while the Snakes method may wiggle the road shapes.
Hence, we save computation time by only detecting some (salient) feature points and
transforming other points (and lines) utilizing Delaunay triangulation and rubber-
sheeting. Moreover, AMS-conflation avoids these high quality original road segments
to attach to noisy edges. In fact, our conflated roads are very close to the road axes on
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the imagery (based on our experiments) and they can be utilized as good seed points
for any more robust Snakes-related algorithms14 in the future.

7 Conclusion and future work

The main contribution of this paper is the design and implementation of a novel
data fusion approach to automatically integrate vector data and imagery of median
to high resolutions. AMS-conflation is the first technique that exploits different
sources of information and metadata from each of the sources to be integrated to
automatically generate control points for conflation. Moreover, we propose an
effective filtering algorithm to automatically eliminate inaccurate pairs from the
generated control points. Experimental results on the county of St. Louis, MO, and
city of El Segundo, CA, demonstrate that our approach can automatically and
accurately align and annotate orthoimages with vector data.

We are further enhancing our approach by improving both LTM technique and
the VMF filtering technique. More precisely, we are improving road classifications
by utilizing a machine learning classifiers, called Support Vector Machines (SVM) to
categorize images pixels based on all available image color information/channels
(e.g., RGB or HSV). This better classification consequence results in better
intersection detection by LTM. As stated in Section 3, there is often no systematic
behavior of the offsets (i.e., no global transformation) between the geospatial
datasets. The revised classifier can help to identify more accurate control point
pairs. Hence, we can produce more accurate local transformations to reduce the
positional inconsistencies between different datasets. Meanwhile, we are enhancing
our VMF filtering technique by investigating the differences of angular distances
(i.e., both vector direction and magnitude) between control-point vectors. This is
because angular distance provides the essential information to dynamically
determine different thresholds (i.e., the parameter k of VMF) for diverse regions.
More precisely, for the majority of the scenarios, the similar vectors tend to form
clusters around the median vectors. From this observation, we can modify the
filtering technique to accommodate more vectors that are close to the median
vector. The revised filter can retain more accurate control points that are detected
by improved classifier and LTM (i.e., the enhanced filter can increase the recall rate
of identified control points without losing precision).

Our approach for conflating road networks with imagery can be generalized to a
wide variety of geospatial data sources. The basic idea is to use whatever information
is available about the different geospatial products to automatically determine a set
of control point pairs. Thus, we can apply this approach to conflating images with
map, vector, and point data. In particular, consider applying our approach to
conflate vector data and geo-referenced maps. The same types of image processing
on vectors and can performed on maps. In fact, for many maps, finding the roads on
the maps is an easier problem. Once a set of vector data is aligned to two different
sets of images or maps, then the same set of control points can be utilized to con-
flate image with image, map with map, or map with image [5]. Several important

14 Many variants of the active contour models are developed to improve the efficiency and accuracy
to make it appropriate for different scenarios. This proposed improvement of the active contour
models is a different research topic that is beyond the scope of this paper.
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application domains that can benefit from such integration are the crisis manage-
ment applications, city traffic planning and military intelligence applications.
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