
Classification of Line and Character Pixels on Raster Maps Using Discrete
Cosine Transformation Coefficients and Support Vector Machines

Yao-Yi Chiang and Craig A. Knoblock
University of Southern California

Department of Computer Science and Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292

yaoyichi@isi.edu, knoblock@isi.edu

Abstract

Raster maps are widely available on the Internet. Valu-
able information such as street lines and labels, however,
are all hidden in the raster format. To utilize the informa-
tion, it is important to recognize the line and character pix-
els for further processing. This paper presents a novel al-
gorithm using 2-D Discrete Cosine Transformation (DCT)
coefficients and Support Vector Machines (SVM) to classify
the pixels of lines and characters on raster maps. The ex-
periment results show that our algorithm achieves 98% pre-
cision and 85% recall in classifying the line pixels and 83%
precision and 96% recall in classifying the character pixels
on a variety of raster map sources.

1. Introduction

Today, more and more sources provide raster maps on
the Internet (e.g., Google Map, Yahoo Map, and MSN
Map). For applications to exploit the information on these
raster maps, the first step is to automatically recognize the
lines and the characters on them. For example, a geospatial
conflation system [1] utilizes the street information (i.e., the
orientations and intersections of streets) to align raster maps
with satellite imagery. To manually extract lines and char-
acters from a raster map, users have to manually select the
pixels of lines or characters. This is a very tedious and time
consuming process. In this paper, we present an algorithm,
which uses the 2-D discrete cosine transformation (DCT)
coefficients and support vector machines (SVM) to auto-
matically classify pixels on raster maps into line or charac-
ter classes. The classification results (i.e., line and character
image) can be further used in vectorization components and
OCR components to pull out the information such as the
geometries and names of streets from the raster maps.

DCT has played an important role in many texture clas-
sification applications for its outstanding ability to generate
distinct features for different texture representations [2]. It

Figure 1. The areas of lines and characters on
a raster map (TIGER/Line Map)

transforms an image into the frequency domain where the
strength of each frequency is represented by one of the DCT
coefficients. Within a local area (i.e., a DCT window), the
textures of the foreground and the background are differ-
ent since the colors of the background are consistent while
the colors of the foreground change frequently. Among the
foreground objects, lines and characters also have different
texture representations as shown in Figure 1.

In our algorithm, the classification is pixel-based. Ini-
tially every pixel is automatically classified into background
or foreground classes using a threshold. The foreground
pixels alone are sent to the SVM for line or character pixel
classification. The training of our SVM model will be de-
scribed in Section 3. Support Vector Machines are widely
used in many research fields that require classification [3],
especially in the area of pattern recognition. In the training
process of our algorithm, the SVM constructs hyperplanes
in a multidimensional space (i.e., the feature space of the
DCT coefficients) that separates pixels of different classes
(i.e., line and character classes). SVM can quickly generate
a model from a small set of training data and it is robust to
noisy data.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the related work. Section 3 describes our
approach to classify line and character pixels on the raster
map. Section 4 reports on our experimental results and Sec-
tion 5 is the discussion and future work.



2. Related Work

Much research work has been performed in the field of
text and graphics separation from documents [4, 5, 6, 7, 8].
Some of the previous work assumes that the line and char-
acter pixels are not overlapping [5, 6, 7] and they extract
characters by tracing and grouping connected objects. Oth-
ers detect characters from more complex documents (i.e.,
characters overlap lines) using the differences of the length
of line segments in characters and lines [4]. Li et al.[8]
separate the characters from lines and rebuild both of them
within a local area on the raster map, but assume that all
character areas are detected beforehand. These previous al-
gorithms perform geometrical analyses of the foreground
pixels and focus on finding characters. Our algorithm de-
tects the line and character pixels by exploiting the differ-
ences between line and character textures in the frequency
domain, and we do not make any geometrical assumptions
about the lines or characters.

To achieve the best results, the previous algorithms re-
quire users to setup the geometrical parameters. These pa-
rameters are not straight forward and they are source depen-
dent. Some examples of the geometrical parameters are: the
size of a character, the length of a word, the gap between
characters and between words. In our algorithm, there is
no parameter adjustment required. We utilize a compara-
tively simple training process to build the SVM classifier.
The SVM classifier can be applied on different maps even
if they have not been seen during the training process.

Furthermore, in order to trace the geometries of lines
and characters, the foreground pixels need to be correctly
separated from the background. The previous algorithms,
however, usually assume that the foreground is already sep-
arated from the background or the foreground can be eas-
ily separated using histogram thresholding. This assump-
tion does not hold on most of the computer generated raster
maps. Computer generated raster maps usually contain
shadows around the characters to enhance the visualization.
The colors of the shadows and characters are similar and
it is difficult to remove the shadows by histogram thresh-
olding. If the shadows are not completely removed before
processing, the geometries of characters are not correct for
geometrical analysis. Our algorithm finds the continuous
colors in the raster map to separate the foreground from the
background, and the SVM classifier works well even if the
shadows are not removed since it utilizes the differences of
the texture representations between lines and characters.

3. Approach

The overall approach for this paper is shown in Figure 2.
The first stage is to separate foreground pixels from the
background. The second stage is to classify line and char-
acter pixels among the foreground pixels.

Separate Foreground Pixels from Background 

Raster Map

Classify Line and Character Pixels 

Color
information 
propagation 

Thresholding 

Connected
component 
analyst

SVM

Character pixelsLine pixels

Background pixels

Generate the features (DCT)  

Generate the features (DCT)  

Foreground pixels

Figure 2. Overall approach

3.1. Separating Foreground Pixels From the
Background

To separate foreground pixels from the background, we
first generate the DCT coefficients for pixels on the input
raster map using a 3-by-3 window. For efficiency, we sub-
sample the input raster map by scanning the pixels on al-
ternative rows/columns. The window size is intended to be
small to ensure any object with continuous tones within a 3-
by-3 block will be classified as background. For example, if
a park is represented using a color green and it is larger than
our DCT window, most of the green pixels will be classified
as background except the pixels near the park boundaries.

The distribution of energies among the DCT coefficients
of the background are significantly different than the fore-
ground. The property of consistent color in background re-
sults in low (near 0) energies for high-frequency DCT coef-
ficients while the frequent color changes of the foreground
result in higher energies for these coefficients. We discard
the DC term (i.e., the frequency {0, 0}) since it represents
the average pixel value of the DCT window and it is color
dependent. We check the summation of the absolute value
of the other 8 DCT coefficients using a preset threshold of
0.0001 which allows for only minimal variation in the color.
The pixel is classified as a background pixel if the summa-
tion is smaller than the threshold. After we scan through
the entire map and perform the thresholding, we have two
images: the background image and the foreground image.
There are still some mis-classified pixels, since some of the
areas used to classify the pixels contain both background
and foreground areas as described in the park example. We
eliminate these false-positives by exploiting the color infor-
mation on the original map.

Different map sources use different colors to represent
objects, however, a general property of the color usage is



observed – a color is used only once to represent either the
foreground or the background. For example, a TIGER/Line
map uses a total of 22 colors on a particular map we tested.
Among them, 2 are used for lines, 18 are used for charac-
ters, and others are used for background. Thus, we assume
that a color can only be either foreground color (i.e., lines
and characters) or background color and propagate the color
information to update the final results. The probability of a
color to be a background color is the number of pixels of the
color in the background image divided by the total number
of pixels of the color in the original map. Since we clas-
sify the pixels into 2 classes, according to the Maximum
A Posteriori probability (MAP) rule, a color belongs to the
background class if:

P (Background|Color) ≥ 0.5 (1)

3.2 Classifying Line and Character Pixels
After we have the foreground pixels, we want to further

classify the foreground pixels into line pixels and character
pixels. Characters are generally more complex than lines, so
the energies of high-frequency DCT coefficients of charac-
ter textures are higher than the energies of these coefficients
of line textures.

We generate the DCT coefficients for each foreground
pixel and send them to the SVM for classification. We scan
the foreground pixels using a larger DCT window (i.e., 5-
by-5) to capture the texture differences. Instead of using
all DCT coefficients as features for classification, we use
only 22 out of 25 high-frequency DCT coefficients which
have the highest differentiating power to classify line tex-
tures and character textures. This number was determined
experimentally. Although the SVM should be able to figure
out how to weight each feature, our experiments show that
discarding the low-frequency DCT coefficients can help the
SVM to reduce the computation time and enhance the accu-
racy when generating the training model.

To train the SVM model, we need training samples for
line and character pixels. For the character training samples,
we use a Mapquest Map that has characters in all different
orientations with shadow pixels and manually remove line
pixels from it. For the line training samples, we use two
street maps from Google Map and one from ViaMichelin
Map and manually remove the characters from them. We
use more than one map for line samples because we want
the training samples to cover all different orientations of
lines – straight lines (i.e. horizontal lines, vertical lines, and
diagonal lines) and curved lines.

Based on the 22 DCT coefficients, the SVM classifies
foreground pixels into either line class or character class.
Now we have one image of lines and one image of char-
acters from the input raster map. Since the training sam-
ples are character-only-images or line-only-images, the pix-
els which have the DCT windows covering line areas and

character areas are sometimes mis-classified. To clean up
the results, we perform a 2-phase simple connected com-
ponent analysis. A small connected object in either the re-
sult image of lines or the result image of characters could
be a “missing part” of a larger connected component in the
other image. For example, a line segment might be mis-
classified as character pixels because there are characters
in its DCT window. If we move that line segment from the
character image to the line image, it will connect to the orig-
inal bigger line and the result is improved. If it connects to
nothing in the line image, it is not a “missing part” of any-
thing and we move it back to the character image. So we
first find connected components which are smaller than the
DCT window in the character image and move them to the
line image. Then we perform the same analysis on the line
image and again move small connected components to the
character image. Thus, the result images are updated and
only small connected components which are part of a larger
connected component will be moved to the other image.

4. Experimental Setup and Results

We tested 9 online map sources as shown in Table 1. The
test maps are all disjoint from the training set and are ran-
domly selected covering different countries. The SVM clas-
sifier is built prior to the experiment using three maps from
three of the sources as described in Section 3. To evaluate
the results, we manually extract an image of all lines and
an image of all characters from every test map. If there are
pixel overlaps between lines and characters, the pixels will
appear in both images. We compared our algorithm against
the work of Cao et al.[4]. We tried our best to optimize
the parameters in Cao’s algorithm although the parameters
may not give the absolute best results. Moreover, their al-
gorithm uses histogram thresholding to separate the fore-
ground pixels from the background, which is not valid on
our test maps. Thus, we sent the foreground pixels only to
their algorithm instead of sending the original raster maps.
The outputs of our algorithm are two images of either all
line or all characters for each input raster map. The output
of the work of Cao et al. is an image of all characters since
their work focuses on character extraction. We obtain the
line image by computing the pixel difference between the
character image and the foreground image.

The precision is defined as the number of correctly clas-
sified pixels in the result images of lines/characters divided
by the total number of pixels in the manually extracted im-
ages of all lines/characters. The recall is defined as the
number of correctly classified pixels in the result images
of lines/characters divided by the total number of pixels in
the result images of lines/characters.

Our results show that we can detect almost every char-
acter and large portions of lines. The first thing to notice
is that, because we counted the overlapped pixels twice in



Table 1. Experimental results comparing our
algorithm against the work of Cao et al.

Precision/Recall of Classification
Map Source Line Pixels Character Pixels

Ours Cao’s Ours Cao’s
A9 99/91% 95/91% 79/98% 77/85%
MSN 99/79% 91/87% 75/99% 81/86%
Google 99/99% 95/99% 98/99% 95/72%
Yahoo 95/91% 70/96% 91/92% 88/30%
Mapquest 99/78% 88/73% 84/98% 76/85%
Map24 95/74% 97/70% 73/96% 70/98%
ViaMichelin 83/34% 44/57% 87/96% 90/68%
Multimap 89/82% 98/64% 63/90% 46/97%
TIGER/Line 99/94% 97/89% 83/99% 67/90%
Average 98/85% 85/82% 83/96% 71/71%

both line and character class, as long as there are overlapped
pixels, the recall of the two classes will not be complimen-
tary. The precision is lower in the character classification
than in the line classification but the recall is higher. This is
because if the line pixel is near/overlapped with the charac-
ter pixel, it will be classified as a character pixel since it’s
neighborhoods are complex textures rather than linear tex-
tures. In the comparison, although Cao’s algorithm tried to
rebuild the characters and lines, the results show that our
algorithm still outperformed theirs on the precision and re-
call. This is because when their algorithm extracts the char-
acters touching lines, many line pixels that do not overlap
with characters are still mis-classified as characters. The re-
call of the line classification on ViaMichelin Map of both
algorithms are lower than average since there is significant
overlap between the characters and lines.

5. Discussion and Future Work

The main contribution of this paper is to provide a robust
and efficient algorithm to automatically and accurately clas-
sify line and character pixels on raster maps. Our algorithm
can be applied on various maps that have not been seen in
the training process.

We plan to further develop our work as follows: The
classified character pixels will be used in the OCR compo-
nent to recognize the characters. The line pixels will be used
in the vectorization component to rebuild the lines. We also
want to test our algorithm on more types of raster maps.
We focus on computer-generated raster maps which have
more consistent texture properties on lines and characters
than hand-draw maps, but we believe our algorithm can be
applied to other types of maps as well.

6. Acknowledgement

We would like to thank Dr. Chew Lim Tan for his gen-
erous sharing of their code in [4]. We also want to thank

Mr. Mark J. Carman for his contribution of the digital sig-
nal processing knowledge in this paper.

This research is based upon work supported in part by
the National Science Foundation under Award No. IIS-
0324955, in part by the Air Force Office of Scientific Re-
search under grant number FA9550-04-1-0105, and in part
by a gift from Google. The U.S. Government is autho-
rized to reproduce and distribute reports for Governmental
purposes notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either ex-
pressed or implied, of any of the above organizations or any
person connected with them.

References

[1] C.-C. Chen, C. A. Knoblock, C. Shahabi, Y.-Y. Chiang,
and S. Thakkar. Automatically and accurately conflat-
ing orthoimagery and street maps. In Proceedings of
the 12th ACM International Symposium on Advances
in Geographic Information Systems, 2004.

[2] T. Randen and J.H. Husoy. Filtering for texture classi-
fication: A comparative study. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 21(4):291–
310, 1999.

[3] C. J. C. Burges. A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge
Discovery, 2(2):955–974, 1998.

[4] R. Cao and C. L. Tan. Text/graphics separation in
maps. In Proceedings of the 4th International Workshop
on Graphics Recognition Algorithms and Applications,
2001.

[5] J. P. Bixler. Tracking text in mixed-mode documents.
In Proceedings of the ACM Conference on Document
Processing Systems, 2000.

[6] A. Velázquez and S. Levachkine. Text/graphics sep-
aration and recognition in raster-scanned color carto-
graphic maps. In Proceedings of the 5th International
Workshop on Graphics Recognition Algorithms and Ap-
plications, 2003.

[7] L. A. Fletcher and R. Kasturi. A robust algorithm for
text string separation from mixed text/graphics images.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 10(6):910–918, 1988.

[8] L. Li, G. Nagy, A. Samal, S. Seth, and Y. Xu. Coopera-
tive text and line-art extraction from a topographic map.
In Proceedings of the 5th International Conference on
Document Analysis and Recognition, 1999.

[9] T. Joachims. Making large-scale SVM learning prac-
tical. Advances in Kernel Methods - Support Vector
Learning, B. Schölkopf and C. Burges and A. Smola
(ed.), MIT-Press, 1999.


