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Maps depict natural and human-induced changes on earth at a fine resolution for large areas and over long
periods of time. In addition, maps—especially historical maps—are often the only information source about
the earth as surveyed using geodetic techniques. In order to preserve these unique documents, increasing
numbers of digital map archives have been established, driven by advances in software and hardware
technologies. Since the early 1980s, researchers from a variety of disciplines, including computer science and
geography, have been working on computational methods for the extraction and recognition of geographic
features from archived images of maps (digital map processing). The typical result from map processing is
geographic information that can be used in spatial and spatiotemporal analyses in a Geographic Information
System environment, which benefits numerous research fields in the spatial, social, environmental, and
health sciences. However, map processing literature is spread across a broad range of disciplines in which
maps are included as a special type of image. This article presents an overview of existing map processing
techniques, with the goal of bringing together the past and current research efforts in this interdisciplinary
field, to characterize the advances that have been made, and to identify future research directions and
opportunities.
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1. INTRODUCTION

This article presents an overview of the techniques for digital map processing (or simply
map processing), which refers to computational procedures aimed at the automatic
or semiautomatic extraction and/or recognition of geographic features contained in
images (usually scanned) of maps. Digital map processing is a relatively young research
field that grew out of image processing, document analysis, graphics recognition, and
digital cartography. Over the past 40 years, researchers have become increasingly
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interested in the methodological aspects of computational map processing (mostly in
scanned maps) for the purposes of retrieval, extraction, and integration of geographic
data [Freeman and Pieroni 1982]. This increasing attention results not only from
the parallel advances in technologies (e.g., digital image analysis, recognition, and
Geographic Information Systems [GIS]) but also can certainly be linked to the fact that
computational map processing methods enable the preservation of unique (historical)
maps and the utilization of the contained geographic information in modern analytical
environments (e.g., in a GIS).

Maps can cover large areas over long periods of time for many regions in the world.
This makes maps unique documents witnessing places, human activities, and natu-
ral features in the past for which no or only limited alternative information sources
exist. Processing map images to extract and recognize geographic information results
in spatially referenced data (i.e., map data) that can then be accessed, processed, and
maintained in a GIS environment (in other words, “unlocking” geographic information
from map documents). Incorporating map data into a GIS environment (i.e., map data
can be used for spatial analyses and overlaid with other spatial data) creates unprece-
dented opportunities for multitemporal and multicontextual spatial analyses, such as
analyzing the changes in built-up areas over large regions across long time periods, and
investigating how these changes interact with other geographic features, such as vege-
tation or wetland areas. In addition, digital map processing can expedite the processes
of comparing map contents from different map series/editions (e.g., contemporary maps
vs. historical maps), to update current map series, and to create thematic maps or new
map series.

The need for computational solutions with higher degrees of automation for map
processing becomes evident if one considers that millions of map documents have
already been scanned and stored in digital archives. For example, the U.S. Geological
Survey (USGS) continues to scan and release all editions of more than 200,000 historic
topographic map pages of the United States that cover the time period from 1884 to
2006. The GIS Center in Academia Sinica, Taiwan, has scanned and archived more than
160,000 historical maps. Such digital archives can only be fully used after the archived
maps have been converted to a GIS usable format. However, manually processing these
maps not only generates nonreproducible data that can suffer from a high degree of
inaccuracy and introduced subjectivity but also does not scale well for handling large
numbers of maps. For example, manually digitizing one sounding label on a nautical
chart includes two steps: drawing a minimum bounding box to label the sounding
location and typing in the sounding value. If these two steps take a total of 6 seconds
per sounding label, for a typical nautical chart that has more than 4,000 sounding
labels, the digitization process takes more than 6 hours. In contrast, using digital
map processing techniques can dramatically reduce the time (and cost) to fully utilize
the geographic information locked in these maps. For example, Chiang and Knoblock
[2011] developed a map processing package, Strabo, which only requires 1 minute of
the user’s time for operating the software to recognize 1,253 labels from an area in
a nautical chart with 83% precision and 80% recall. For this particular area in the
nautical chart, the amount of user time for verifying and correcting the recognition
results from Strabo is less than 1 hour, which is around 30% of the time that would
be needed when performing the entire text recognition task manually. Without such
computational solutions for map processing, large portions of the spatial data in maps
remain inaccessible unless they are manually converting to spatial datasets.

General techniques for document analysis and graphics recognition (e.g., Cordella
and Vento [2000], Lladós et al. [2002]) cannot be directly applied to map processing
because maps often pose particular difficulties for recognition due to various graphical
quality issues and the complexity of the map contents. The graphical quality of scanned
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Fig. 1. Subsections of two examples of scanned (historical) maps of inferior graphical quality due to aging
and bleaching effects: USGS topographic map of Boulder, Colorado (1902), at a scale of 1:62,500 (left),
and Swiss National Topographic map (Siegfried map), page 220, Brunnadern (1879) at a scale of 1:25,000.
Reproduced by permission of swisstopo (BA13123).

Fig. 2. An example map subsection that has multioriented labels: USGS topographic map of Jersey City,
New Jersey (1967), at a scale of 1:24,000. Credit: U.S. Geological Survey.

maps can be affected by scanning or image compression processes. In addition, the
stored and archived map materials suffer from aging and bleaching effects, whereas
original reproduction materials (e.g., copper plates) have often been destroyed or lost.
The final scanned images inherit these graphical properties. Figure 1 shows examples
of two scanned historical maps of inferior graphical quality due to the imperfections
(including manually drawn features) of the original maps. Furthermore, as seen in the
sample map in Figure 2, layers of geographic features, such as roads, contour lines, and
labels, often overlap with each other, which increases the degree of content complexity
and color mixing.

Various types of maps were produced manually until recently (e.g., using copper plate
or stone engraving techniques), resulting in high variations of symbol appearances and
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colors occurring on papers and in the final scans. Graphical guidelines for maps are of-
ten map specific and rule based but usually do not satisfy the quality requirements for
machine drawings most often described and processed in document analysis and recog-
nition work. This impedes processing map images within a general document recogni-
tion framework. For example, state-of-the-art commercial optical character recognition
(OCR) tools can achieve high recognition rates in documents containing text lines of the
same orientation, but recognizing map labels (text) in scanned maps is still challenging
[Nagy et al. 1997; Chiang and Knoblock 2011]. The main reason is that map labeling is
based on specific underlying semantics and follows cartographic rules, which results in
map labels of varying orientations that can appear curved and can often overlap with
other graphical elements.

Although outcomes are of the same type, extraction and recognition techniques used
in digital map processing are significantly different from the techniques used in remote
sensing, document analysis, and other recognition applications. For example, road ex-
traction from scanned maps has to deal with fundamentally different input data (i.e.,
manmade graphics) than road extraction from satellite imagery where photography-
type or reflectance data are used. Accordingly, road extraction from scanned maps aims
at removing the noise from scanning, compression, and imperfection of the original ma-
terial, accurately detecting and converting the pixel-based road information carefully
depicted by cartographers into vector format [Bin and Cheong 1998; Itonaga et al.
2003; Bucha et al. 2006; Chiang and Knoblock 2013]. In comparison, road extraction
from satellite imagery identifies and extracts features from spectral reflectance data
that could cartographically be represented as road areas and road centerlines in a GIS
[Hickman et al. 1995; Steger et al. 1997; Hodgson et al. 2004].

Due to the impediments and challenges in map processing presented earlier, most
approaches described in the literature are rather specific to a particular series of maps
and a lack of more generic solutions still persists. One significant consequence is that, to
date, research on map processing shows slower rates of progress in developing general,
automated, and robust solutions when compared to related fields in image process-
ing and pattern recognition. Interestingly, the map processing literature appears to
be abundant but highly dispersed across a range of fields such as image processing,
document analysis and recognition, machine learning, data integration, and geoinfor-
matics/digital cartography. Although this is an interesting development, it also reflects
an increasing need to bring together existing efforts to provide a thorough overview
of what has been done in various fields and show how these efforts are related. Such
an overview will help establish an objective outlook of the most promising research
directions to increase the rate of progress in the field of digital map processing. As
such, this survey synthesizes existing research in map processing and presents an
overview that covers the diverse disciplines where this research has been published.
Research on map processing greatly benefits from interdisciplinary approaches using
the strengths of disciplines that naturally participate in this area, such as computer
science, Geographic Information Science (GIScience), and cartography. Given the large
body of research on map processing published over the past 40 years, we felt that it
would be most useful to focus on the current state of the art instead of attempting to
write a complete history of this field. As such, we have drawn on our combined 30 years
of research experience on map processing to select and present the most important and
promising techniques.

The remainder of this survey is organized as follows. Section 2 outlines a brief
history of map processing research and defines the scope of this survey. Sec-
tion 3 describes the relevant basic techniques in document analysis and pattern
recognition that support map processing. Section 4 reviews past and ongoing re-
search on map processing for extracting and recognizing geographic information
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from scanned maps. Section 5 concludes with a discussion and directions for future
work.

2. A BRIEF HISTORY OF MAP PROCESSING AND THE SCOPE OF THIS SURVEY

Efforts of map processing or information extraction from maps have been going on for
four decades [Freeman and Pieroni 1982] and show an increasing intensity as scanning
technologies have improved, storage capabilities have increased, and processing speed
has increased. Research on map processing has been conducted on different types of
maps, including cadastral or land register maps (e.g., Boatto et al. [1992], Di Zenzo
et al. [1996], Katona and Hudra [1999], Raveaux et al. [2008]), road maps (e.g., Bin
and Cheong [1998], Itonaga et al. [2003], Dhar and Chanda [2006], Bucha et al. [2007],
Chiang et al. [2009], Chiang and Knoblock [2013]), hydrographic maps (e.g., Trier et al.
[1997]), city maps (e.g., Chen et al. [1999]), and utility maps (e.g., Den Hartog et al.
[1996]), as well as topographic or other survey maps (e.g., Morse [1969], Yamada et al.
[1993], Yamamoto et al. [1993], Khotanzad and Zink [1996], Frischknecht and Kanani
[1998], Arrighi and Soille [1999], Ogier et al. [2001], Bessaid et al. [2003], Miyoshi et al.
[2004], Chen et al. [2006], Leyk et al. [2006], Xin et al. [2006], Henderson et al. [2009]).
Mostly, the described systems were unable to process different types of maps and thus
the focus was rather narrow (e.g., extraction of geographic-feature layers from USGS
topographic maps [Henderson et al. 2009]). Most studies focus on particular features,
symbols, or map layers; therefore, efforts to extract map contents have been highly
map specific, not applicable to a broader range of map products.

One important question becomes apparent: why is the literature on map processing so
dispersed over various scientific disciplines? This question can be answered by looking
at the early years of map processing when this research direction was considered part
of image or document analysis. At that time, the main actors were computer scientists
interested in technological aspects around digitization and information extraction in
general; they developed specific hardware for manual map digitization [Leberl and
Olson 1982], and they considered maps as just one kind of document [Cofer and Tou
1972; Ejiri et al. 1984] without exploiting many of the cartographic principles to process
maps. As soon as the first GIS tools became more established and available as desktop
solutions, the interest in digital map data and recognition tools increased considerably.
GIS users, companies, and institutions quickly realized that maps in analog (paper)
format represented one important source for generating digital spatial information
that could be accessed, stored, and managed in GIS environments. Naturally, the issue
of recognition in map documents gained more interest in the scientific community for
two main reasons. First, the large number of paper maps stored in archives called
for the need of higher degrees of automation because manual digitization was (and
is) a highly labor-intensive, expensive process. Second, it was soon realized that such
extracted spatial data would enable unprecedented GIS-based research efforts in a
variety of disciplines such as landscape ecology (e.g., Kienast [1993]) or land-cover
change analysis (e.g., Petit and Lambin [2002], Kozak et al. [2007]) as well as in
studies on population dynamics and urbanization (e.g., Dietzel et al. [2005]), potentially
covering large areas and long periods of time. Thus, the growing interest in map
processing is driven by the increasing topical or substantive potential to use map data
and also by the lack of general methods and techniques to overcome the technological
challenges in map processing.

Today, map production in the Western world is mainly digital, and thus map process-
ing focuses primarily on historical map documents (historical in a sense of predating
the switch to digital map production), which were originally published on paper. In
addition, map processing also focuses on map documents of which the original repro-
duction materials do not exist or are difficult to access. Therefore, the motivation of
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map processing is twofold. On one side, the scanning, digitization, registration, and
referencing of maps represent an important way to preserve existing paper maps in
a digital format. On the other side, map processing aims at the generation of spatial
data that can be used in a GIS for spatial analyses and can be combined with different
spatial data from various points in time. As such, map processing can also be seen as an
advanced approach to derive and preserve unique historical information that provides
a way to generate a better understanding of the complex landscape and its changes
over long periods of time.

Maps are widely used in our daily life, and for centuries cartographers have been
producing maps. In this survey, we focus on the map processing techniques that process
map images underlying common cartographic principles and leave out other types of
maps that would require different processing techniques for information extraction;
two examples are sketch maps [Broelemann and Jiang 2011] and tourist maps, which
commonly do not have an underlying map projection and are intentionally biased or
skewed to improve information representation. Map processing is an active research
area that spans many research fields, such as geography, pattern recognition, com-
puter vision, image processing, and document analysis and recognition; therefore, the
terminology used can be slightly different depending on the publication venue. The
terminology used in this survey is briefly defined as follows:

—A scanned map is a digital image of a paper map generated using an image scanner.
For example, the USGS digital raster graphics (DRG) is a series of scanned maps
from the USGS standard topographic map series.

—An electronic map is an image of a map generated directly from computer systems,
in most cases, GIS. Electronic maps represent a large portion of map images on the
Internet (where maps can be found by keyword search using search engines [Goel
et al. 2011]), such as snapshots of Google Maps or copies of the TIGER/Line maps.
The source and georeferencing information of these map images is often missing or
unknown, and digital map processing techniques can be used to georeference the
maps [Chen et al. 2008; Chiang et al. 2009] or identify the map source [Chiang and
Knoblock 2009].

—A map image is either a scanned map or an electronic map.
—Digitizing or digital encoding a map is the process of converting a map image into

spatial datasets (i.e., points, lines, and polygons in vector format or extracted layers
in image [raster] format). For example, the result from map digitizing can be any of
the commonly available spatial vector data types (e.g., Esri shapefiles) where linked
nodes and vertices can be used to represent features such as road lines.

—A geographic feature or map feature can be a set of linear objects, such as road lines
or contour lines, a set of character objects, a set of area objects (area features), or a
set of map symbols.

—A geographic-feature layer (feature layer or map layer) is a bilevel image that contains
a number of pixels representing a set of geographic features in a map.

—Extracting a geographic-feature layer or a geographic feature is the process of ex-
tracting the set of pixels that represents an individual geographic feature in a map.

—Recognizing a geographic feature is the process of converting the geographic feature
into a machine-editable format, such as a road vectorization process in which the
recognized data are of known semantic meaning.

—An attribute is a characteristic that can be used to characterize features (e.g., shape
descriptors) or colors (color attributes). The term feature is often used for attribute
in the image processing and computer vision literatures. However, for the purpose
of consistency in this survey, we use feature as described previously and strictly rely
on the term attribute for characteristics or descriptors of such features and/or colors.
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Fig. 3. An example map processing workflow and the corresponding sections in this survey.

3. BASIC TECHNIQUES FOR DOCUMENT ANALYSIS AND PATTERN RECOGNITION
IN MAP PROCESSING TASKS

The overall goal of map processing is to generate either image (raster) or vector layers
of geographic features from map images for subsequent use in a GIS. One common way
to reach this goal is to first separate geographic-feature layers from map images by
grouping image pixels of similar colors. An image (raster) layer can then be converted to
vector data by recognizing individual features of a geographic type from each of the sep-
arate layers. Other approaches compute (geometric) attributes (e.g., shape descriptors)
from training samples of desired geographic features and search for similar patterns in
the map to directly recognize individual geographic features. Figure 3 shows a typical
workflow for map processing where each process maps to a subsection in this survey.
The entire workflow can be fully automatic, require some preprocessing/postprocessing,
or be interactive (Section 4.6). In the remainder of this section, we briefly describe the
background knowledge of printing and scanning techniques and then introduce the
basic techniques of color image segmentation (CIS) and feature recognition that are
relevant for map processing. These technical details will lay the foundation for then
reviewing the different contributions on map processing in the subsequent sections of
this survey.

Before any of these techniques can be applied to map documents, which are in
general printed on paper, these documents have to be scanned. This scanning process
is a crucial step to produce map images and determines the image quality of the
scanned maps. Scanning parameters such as spatial sampling rate (or resolution),
sampling spot size (or blur), bit depth of the resulting data, and brightness and contrast
settings, as well as scanner calibration procedures, are determinants of the properties
of the resultant image, and subsequent extraction techniques heavily depend on these
properties. One of the most important parameters on a consumer-grade scanner is the
scanning resolution. A rule of thumb is that for OCR, the scanning resolution needs to
be at least 300 dots per inch (DPI). Figure 4 demonstrates two sets of maps scanned at
three different scanning resolutions.1

Although a quantitative measurement of the scanning quality is possible (e.g., using
signal-to-noise ratio to compare multiple scans of the same images), judging the quality

1Figures 4 and 5 were created by Dr. Reid Priedhorsky for his review on the print quality of topographic
maps, which can be found at http://reidster.net/trips/maps/.
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Fig. 4. Maps scanned at various resolutions but with the same image dimension where lower DPI values
allow the image to cover a larger area (but fewer image details) than greater DPI values.

Fig. 5. Two scans of the same map extents (at 150 and 600 DPI, respectively) printed on two different
materials.

of a scanned map for its suitability for digital map processing is subjective and can
vary among different geographic features. Figure 5 shows the same map scanned from
two different materials (paper types). For the purpose of contour line extraction, the
scanning results on the left of Figure 5, which originate from plasticized paper, are
favorable since the contour lines appear crisp in the final image. On the other hand,
for the purpose of character recognition, the scanning results from plain paper (on the
right of Figure 5) are more suitable due to the solid, uniform-colored characters. In this
survey, we do not include specifics of the scanning process and instead focus on the map
processing techniques (see Stoffel and Moreland [1981] and Sharma and Trussell [1997]
for more details on image scanning and digital color imaging). Additionally, the printing
method used for map production and materials of the original maps largely affects the
results of the final scans. For example, maps were often printed using a halftoning
process, which uses limited colors to create a uniform perception of numerous color
tones. A typical result from the halftoning process is a series of dotted pixel patterns
(texture) in the scanned image. The green and blue areas in Figure 4 show these dotted
patterns. Noise removal filters, such as the median filter, are usually applied to the
raw scanned image before the color segmentation step to suppress the halftone texture
[Fung and Parker 1996].
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A common image format to store the raster image (bitmap) produced from scanning
is the tagged image file format (TIFF). The TIFF is a flexible format that supports both
lossy and lossless compression methods, various image types (e.g., grayscale, RGB, or
indexed color), and user-defined color spaces. An extension to the TIFF called GeoTIFF
allows the TIFF image to store georeferencing information. In contrast to the fact that
the TIFF stores only raster data, a format that stores both raster and vector data is the
portable document format (PDF). In addition, the GeoPDF built on the PDF is a con-
tainer that has been specifically designed to host geospatial data. It can store multiple
layers of raster and vector data and their georeferencing information. For example, the
digital USGS topographic maps are now distributed in GeoPDF format with a number
of data layers, including orthoimagery, transportation, geographic names, and contour
lines.

3.1. Color Image Segmentation

In map processing, similar to most other image analysis and pattern recognition tasks,
image segmentation represents a crucial preprocessing step of which the outcome
directly influences subsequent processing steps [Fu and Mui 1981; Pal and Pal 1993].
The basic intention of image segmentation is to divide an image into exclusive regions
such that each region is homogeneous, but the union of any two neighboring regions is
not [Cheng and Sun 2000].

Most map images contain color (i.e., are encoded in a color space such as RGB, HSI, or
CIE L∗u∗v), not just grey values. In such cases, CIS can be applied in this preprocessing
step [Cheng et al. 2001; Lucchese and Mitra 2001]. Most maps contain thematic layers
represented in predefined colors (e.g., blue for hydrography, red for elevation, or green
for vegetation), and different color spaces have been utilized in the past to perform
CIS. The main goal is hence identifying color-homogeneous regions and reducing the
number of color values found in the original map images to the number of existing map
color layers. This allows for characterizing CIS in color maps as a typical classification
problem based on color and spatial attributes [Cheng et al. 2001], which means that
resulting homogeneous regions must show spatial contiguity and that connectivity has
to be preserved.

Numerous existing approaches for CIS have been tested separately or in combination
in map processing efforts, and the basic techniques are briefly explained next. More
detailed overviews of these techniques can be found in Cheng et al. [2001] or Lucchese
and Mitra [2001].

Histogram thresholding is an attribute-space–based technique that uses histograms
of color values found in an image to identify values or value ranges that occur fre-
quently and thus could represent possible color classes [Sahoo et al. 1988; Pal and
Pal 1993; Cheng et al. 2001]. This approach searches for global and local maxima in
frequency distributions of color values and assumes that peaks in a histogram corre-
spond to color classes thought to be occurring spatially adjacent. Spatial contiguity
is not explicitly accounted for in histogram thresholding. Histograms are usually cre-
ated separately for each color space dimension, and results are combined in different
ways. If the underlying image is a grayscale image, the histogram-based approach uses
only one frequency distribution. Figure 6 shows an example of grayscale histogram
thresholding. The original map (left) is first converted to a grayscale image (middle).
Then the grayscale histogram (bottom) of the grayscale image is used to determine
the grayscale range of the background pixels for separating the map features from
the map background. The bilevel image (right) is the thresholding result when the
pixels that have grayscale values between 199 and 255 (which is the map background
corresponding to the blue portion toward the right in the histogram) are removed.
Homogram-based approaches derive from histogram-based thresholding and attempt
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Fig. 6. An example of grayscale thresholding.

Fig. 7. The principle of color space clustering. Each pixel is assigned to one of the classes based on distances
between its corresponding position and different cluster centers in color space. The resulting images (top)
appear similar even though the numbers of colors in the color space (bottom) are significantly reduced after
applying each clustering algorithm.

to overcome the lack in contiguity by implementing homogeneity criteria and applying
histogram-based thresholding using locally homogeneous pixel locations [Cheng et al.
1998, 2002].

Color space clustering is an unsupervised classification approach to identify classes of
objects without any prior knowledge [Bow 1992]; it can be seen as the multidimensional
extension of thresholding methods [Fu and Mui 1981]. Clustering makes use of all
dimensions of the selected color space and attempts to identify statistically significant
clusters in this color space, assuming that high frequencies of similar color value
combinations potentially describe main color classes (Figure 7). Existing algorithms
that have been frequently applied and adjusted in different ways in the context of map
processing are K-means (or C-means) [McQueen 1967], the fuzzy set–based alternative,
fuzzy C-means (applied to CIS, as in Wu et al. [1994] and Zheng et al. [2003]), or
Iterative Self-Organizing Data Analysis (ISODATA) [Ball and Hall 1965]. The basic
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Fig. 8. The principle of region growing is to identify a seed pixel for a region of interest and to search the local
environment for similar pixel values and, if homogeneity criteria are fulfilled within this local environment,
the region is grown. This step is then repeated until no further pixels can be added.

idea of these algorithms is that n observations are partitioned in k clusters in that
each observation belongs to exactly one cluster (K-means) or to different clusters at
varying degrees (fuzzy C-means). The decision as to which class each observation is
assigned depends on distance measures (e.g., the Euclidean distance) in a color space
between a cluster center and the observation. Similar to the thresholding approach,
spatial contiguity of color values is not explicitly accounted for without consideration
of homogeneity in a local plane. In addition, the number of clusters in the underlying
image has to be specified, potentially introducing subjectivity into the process. To
overcome this limitation, nonparametric clustering methods, such as the Mean-Shift
algorithm [Comaniciu and Meer 2002], can be used in color segmentation without
prior knowledge of the number of resulting clusters (i.e., the number of colors in the
quantized image). Figure 7(b) shows the CIS results of the Mean-Shift algorithm,
which merges similar colors if they are spatially close in the image plane [Chiang and
Knoblock 2013].

Region-based approaches are based on the principle of grouping pixels into homoge-
neous groups applying techniques such as region growing, region splitting, or region
merging. These techniques are often called and classified as image-domain–based tech-
niques [Lucchese and Mitra 2001] because they take spatial contiguity (or compactness)
of homogeneous regions as well as connectivity between these regions directly into ac-
count. Region growing approaches typically start with the definition and placement of
so-called seeds—pixels that have to fulfill predefined criteria of color types and local
homogeneity [Rosenfeld and Kak 1982]. These seeds are the starting positions for test-
ing their surrounding pixels for similarity to the seed color values and for homogeneity.
If the surrounding pixels fulfill the predefined conditions, they are added to the re-
gion. In this way, regions (i.e., groups of similar color occurrences) around these seeds
are built (grown) sequentially until the image is partitioned into homogeneous groups
(Figure 8), followed by a merging process for small regions to maximize the level of
overall homogeneity.

Split-and-merge techniques start with the partitioning of the image into regions
and then examining these regions for homogeneity. If the regions are found to be
nonhomogeneous, they are further partitioned (split) until homogeneous subregions
are found—similar to quadtree data representations (Figure 9) [Bow 1992; Jain et al.
1995].

After this splitting phase, small regions are merged under the constraint of main-
taining homogeneity criteria. Region-based approaches are more robust against noise
especially where contiguity and connectivity criteria are important for image process-
ing, but they are computationally more expensive. In addition, region-growing results
depend on the location of seeds or seed regions as well as on the order and direction of
pixel examination. To overcome some of these limitations, region-based approaches are
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Fig. 9. The principle of merge-and-split approaches. Region splitting searches for homogeneous regions in an
image by hierarchically partitioning the area into quadrants (as in the quadtree approach). This partitioning
process continues until there are no heterogeneous regions left. Region merging merges adjacent subregions
if the homogeneity criterion can still be warranted.

often combined with color space–based approaches such as clustering or histogram-
based techniques in a preliminary step to identify a number of seed candidates.

Edge detection techniques work on the principle of detecting contrasts in color values
between regions and thus identifying discontinuities—that is, abrupt changes in color
values using local filtering operators [Fu and Mui 1981; Pal and Pal 1993]. Complete
segmentation results can only be achieved in concert with other techniques such as
region-based approaches. Traditionally, edge detection has been performed in grayscale
images and can be classified in parallel and sequential techniques [Pal and Pal 1993].
Parallel means that the decision of one location to be part of an edge is independent
of the decisions made for other pixels; thus, differential operators to detect edges
can be applied simultaneously anywhere in the image. In sequential techniques for
edge detection, the decision whether or not a pixel is part of an edge depends on
pixels examined previously; therefore, the process highly depends on the starting point.
Edge detection in color images is based on the same approaches described earlier for
monochromatic (or grayscale) images but makes use of the richer color information.
Principally, discontinuities in color space including all color channels are detected by
calculating gradients in single color channels as in grayscale images, and the results are
then combined in different ways. In order to increase robustness of the process, some
uniformity constraints of detected edges are added. Edge detection techniques show
limitations in images with poor contrasts or disconnected features as well as when noise
is present due to the small spatial extent of the local differential operators. Figure 10
shows edge detection results from a TIGER/Line map and a USGS topographic map.
The results from the topographic map are quite noisy due to the poor graphical quality
of the scanned image.

Finally, artificial neural networks have a long history of being implemented to solve
classification and clustering problems in pattern recognition tasks including CIS in
map images. In short, neural networks consist of numerous computational elements
called processors, which are connected by links with variable weights [Bow 1992]. Such
a neural network allows for representing highly complex sets of interdependencies
that can be of particular advantage in CIS if the image suffers from blurring or mixed
pixels, making class assignment a more complex task. One example is the Hopfield
network [Bow 1992], whose network architecture is derived from the energy function
and applied to CIS (e.g., Campadelli et al. [1997]). Here, image segmentation is con-
sidered as the problem of minimizing a suitable energy function. Several other neural
network–based CIS approaches exist, such as self-organizing maps, back propagation,
or learning vector quantization, but have not been applied to map processing tasks.
Typical problems of neural network–based approaches to image segmentation are the
extended training time and high specificity to the image of interest (lack of generality).

CIS, not only in map processing tasks, is frequently carried out by making use of
different combinations of earlier described segmentation techniques [Den Hartog et al.
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Fig. 10. Edge-based image segmentation attempts to calculate gradient functions in order to find discon-
tinuities that define edges between regions in the image (black pixels in the images to the right represent
zero gradient as a result of the local gradient function).

1996; Centeno 1998; Santos et al. 1998; Cordeiro and Pina 2006; Leyk and Boesch
2010; Leyk 2010]. However, if maps suffer from low graphical quality and excessive
complexity, CIS represents a difficult process in which preservation of connectivity
and shapes of map objects is particularly crucial. Relevant approaches that aim at
overcoming such problems in map images will be reviewed in more detail in Section 4.1.

3.2. Geographic Feature Extraction and Recognition

The process of extracting and recognizing geographic features from scanned maps
utilizes and combines a variety of techniques that stem from the fields of document
analysis and image processing and fall into three major categories: template matching,
morphological operators, and shape descriptors.

Template matching techniques are widely used in computer vision, pattern recogni-
tion, and document analysis research. A detailed survey of various template matching
algorithms and their applications can be found in Brunelli [2009]. In general, the main
goal of these template matching algorithms is to find objects in the document of in-
terest that are similar in shape and size to an object given as a template. The most
commonly used algorithm in map processing is correlation-based template matching
[Rosenfeld and VanderBrug 1977], which evaluates the correlation between the pixel
values of a template and the pixel values of the target image within a window of the
same size as the template to find the objects of interest. Here we briefly introduce the
principles of correlation-based template matching exemplified on a road intersection
detector recently used in map processing work [Chen et al. 2008; Chiang et al. 2009].

Given a road intersection template, T, of the size w by h pixels as shown in
Figure 11(a), the road intersection detector searches the input map shown in
Figure 11(b) within a moving (or sliding) window, S, of the size w by h pixels. The
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Fig. 11. Using template matching to identify a specific type of road intersections.

matching algorithm generates a similarity value correlating the contents of the map
document within the moving window with the contents of the template. For example,
a normalized cross correlation can be computed [Chen et al. 2008] as:

NormalizedCross Correlation(Tx,y, SX,Y ) =
∑h

y=1
∑w

x=1 T (x, y)S(X + x, Y + y)√∑h
y=1

∑w
x=1 T (x, y)2

∑h
y=1

∑w
x=1 s(X + x, Y + y)2

,

where T(x, y) equals 1, if the pixel at position (x, y) in the template is a foreground
pixel (i.e., is part of the road intersection template); otherwise, T(x, y) equals zero.
S(X+x, Y + y) equals 1 if the map pixel at (x, y) in the moving window matches the color
of the pixel at (x, y) in the template; otherwise, S(X+ x, Y + y) equals zero. The location
(X, Y) is the current window shift position. Each matching interaction shifts the
window position by one pixel in either the horizontal or vertical direction (overlapping
the last window). The normalized cross correlation measure can range from 0 to 1,
where 0 means that the map contents within the moving window are completely
different from the template, and 1 means a perfect match. By adjusting a threshold
on the correlation measure, we can identify map objects that are geometrically similar
to the template (i.e., a high threshold is used to identify map objects that match
most of the template). Figure 11(c) shows an example of the road intersections (red
intersections in the green areas) that can be identified using the described template
matching algorithm based on a correlation threshold.

There are more sophisticated template matching algorithms that detect objects with
a similar shape but different sizes (scale invariant) or in different orientations (ro-
tation invariant). Rotation-invariant template matching algorithms often use shape
descriptors (explained at the end of this section) instead of using every pixel in a mov-
ing window to compute the similarity values and are more computationally intensive.
Figure 11(d) shows the detected road intersections (red intersections in the green areas)
when a rotation-invariant template matching algorithm is used.

Morphological operators are commonly used to modify image contents to facilitate
and improve the extraction and recognition of point, linear, and area features. In more
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complex settings, morphological operators have been applied for identifying parallel
linear features [Yamada et al. 1993; Chiang et al. 2009], reconnecting broken linear
features [Chiang and Knoblock 2013], separating linear features from text [Luo and
Kasturi 1998], removing noise objects for recovering large area features [Angulo and
Serra 2003], and converting areas of pixels to vector format [Doermann 1998; Tombre
et al. 2000]. Basic morphological operators are binary operators that deal with images
with two colors (i.e., bilevel images) and can be extended to process grayscale and
color images. These traditional morphological operators are based on the hit-or-miss
transform using masks of various sizes and shapes (see Pratt [2001] for a detailed
description of common morphological operators). A hit-or-miss transform scans every
pixel and its local environment (e.g., a square mask with 3 × 3 pixels) in an input
bilevel image. A “hit” condition arises if the mask matches a pixel and the pixel’s
neighborhood pattern—that is, the local morphological conditions of interest; other-
wise, it is a “miss” condition. Each morphological operator employs a different mask
to perform the hit-or-miss transform and triggers specific actions in response to a
hit or miss condition. This hit-or-miss transform is a type of template matching al-
gorithm that generates binary results (either a hit or a miss) instead of similarity
measures (in the range [0, 1]) as described earlier in the road intersection detection
example.

The most commonly used morphological operators also in map processing tasks are
binary operators (in contrast to the multilevel morphological operators that apply to
grayscale or color images) because the results of CIS can be conceptualized as a set of
bilevel images representing individual map layers [Agam and Dinstein 1996]. Binary
morphological operators that are often employed in combination include the dilation,
erosion, closing, opening, and thinning (skeletonizing) operators. The aim of a dilation
operation is to expand the region of foreground pixels if the hit condition is fulfilled.
In map processing, a dilation operator is commonly applied to fill gaps of broken lines
or holes in presumably homogenous areas. For example, if a background pixel is found
with one or more foreground pixels within its 3 × 3 pixel neighborhood (i.e., a hit), a
binary dilation operator with a 3 × 3 square mask converts the background pixel to
a foreground pixel (i.e., the action in response to a hit), thus expanding the area of
foreground pixels. Figure 12 shows an example of applying a binary dilation operator
iteratively to merge road edges.

The idea of a binary erosion operator is to reduce the region of foreground pixels.
For a foreground pixel with one or more background pixels within the 3 × 3 pixel
neighborhood (i.e., a hit), a binary erosion operator with a 3 × 3 square mask converts
the foreground pixel to a background pixel (i.e., the action in response to a hit), thus
reducing the area of foreground pixels. Figure 12 also shows an example of applying
an erosion operator iteratively to reduce road areas.

The closing operator is a dilation operator followed by an erosion operator, and the
opening operator is an erosion operator followed by a dilation operator. The closing
operator is used to remove holes and smooth region boundaries without expanding
region areas. For example, if a closing operator with a 3×3 square mask is applied, the
background areas that are smaller than 3 × 3 will be first conveyed to the foreground
by the binary dilation operator and the foreground area will grow in all directions.
Next, the erosion operator will shrink the foreground area in all directions to offset the
expansion of the foreground area from the dilation operator. In contrast, if an opening
operator with a 3 × 3 square mask is applied, the foreground objects that are smaller
than 3 × 3 will be first converted to background pixels and the foreground area will
shrink in all directions. Next, the binary dilation operator will expand the foreground
area in all directions to offset the shrinking of the foreground area from the binary
erosion operator.
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Fig. 12. Using binary morphological operators to extract road centerlines [Chiang et al. 2009].

Due to its simplicity, the thinning operator is widely used in raster-to-vector con-
version to produce a so-called skeleton of a group of foreground pixels (see Hori and
Okazaki [1992], Röösli and Monagan [1995], and Janssen and Vossepoel [1997] for
more sophisticated, high-quality vectorization techniques). The thinning operator is
a conditional erosion operator with an additional verification step. The first step of
the thinning operator is to label every foreground pixel that connects to one or more
background pixels (i.e., the same idea as the binary erosion operator) as a candidate
pixel that may be converted to a background pixel. Next, in the verification step, each
candidate pixel is examined to determine if the conversion of that pixel causes any
disruption of original line branches or crossings. This verification ensures that the
original structure of the considered object is not compromised. One common critique
of the thinning operator is that the resulting skeletons do not accurately represent the
original shape of the object in terms of geometry and topology [Tombre et al. 2000].
Hence, the results of the thinning operator often require manual editing or subsequent
shape adjustment to correct the thinning results. Figure 12 presents an example of
applying a generic thinning operator to identify the road centerlines.

Shape descriptors have commonly been used to identify text and symbolic features
in map processing. Shape descriptors range from simple metrics of height, width,
area, compactness, or the bounding box of a connected component to computationally
more complex ones, such as descriptors based on the discrete Fourier transform for
estimating texture representations [Adam et al. 2000; Chiang and Knoblock 2006]
or the Hough transform for identifying imperfect linear objects (e.g., broken lines)
[Kasturi and Alemany 1988; Chen and Wang 1997; Dhar and Chanda 2006; Chiang
and Knoblock 2013].

Simple shape descriptors (e.g., geometric measures of height, width, or area) usually
rely on a connected component analysis. First, connected components (i.e., regions or
groups of pixels that are defined by certain connectivity and adjacency criteria) are
identified and labeled in the input image. Adjacency (and thus connectivity) can be
conditional on the existence of pixels next to the pixel of interest either only in horizon-
tal or vertical directions (von Neumann or “diamond-shaped” neighborhood) or in both
horizontal/vertical and diagonal directions (Moore or “square-shaped” neighborhood).
Every pair of foreground pixels that fulfills the underlying adjacency condition belongs
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Fig. 13. Textures used to represent different vegetation/land use types in USGS topographic maps. Credit:
U.S. Geological Survey (USGS topographic map symbols).

Fig. 14. The Hough transform.

to the same connected component. Next, sets of attributes—shape descriptors—of the
individual connected components are calculated; these are subsequently used to iden-
tify specific features such as text objects or various symbols (see Salmon et al. [2007]
for a detailed description of common shape descriptors). For example, given a scanned
map that contains text labels and road lines, various descriptors (or attributes) such as
width, height, and compactness of the text characters can be empirically determined in
the map and subsequently used to filter out road lines and retain character-like objects
(or connected components) for recognition [Li et al. 2000; Cao and Tan 2002].

Shape descriptors based on the discrete Fourier transform [Brigham 1988] have
played an important role in multiple texture classification applications due to their
ability to generate distinct attributes for different texture representations [Randen and
Husoy 1999]. The discrete Fourier transform maps an image into the frequency domain
where the strength of each frequency is represented by one of the estimated Fourier
coefficients. Since the texture representations of the same map features are usually
similar within a local environment (but vary across different map features), the Fourier
transform (or the Fourier-related transform, such as the discrete cosine transform) can
be used to distinguish between map features [Chiang and Knoblock 2006]. For example,
Figure 13 shows four green patterns that are used to depict different vegetation/land
use types in USGS topographic maps.

Another technique that is extensively used in map processing is the Hough transform.
The Hough transform is a technique frequently used to identify imperfect lines (e.g.,
broken lines or dashed lines) [Duda and Hart 1972]. For example, Figure 14(a) shows
two lines in a noisy image (white pixels are background); parts of the line pixels are
missing. To detect the two lines in Figure 14(a), the Hough transform first transforms
the image to the Hough space (Figure 14(b)) (black pixels are the background). In the
Hough space, a sinusoidal curve represents a set of straight lines that pass through a
point in the image plane. A point in the Hough space represents a straight line in the
image plane, which is described by two parameters: r and θ . As shown in Figure 15,
in the image plane, the parameter r is the distance between the straight line and the
point of origin, and θ is the angle of the shortest line between the point of origin and the
straight line. Using the two parameters, r and θ , a straight line of certain orientation
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Fig. 15. Using r and θ to represent a straight line.

is described as

r = x cos θ + y sin θ.

For the set of straight lines that pass through a point, P (xp, yp), in the image plane,
the sinusoidal curve in the Hough space is

r(θ ) = xp cos θ + yp sin θ.

When two sinusoidal curves generated from two points, P(xp, yp) and Q(xq, yq), inter-
sect in the Hough space, the intersection point represents a straight line in the image
plane that passes through two points, P(xp, yp) and Q(xq, yq). Hence, by finding the lo-
cal maxima in the Hough space where many of the sinusoidal curves intersect, we can
detect possible straight lines in the image plane even if the lines are constituted from
imperfect objects. Figure 14(c) shows the detected straight lines in the image plane.
Since identifying the local maxima in the Hough space requires only a simple grayscale
thresholding in the Hough space, the Hough transform is a robust and straightforward
choice in map processing for detecting linear features such as road lines [Yamada et al.
1993; Dhar and Chanda 2006] or for identifying straight map labels [Chen and Wang
1997; Chiang and Knoblock 2013].

4. A REVIEW OF MAP PROCESSING EFFORTS FOR THE EXTRACTION
AND RECOGNITION OF CARTOGRAPHIC INFORMATION

Earlier approaches to map processing pursued different objectives. Some systems were
designed as general recognition systems to extract multiple features from a map docu-
ment [Wigand 1988; Ebi et al. 1994; Frischknecht et al. 1998; Bessaid et al. 2003; Dhar
and Chanda 2006], whereas others are highly specialized approaches recognizing one
well-defined set of features in the map [Fayek and Wong 1996; Watanabe and Zhang
1997; Miyoshi et al. 2004; San et al. 2004; Xin et al. 2006]. Typically, various prepro-
cessing steps have to be conducted, such as image cleaning and filtering, followed by
separating the feature of interest from other overlapping map symbols (e.g., Gamba
and Mecocci [1999], Cao and Tan [2002], Bajcsy [2003], Leyk and Boesch [2009]), which
increases the complexity of the recognition process. This complexity can be seen as one
reason for the lack of automation in many recognition tasks.

We describe the recent approaches to map processing organized by the geometric
properties of the features of interest (i.e., line or area features). Here, first we de-
scribe how the various thematic or map layers (geographic features) are represented
(Figure 16):

—Road features are commonly represented as line features—single (road centerlines)
or parallel (road edges)—or as area features (e.g., Maderlechner and Mayer [1995],
Bin and Cheong [1998], Itonaga et al. [2003], Chen et al. [2004], Dhar and Chanda
[2006], Bucha et al. [2007], Chiang et al. [2012], Chiang and Knoblock [2013]). Road
intersections are often extracted and represented as point features because they
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Fig. 16. Various thematic layers found in maps for possible extraction. Left: A nautical chart (National
Oceanic and Atmospheric Administration [NOAA]). Right: A topographic map (USGS).

provide distinct characteristics in road networks (e.g., Habib et al. [1999], Liu [2002],
Chiang et al. [2009], Henderson and Linton [2009]).

—Vegetation features often are represented by simple background filling areas but can
also appear in the form of vegetation symbols [Ebi et al. 1994; Frischknecht et al.
1998] or symbol compositions with or without linear features as boundaries [Dhar
and Chanda 2006; Leyk et al. 2006; Leyk and Boesch 2009].

—Text or text labels are mostly part of the black layer and appear in different styles,
font sizes, and orientations and can even appear curved; recognition approaches have
to deal with these difficulties (e.g., Yamada et al. [1993], Deseilligny et al. [1995],
Chen and Wang [1997], Chen et al. [1999], Gllavata et al. [2004], Dhar and Chanda
[2006], Pezeshk and Tutwiler [2008, 2010a, 2010b, 2011]). In addition, text objects
are often overlapping with other features in the map (e.g., Kasturi and Alemany
[1988], Luo and Kasturi [1998], Yin and Huang [2001], Cao and Tan [2002], Chiang
and Knoblock [2011]).

—Hydrographical map features (in most cases the blue layer) include streams that are
commonly represented as linear or area features depending on the map scale [Ebi
et al. 1994; Angulo and Serra 2003; Dhar and Chanda 2006; Henderson et al. 2009]
or wetland areas often shown as a spatial distribution of single or clustered symbols
[Leyk and Boesch 2010].

—Building symbols are in most cases small rectangular area features or can be elon-
gated shapes (in urban areas with higher building densities); typically, they are part
of the black map layer (e.g., Fayek and Wong [1996], Frischknecht and Kanani [1998],
Liu [2002], Angulo and Serra [2003]). Building symbols often overlap with other map
features, such as roads or text.

—Elevation contours are linear features that belong in most cases to the red or brown
map layer and follow certain geometric properties—that is, they must not intersect
each other (e.g., Yamamoto et al. [1993], Khotanzad and Zink [1996, 2003], Dupont
et al. [1998], Salvatore and Guitton [2004], San et al. [2004], Chen et al. [2006],
Pezeshk and Tutwiler [2008], Samet and Hancer [2012], Miao et al. [2013]).

—Other cartographic symbols that are of possible interest in map processing include
features from nautical charts [Trier et al. 1997], symbols for landmarks, political
boundaries [Gamba and Mecocci 1999] or churches [Frischknecht and Kanani 1998],
and other legend-based symbols [Samet and Soffer 1998].

The following subsections describe and review map processing efforts in more detail
focusing on the most relevant studies found in the literature, sorted by steps typi-
cally done in map processing: separating raster layers (segmentation), extracting area
features, extracting composite features and other map symbols, line detection, text
recognition, interactive map processing, and map registration. In numerous studies,
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Fig. 17. Two exemplary CIS results from historical topographic maps. The results in (b) and (d) are shown
in pure colors in quantized images, blue for hydrography, red for contours, black for the black layer, and
white for background. Reproduced by permission of swisstopo (BA13123).

the reader can find accuracy measures for proposed map processing techniques such
as percent correctly classified, recall, precision, or the kappa coefficient of agreement.
However, objective measures are difficult to compute due to the lack of sufficient (“com-
plete”) reference data and inherent subjectivity—that is, it is always difficult to claim
that the extraction of a cartographic symbol is perfect or acceptable.

4.1. Separation of Raster Layers (Segmentation)

Section 3.1 described the most commonly used general techniques for CIS applied to
map processing tasks, which has the main goal of separating the different color lay-
ers found in a map in order to improve the performance of subsequent processing
steps. This section reviews specialized image segmentation approaches developed for
more complex and graphically inferior map images (Figure 17), which pose particu-
lar challenges. Numerous map processing studies are designed specifically for noise
removal [Mello et al. 2012] conducted on well-conditioned maps, and segmentation
often represents a single preprocessing step based on histogram thresholding or color
space clustering. These approaches are excluded here. In this section, existing CIS
approaches are grouped into three different categories according to the information
domain that they use (color space and image plane): (1) approaches that use only color
space, (2) approaches that use color space and the local context in the image plane im-
plicitly, and (3) approaches that use color space and local spatial relations in the image
plane explicitly.

Some recent CIS techniques in maps are solely based on color space. For example, in
a study on Indian survey maps, image enhancement is applied in a first preprocessing
step to change each pixel value to one of the possible RGB color space extremes such
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as {255,0,0} or {0,0,255} representing initial clusters in color space [Dhar and Chanda
2006]. Next, the K-means algorithm is applied to allocate each original pixel in the
map to one of the initial clusters based on minimum distance in color space. The RGB
values of the cluster centers are then calculated based on normalized feature vectors
of all pixels that have been allocated to the corresponding initial color cluster. In a
final separation step, each pixel is allocated to the nearest final (adjusted) prototype,
and for each feature layer one bilevel image is generated. The approach contributes to
high recognition rates in subsequent map recognition stages but assumes high levels
of homogeneity within feature layers and well-defined color values.

Another CIS approach that works entirely in color space aims at the separation of
color objects in topographic maps. Based on tonal values, Cordeiro and Pina [2006]
define different cut levels for the identification of color objects in RGB color space. For
each color layer, sampled color values define cut-level values for sections within the
color space cube. These sections are then either intersected in color space to define
noise regions (background) or are unified to create so-called co-regions in color space
that define the color objects of the different colored map layers. The process of isolating
the color objects is performed layer wise after already isolated layers were eliminated
from the scanned image. This approach seems to work on maps with clearly defined
color values, but it needs to be tested on maps with higher variability in color values
and on maps with false colors. In addition, defining the cut levels introduces some
subjectivity.

Some approaches to CIS in maps make implicit use of the local spatial context in
the image plane in addition to information from the color space. One example refers
to a segmentation process in utility maps. The process starts with a sharpening step
to unblur the image using Laplacian linear filters [Den Hartog et al. 1996]. Next,
a global grey value thresholding step with hysteresis is done. This means that they
first define a grey value range and then identify pixels with values above and below
this range as definite background and object pixels, respectively. In a second step, the
pixels between the two thresholds are classified as object pixels only if they are directly
connected to an already classified object pixel (adjacency in the image plane). This
global segmentation is input to a complex recognition process. If inconsistencies can
be detected in the recognition result, a resegmentation (or top-down segmentation) is
performed to correct the errors made in the global segmentation. Although integrating
prior knowledge improves the segmentation and subsequent recognition, Den Hartog
et al. [1996] describe a highly laborious and complex technique that requires intensive
user intervention and is specific to grayscale utility maps.

A second example is a study that uses hue histograms (from the HSV color space)
to define thresholds of feature layers in different subregions of a scanned topographic
map image [San et al. 2004]. This approach is able to adjust for varying cut-off val-
ues to identify map layers by evaluating bimodal subregional histogram distributions.
In order to remove isolated small regions (noise), they perform an edge-preserving
smoothing technique. Their approach incorporates an innovative step in partition-
ing the image to adjust for color variability, but it has not been tested on different
maps.

A third study that belongs to this category is based on Eigenvector Line-Fitting in
RGB color space to segment USGS topographic maps. In this work, Khotanzad and Zink
[1996] propose a segmentation technique that overcomes problems of scanner-related
false coloring and aliasing. They use a local window (7 × 7 pixels in the image plane)
to classify transitional pixels between objects and background. Their approach is later
applied and adjusted by Chen et al. [2006], who developed a technique called local
window segmentation. This method applies a line-tracing algorithm to repair gaps and
thick (i.e., merged) contour lines locally to improve the overall segmentation result.
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This approach showed acceptable results on well-conditioned (or more recent) USGS
topographic maps but has never been tested on other maps.

The third category of CIS approaches includes techniques that use color space infor-
mation for initial color prototype definition and make explicit use of spatial relations
to perform the image segmentation. For example, in a histogram-based approach on
German topographic maps, color cluster centers are detected in the histogram of the
u’v’ chromaticity plane (L∗u∗v∗ color space). They apply a peak detection technique
adjusted to this two-dimensional cumulative frequency distribution [Ebi et al. 1994].
These cluster centers are then used to perform the segmentation of map layers using
chromaticity and lightness criteria. Finally, they employ region growing based on con-
tainment tests and structural texture analysis to fill unclassified areas in the map.
Although this approach has been demonstrated for maps with well-defined color lay-
ers, the use of spatially explicit relations in the region growing step provides greater
flexibility to process maps with lower graphical quality.

Other work that can be grouped in this third category combines color space, fre-
quency domain, and the image plane to improve CIS in low-quality Swiss historical
topographic maps. In this approach, only locally homogeneous pixels are included in the
frequency distribution of the map image [Leyk and Boesch 2010]. The most frequent
values (peak) and similar values (similarity is defined by distance in color space) are
assigned to the first color layer and removed from the frequency distribution. The same
process is performed to identify the remaining (initially hidden) color prototypes. These
prototypes are then input to a seeded region growing process to identify connected re-
gions based on color similarity and spatial adjacency in the local image plane. The
method (Figure 17(a) and (b)) produces acceptable results but requires user-specified
parameters; it also suffers from excessive processing time. This approach provided the
basis for a two-stage CIS approach in historical USGS topographic maps [Leyk 2010]
to overcome color variability found in features of the same map layer. In the first step,
a sample of pixel values is collected from the image to determine global color proto-
types, initially based on the distance in color space to the color extremes representing
the map layers (e.g., {255,0,0} in RGB for red). The prototype positions in color space
are adjusted sequentially with each pixel value added until stabilized. The prototypes
are then used to define homogeneous core regions of map layers. In the second step,
the color prototypes are recomputed based on a second sample drawn from the edges
of homogeneous regions to account for color variability in map layers at transitions to
background, thus improving the subsequent spatial expansion of regions (Figure 17(c)
and (d)). This approach shows good results and shorter processing time on low graphical
quality maps but still needs to be tested on other maps.

Summarizing the efforts mentioned previously, current challenges that can be identi-
fied for CIS in scanned maps are preserving the spatial context of segmentation results,
ensuring the connectivity of homogeneous map elements, and maintaining the shapes
of map objects while accounting for color variability of map contents within one map
page and across maps. This variability is caused by finite-size sampling spots, which
results in blurring of color boundaries and mixed-color pixels. Thus, even high-quality
paper maps with uniformly colored features will yield scanned images with consid-
erable variation in color. All of these aspects are crucial for generating topologically
correct cartographic information for input into a GIS. Furthermore, more generic CIS
approaches that would make it possible to process different maps or types of maps are
in urgent demand. Such tests are rarely (if at all) done. In general, it can be stated
that the complexity of CIS efforts increases with decreasing quality of the map image,
which often relates to the age of the scanned map document. Accordingly, the degree of
automation is lower if the methodological steps become more complex and the solution
is often highly map or map series specific. However, the most promising strategy seems
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Fig. 18. Some examples of singular (bottom) and composite (top) features typically found in maps. Credit:
U.S. Geological Survey (USGS topographic map symbols).

to be the combination of color space and image plane properties to produce robust seg-
mentation results. As stated initially, segmentation techniques are sometimes difficult
to differentiate from extraction and classification steps, which impedes tracking the
most recent developments.

4.2. Extraction and Recognition of Singular Map Features

Symbols can be described as sets of distributed graphic signs or shapes to represent
some feature or property of the world. Symbol recognition uses knowledge of the seman-
tics attributed to these symbols and applies rules to extract them. Numerous attributes
and techniques can be used to describe symbols geometrically and structurally in maps.
In map processing tasks, the shape descriptors and morphological operators described
in Section 3.2 are often combined and adjusted to tune the recognition process to the
properties of the document of interest. Symbol recognition in maps—in particular in
manually drawn maps—is challenging due to their graphical properties in general and
the intrinsic meaning and characteristics of symbols in comparison to other documents,
such as technical drawings [Cordella and Vento 2000; Lladós et al. 2002]. Traditionally,
symbol recognition—also in map processing tasks—can be partitioned into statistical
and structural approaches [Lladós et al. 2002], and the distinction from other recogni-
tion tasks such as character recognition (see below) is blurred. Note that this section
focuses on the main efforts of recognizing singular symbols in maps; the case of com-
posite objects or symbols is reviewed separately in the next subsection (Figure 18).

A few so-called knowledge-based systems have been developed for map processing
tasks where knowledge is derived from the map of interest or its legend in order
to improve the recognition process. For example, Samet and Soffer [1998] generate
shape descriptors from the inverted images of individual symbols in a map; by creat-
ing a library of training sets of geographic features, they developed a legend-driven
geographic symbol recognition system with high recognition rates. This innovative,
statistical, pattern-recognition approach is limited by the time-consuming training
and learning processes and a high degree of map specificity. Myers et al. [1996] fo-
cused on the problem of overlapping information in complex color maps and developed
a verification-based approach using various knowledge bases of geometric (or shape)
descriptors for improved recognition in USGS topographic maps. This was tested on
complex wetland symbols.

Template matching, as explained earlier (Section 3.2), represents another knowledge-
based recognition method. For example, Yin and Huang [2001] describe a supervised
probabilistic template matching technique to extract road lines, characters, and sym-
bols in Chinese road maps. Frischknecht and Kanani [1998] develop a hierarchical
template matching approach for text and symbol extraction from modern topographic
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maps. In this approach, they weight critical areas within templates differently (em-
phasize or de-emphasize), thus improving the geometric description of the symbols of
interest. Maderlechner and Mayer [1995] apply correlation-based template matching
to detect symbols in Bavarian land register maps using explicit knowledge manually
derived from the map legend, which makes this method highly map specific. Finally,
Reiher et al. [1996] describe a symbol recognition system similar to the others described
here but based on Hausdorff distance between symbol templates and the image; fur-
thermore, they employ neural networks for their recognition process. The system is
reported to be robust in detecting symbols of different scales and orientations.

Several studies on map symbol recognition have used morphological operators, and
the results are often input to compute shape descriptors. For example, the feature
extraction method described by Dhar and Chanda [2006] for various types of symbols
(trees, grass, crop fields) in topographic maps applies initial noise removal, thinning,
and skeletonization steps. They then compute attributes such as the Euler number
(to define holes) and the Rutovitz connectivity number based on the skeletonized data.
Erosion/dilation techniques have been used in combination with region growing for gap
filling by Bessaid et al. [2003] in order to extract building symbols. For the extraction
of final building contours, they use chain coding (Freeman coding) of contour points.
This procedure browses contour pixels until there are no more neighbors or it reaches
the starting pixel. The number of identical directions followed by the value of direction
(Freeman direction) is recorded, and the result of this vectorization is written into a
text file. This produces a high degree of compression compared to the original image
files.

In a number of studies, shape descriptors are deployed without prior use of mor-
phological operators. For example, in a multiangled parallelism (MAP) algorithm for
multidirectional symbol recognition from topographic maps, Yamada et al. [1993] use a
reformalized and parallel version of the generalized Hough transform without chang-
ing morphological properties of the objects of interest. Miyoshi et al. [2004] utilize a
combination of simple and complex geometric descriptors for building extraction from
scanned topographic maps without prior morphological operations. They identify limi-
tations when symbols are merged with other map features such as roads. In an attempt
to extract forest symbols from a historical topographic map, Leyk and Boesch [2009]
describe existing shapes in the local neighborhood of a pixel also without prior mor-
phological processing. These shapes are then evaluated by their similarity to shapes
that are graphically defined as typical for the symbol of interest. As a final example,
Trier et al. [1997] perform digit recognition in hydrographic maps for extracting sym-
bols such as rock positions, digits, or signs without the use of morphological operators.
For symbol recognition, they apply size- and orientation-independent elliptic Fourier
descriptors of the outer symbol contour and use them as attributes in their statistical
quadratic classifier.

Two graph-based approaches for symbol recognition in maps can be found in the
recent literature. In an attempt to extract building information, Liu [2002] describes a
method for house contour detection in the graph domain using breaking points of house
structure; this method is demonstrated for large-scale pictorial maps. After separation
from roads and characters, this approach shows satisfactory results. A connected com-
ponent analysis for the extraction of quarters in historical French cadastral maps is
based on a neighborhood graph [Raveaux et al. 2008]. Postprocessing of the results
(pruning of the graph) is necessary to improve the recognition results.

Symbol recognition in maps has made significant progress using knowledge-based
or legend-driven techniques, graph-based methods, or approaches that use advanced
morphological operators combined with shape descriptors. However, most solutions are
still map specific, and there is a need for more generic solutions in order to reach higher
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degrees of automation and robustness. The variety of different symbol recognition
techniques described earlier illustrates how documents of different characteristics have
been historically processed using different approaches. It is difficult to identify any clear
relationships between techniques and types of maps, which may be the result of the
rather experimental stage of map processing research to date.

4.3. Extraction and Recognition of Composite Features

Composite features consist of different graphic elements whose spatial distribution (or
“composition”) and pattern can define higher-level spatial objects of specific meaning.
Examples of composite features are dotted or dashed paths [Gamba and Mecocci 1999],
complex line work [Yamada et al. 1993; Zhong 2002], or areas whose spatial extent is
defined by distributed single symbols such as circular symbols to describe forest areas
[Leyk et al. 2006] or horizontal strokes to describe wetland areas (see examples in
Figure 18). Processing such composite features in addition to single objects in maps
represents a difficult task [Lladós et al. 2002], especially in maps of lower graphical
quality.

The recognition of such compositions of single elements or symbols in different docu-
ment types has traditionally been subject to principles of structural pattern recognition
[Pavlidis 1977; Delalandre et al. 2004]. Structural recognition is based on the definition
of spatial relations between graphical primitives (context), such as distances and di-
rections. A set of rules is usually derived and applied to identify these complex symbols
of interest in an image [Myers et al. 1996; Lladós et al. 2002].

In some map processing tasks, contextual reasoning is used to find certain types of
objects in the vicinity of an already recognized object [Den Hartog et al. 1996; Ogier
et al. 2001]. In a knowledge-directed image analysis effort, Ebi et al. [1994] demonstrate
how recognition can be improved by identifying compositions of structure primitives on
symbols of coniferous forest or symbols of dotted boundaries. Similar principles have
been used for the extraction of compositions of character strings [Raveaux et al. 2008].
Another approach to structural recognition is based on the use of texture patterns in
order to classify cartographic area features from maps [DeKruger and Hunt 1994].

In pursuing similar goals, Gamba and Mecocci [1999] describe a perceptual grouping
approach to track discontinuous chains of symbols, which can be conceptualized as
composite linear objects in topographic maps. Once individual symbols are extracted
based on shape descriptors, Gestalt rules and optimal paths (i.e., shortest distance)
are used to determine those symbols that are likely members of the line object and
to close identified gaps. Their approach works well and has been used in numerous
recognition studies that face similar problems. Finally, Leyk et al. [2006] use iterative
sampling within a local search radius around a detected forest symbol to identify other
circular objects in close vicinity in historical topographic maps, as shown in Figure 19.
The spatial distribution of all identified forest symbols (their composition) defines the
approximate extent of forest area.

Recent research that implemented the concept of composite features has demon-
strated that there is great potential for improving feature extraction. Compositions of
single graphical elements in maps often define meaningful higher-level objects char-
acterized by their spatial distributions, topological relations, or their spatial context.
Nevertheless, this concept is still underused in map processing possibly due to the
complexity and computational costs that come with structural recognition approaches.
However, solving these problems will be fundamental to efforts of map processing at
higher levels of automation for complex map contents. As the previously mentioned
studies demonstrate, the concept of composite features and the few techniques that
have been described were reported to be successful in maps of different types and
qualities.
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Fig. 19. Example of recognition of a composite feature using the method described in Leyk et al. [2006].

4.4. Extraction and Recognition of Linear Features

Much research has been conducted on extracting linear features from scanned maps,
including the separation of lines from text [Li et al. 2000; Cao and Tan 2002; Tombre
et al. 2002; Pezeshk and Tutwiler 2010b], the detection of road intersections [Habib
et al. 1999; Henderson et al. 2009], the vectorization of road lines [Bin and Cheong
1998; Itonaga et al. 2003; Chiang and Knoblock 2013], the recognition of generic linear
objects [Ablameyko et al. 2001, 2002a, 2002b; Bucha et al. 2007], and the recognition
of contour lines [Arrighi and Soille 1999; Khotanzad and Zink 2003; Chen et al. 2006;
Hancer and Samet 2011; Oka et al. 2012; Miao et al. 2013]. Linear feature extraction
and recognition techniques usually consist of two steps: the separation of raster layers,
which is often done through the image segmentation process described earlier, and the
recognition of linear features from the individual raster layers.

Separating the raster layers is often based on histogram thresholding (Figure 20)
to extract “raw” road layers. Figure 20 shows examples of well-conditioned maps on
the left and the resulting road layers on the right. The top right panel shows an
extracted road layer that also has few text labels and both solid road lines and road
boundaries. In maps of lower quality, recognition of the linear features is typically based
on the generation of centerline representations, which can require the application of
different techniques for solid areas of linear features as compared to boundaries of
linear features [Chiang and Knoblock 2013]. Most linear feature extraction techniques
expect the extracted layer of linear features to be either areas [Itonaga et al. 2003]
or boundaries of linear features [Bin and Cheong 1998; Habib et al. 1999] but not
a combination of both types, which can significantly lower the accuracy of the final
vectorization results. In addition, removing parts of or whole text labels from the
raster layer of linear features prior to generating the centerlines has been done using
text/graphics separation techniques [Cao and Tan 2002; Tombre et al. 2002; Velázquez
and Levachkine 2004]. However, such approaches still require additional repair of
disconnected centerlines where the overlapping text is removed [Chiang et al. 2009].
Furthermore, subsequent steps of text/graphics separation steps can be impaired when
the result of line feature separation contains only pieces of the text labels, as can be
seen at the bottom of Figure 20. These remaining text pixels constitute noisy objects
that do not follow the criteria of character geometry typically used in text/graphics
separation algorithms, such as a character is expected to be a group of small, straight
line segments (strokes) [Cao and Tan 2002].

There are some techniques that exploit more sophisticated processes for extracting
the raster layers potentially containing the linear features of interest. Such techniques
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Fig. 20. Sample maps and their road layer extracted with manual grayscale histogram thresholding.

make it possible to process maps of inferior image quality. As mentioned in Sections 3.1
and 4.1, instead of thresholding the grayscale histogram, these techniques take advan-
tage of the three-dimensional color space (e.g., RGB) and often employ a user-training
step. For example, Salvatore and Guitton [2004] apply manual thresholds in the color
space to separate the raster layer of contour lines from topographic maps. Khotanzad
and Zink [2003] perform this CIS step based on user annotations to extract contour
lines from the USGS topographic maps; this method was further exploited by Chen
et al. [2006] in order to develop local segmentation techniques, which make it possible
to process different topographic maps. In general, techniques that rely on user-trained
thresholding in color space perform well on complex maps of inferior image qual-
ity. However, user-training processes such as manually determining color thresholds
[Salvatore and Guitton 2004] or labeling colors of all line-background combinations
[Khotanzad and Zink 2003] are complicated, laborious, and time-consuming.

Other techniques for line detection avoid relying heavily on user input. For example,
Itonaga et al. [2003] exploit the geometric properties of individual map areas to deter-
mine road areas (e.g., elongated polygons); however, this approach does not work on
scanned maps, because road areas are not represented as homogenous color areas in
scanned maps. Henderson et al. [2009] present another interesting approach that does
not rely on user input but rather exploits the metadata of the scanned maps to separate
the road layers. In USGS DRG used to build the topographic maps, a set of 13 colors
is used to draw the map features, and Henderson et al. [2009] exploit this predefined
color scheme to isolate the road layer. Table I shows the USGS DRG color scheme.2
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Table I. USGS DRG Color Scheme

Digital Number Color Red Green Blue
0 Black 0 0 0
1 White 255 255 255
2 Blue 0 151 164
3 Red 203 0 23
4 Brown 131 66 37
5 Green 201 234 157
6 Purple 137 51 128
7 Yellow 255 234 0
8 Light Blue 167 226 226
9 Light Red 255 184 184

10 Light Purple 218 179 214
11 Light Grey 209 209 209
12 Light Brown 207 164 142

Fig. 21. An example of USGS DRG based on a color scheme of 13 known colors to represent map layers.
Credit: U.S. Geological Survey.

Figure 21 shows an example of the USGS DRG. Although their approach works well
for separating the USGS DRG road layer due to the existence of the color key, it does
not work if the color scheme does not exist or is unknown, which is common for most
scanned maps. Henderson et al. [2009] indicate that a manual step for separating the
road layer is required if the scanned map does not have a predefined color scheme.
However, this manual step would involve labor-intensive user intervention before this
approach could be applied to a different (scanned) map.

Once the raster layer of roads is separated from the map, raster-to-vector conversion
techniques are used for the recognition of linear features from the individual raster
layers. This raster-to-vector conversion step searches for elongated binary large objects
(blobs) and then generates the centerline representation (skeletons) of the blobs.

2National mapping program technical instructions (http://gis.ess.washington.edu/data/raster/drg/docs/drg_
std.txt).
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Fig. 22. Automatic repairing of the road geometry [Chiang and Knoblock 2008].

One approach to raster-to-vector conversion exploits the detected road boundaries
to convert the road areas to vector format. Habib et al. [1999] use edge detection
methods to identify road edges. Next, they identify corner points of these edges and
determine the centroids of each group of corner points to represent road intersections.
False-positive corner points or T-shaped road intersections can significantly shift the
position of centroid points away from the correct locations. Bin and Cheong [1998]
identify the medial axes of parallel road boundaries and link these medial axes to
extract and vectorize road data from scanned maps. Linking the medial axes requires
manual parameter specifications to ensure the generation of accurate representations
of line geometry of road intersections.

Other techniques use morphological operators to remove noise (nonblobs), fill small
gaps to reconnect broken lines, or determine the centerlines of linear features such
as contour lines [Arrighi and Soille 1999] and road lines [Chiang and Knoblock 2013].
Since morphological operators usually distort the geometry of the original linear fea-
tures when generating the centerlines (e.g., the road intersections in the top part of
Figure 22 are displaced), alternative techniques that employ user-specified parame-
ters to repair the road geometry have been developed. For example, Itonaga et al.
[2003] correct the distorted lines around the road intersections based on user-specified
constraints, such as the general road width in the considered map. In an attempt to
automatically correct the line geometry, Arrighi and Soille [1999] use the centerline
endpoints as anchor points to determine the geometry of centerlines. The extremities of
the lines are then evaluated for connecting or disconnecting the line segments. Chiang
and Knoblock [2013] detect potential areas with geometry distortions and trace line
features that are outside these distortion areas to generate accurate centerlines. The
top part of Figure 22 shows the distorted road geometry around road intersections when
only the thinning operator is used to extract the road centerlines. The bottom part of
Figure 22 shows the correct road geometry after detecting distortions automatically to
trace accurate centerlines.

One technique that is reported to be not limited to a specific type of map is described
in Bucha et al. [2007]. They apply the so-called pixel-force field algorithm [Bucha et al.
2006] to extract the centerlines of linear objects from scanned maps. The pixel-force
field algorithm can be applied directly to color maps without the need of a preprocessing
(i.e., binarization) step; however, the user needs to manually specify the start and end
points of each linear feature, and this requirement significantly limits the automation
scale of the pixel-force field algorithm.
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Fig. 23. A sample map processed by the automatic vectorization function in R2V.

In a series of publications, Ablameyko et al. [2001, 2002a, 2002b] present an inter-
active map interpretation system that supports the separation of feature layers in a
scanned map based on user-selected colors. Selecting colors can be time-consuming, as
scanned maps with inferior image quality can contain thousands of color values. Once
colors are determined, this map interpretation system generates centerlines of linear
features and contours of area features. The centerlines are then linked to generate the
final results. The line-linking step also relies on user intervention, such as to confirm
a merge between two line segments or to enforce the continuation of a line.

In order to complete the list of recent efforts, it is important to mention that there a
few available commercial products for map processing, such as R2V from Able Software,
which is an automated raster-to-vector conversion software package specialized in
processing scanned maps. To vectorize roads in scanned maps using R2V, the user
needs to first provide labels of road colors or select a set of color thresholds to identify
the road pixels. As mentioned earlier, the manual procedure of providing labels of road
pixels can be laborious, especially for scanned maps with numerous color values. In
addition, color thresholding has limitations if, for example, one set of thresholds cannot
completely separate the road pixels from pixels of other map features. In addition,
the automatic vectorization function in R2V is sensitive to the road width without
manual preprocessing, and Able Software does not provide details about this automatic
vectorization technique. Figure 23 shows a sample map, the road layer, and the road
centerlines extracted by R2V. The R2V automatic vectorization function produces small
branches on a straight line when the road area is wide.

In summary, recent methods for the extraction and recognition of linear features from
maps have largely improved in terms of reducing the required manual effort. However,
the resulting vector datasets are still not ready to use in a GIS without manual post-
processing (e.g., manually identify the missing features). Additionally, although incor-
porating the well-developed vectorization techniques (e.g., Hori and Okazaki [1992],
Röösli and Monagan [1995], Janssen and Vossepoel [1997]) in the extraction and recog-
nition process can improve the quality of the resulting vector datasets (rather than
simply using the morphological operators), a user still needs to manually validate the
geometry and topology of the results. To further advance the overall user experience
for the extraction and recognition of linear features, we believe that the best strategy
is to enforce a tight integration between the user training steps (preprocessing), raster-
to-vector conversion steps, and the postprocessing steps. Tight integration here means
that the knowledge learned from a previous step can be passed into the next step and
help improve the scale of automation in the next step. This allows a map processing
technique to produce quality measures for each of the vectorization steps and then use
the quality measures to automatically detect the areas that require manual editing. In
this way, the cost of an end-to-end map processing task can be minimized.
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Fig. 24. A French cadastral map from the ALPAGE (AnaLyse diachronique de l’espace urbain PArisien:
approche GEomatique) project. Red rectangles show faded labels.

4.5. Extraction and Recognition of Text

Text recognition from maps is a difficult task because the text labels often overlap with
other features in the maps, such as road lines, and the text labels do not follow a fixed
orientation within a map [Nagy et al. 1997]. Therefore, the document structure analysis
components in traditional OCR techniques often do not work well on maps [Mao et al.
2003]. In addition, depending on the quality of the original map, not every scanned
map is a good candidate for text extraction and recognition. Raveaux et al. [2007,
2008] extract the text layer and identify individual text strings on a set of historical
French cadastral maps. They first perform an antifading algorithm for restoring the
faded colors in the historical maps. Then they use the expectation maximization (EM)
algorithm to select the best color space from a set of color components (e.g., red, green,
and blue for RGB or hue, saturation, and lightness for HSL) and then apply edge
detection based on the chosen color space to identify individual connected components
in the image. Finally, they classify the connected components into text features by
detecting nearby connected components that are similar in size. Figure 24 shows a
sample of the French cadastral map where the text labels are broken and faded.3
Although Raveaux et al. overcame the difficulties to extract individual text strings
from historical maps with poor graphical quality, they were not able to automatically
process the identified text strings and further recognize the string characters.

Some text recognition techniques are highly specific to the type of map or the graph-
ical representation of text elements. For example, Fletcher and Kasturi [1988] and
Bixler [2000] assume that lines and text are not overlapping, which does not apply
to most scanned maps. Chen and Wang [1997] utilize the Hough transform to group
nearby numeric letters to identify straight numeric strings in scanned maps. They use
a set of font and size independent features to recognize the numeric strings, which
makes their approach specific to these numeric characters. Velázquez and Levachkine
[2004] compute four imaginary lines of orientation (V-lines) that follow the main

3The ALPAGE project (http://websig.univ-lr.fr/alpage_public/flash/).
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Fig. 25. Extrapolation of road lines to recover overlapping characters.

orientations of map text to separate straight text labels from graphics. They then rec-
ognize the text labels with artificial neural networks. Their method can handle slightly
curved text labels by dividing a curved label into blocks of straight labels and then
apply the V-line approach. This approach does not depend on the geometry of a single
connected component, but it is not clear how curved labels are identified automatically.

For processing multioriented text, more general techniques exploit shape descriptors.
Usually, sets of such descriptors are computed from character training samples and
then utilized for pattern matching (or template matching) to recognize the characters
in scanned maps. Deseilligny et al. [1995] compute rotation-invariant descriptors to
identify multioriented text strings. Adam et al. [2000] compute descriptors based on
the Fourier-Mellin transformation to compare the target characters with the trained
character samples for recognizing text labels in scanned maps. Pezeshk and Tutwiler
[2010a] produce artificial training data (i.e., a set of generic character images) from a
set of initial training data using a truncated degradation model. They then recognize
the map characters using two hidden Markov models with 10 states trained for each
character class. The truncated degradation model helps to reduce the manual effort of
generating training data. However, the user still has to generate an initial training set
of character images for each font type. These methods [Deseilligny et al. 1995; Adam
et al. 2000; Pezeshk and Tutwiler 2010a] require a considerable amount of training
and user intervention for each input map and thus have limited applicability to other
types of maps.

Another line of research on text recognition relies on text/graphics separation and
subsequent recognition of the separated text strings. Li et al. [2000] use a novel inte-
grated approach to separate text from lines and recover overlapping characters. They
identify the feature layers and text labels using connected component analysis and
extrapolate the feature layer (i.e., extend the linear objects in the feature layers) to
identify and remove the lines that overlap with characters within each identified text
label. Figure 25 illustrates this technique. The identified lines are extrapolated based
on linear continuity to identify the pixels that are shared between the lines and text.
Instead of assigning the overlapping pixels to either lines or text strings, they assign
the pixels to both line and text, which prevents disconnected lines and broken char-
acters and results in a high recognition rate. However, this method does not work for
curved lines or text labels. Other text/graphics separation techniques are based on
the geometric properties of the connected components in the text layer. Cao and Tan
[2002] decompose the connected components into line segments and use a size filter
to recover the character strokes that touch the lines. These text/graphics separation
methods described here rely on manual work to prepare the separated text strings for
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Fig. 26. Automatic string orientation detection [Chiang and Knoblock 2011].

OCR, such as manually rotating individual strings to the horizontal direction [Cao and
Tan 2002].

The process of automatically rotating individual text strings to the horizontal direc-
tion as input for OCR is critical, because most OCR packages achieve the best results
with horizontal strings. Pouderoux et al. [2007] apply connected component analysis
followed by string analysis using parameters dynamically generated from the geome-
try of the connected components to identify string objects in the scanned maps. They
then render the identified strings horizontally for character recognition using the av-
erage angle connecting the centroid points of the components in a string, which can be
inaccurate when the characters have different heights or widths.

Chiang and Knoblock [2011] present a more general training-by-example approach
that only requires a small user effort for text recognition in heterogeneous raster maps.
Their approach exploits a few examples of text areas to first extract text pixels. Then
they automatically expand text areas to locate individual text labels using cartographic
labeling principles (e.g., the font size of a single text label will be consistent across the
entire label). Next they use a robust skew detection method based on morphological
operators [Najman 2004] to determine the orientation of each string and automati-
cally rotate the strings to a horizontal orientation. Then they use commercial OCR
software to recognize the rotated, horizontal strings. Figure 26 shows an example of
the automatic orientation detection technique. For a given string, they generate 60
rotated strings by rotating the string clockwise from 0 to 180 degrees with a 3-degree
increment. They then apply the closing and erosion operators on each of the rotated
strings. Since a horizontal string has the largest number of character pixels near each
other, horizontally, the orientation of the string with the largest number of remaining
pixels after the erosion operator is searched; an example can be seen on the right side
of Figure 26.

Other text recognition techniques include additional (or ancillary) information for
identifying areas of text labels in the map images. Gelbukh et al. [2004] extend the
algorithm described by Velázquez and Levachkine [2004] by exploiting additional infor-
mation from a toponym database, linguistic dictionaries, and the spatial distributions
of labels of various font sizes in a map to detect and correct errors introduced during
the processes of text recognition. Myers et al. [1996] generate hypotheses about the
potential characters in each text label and the locations of these text labels using a
gazetteer. They identify text zones in the scanned maps by detecting and grouping short
length patterns in the horizontal and vertical directions. The identified text zones are
then verified based on the hypotheses generated from the gazetteer using a keyword
recognition technique that detects the presence of possible text labels based on whole
text shape within the text zone. The auxiliary information (e.g., gazetteers) used in
these techniques is usually not easily accessible for map images.

These recent text recognition systems incorporate the underlying cartographic princi-
ples for map labeling into their text recognition procedures (i.e., build special document-
structure-analysis techniques for maps) to achieve the best results. However, these text
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Fig. 27. The user provides examples of road colors by selecting points in the center of segments.

recognition systems are map or language specific and are independent from the final
character recognition process (consider OCR as a final, separate process). A key chal-
lenge here is how to build document analysis rules based on generic cartographic
principles and tightly integrate these rules into the document analysis components in
the state-of-the-art OCR systems.

4.6. Interactive Map Processing Systems

Maps can be quite noisy, and there is a lot of variation between maps; therefore, it is
difficult, if not impossible, to fully automate the processing of maps. Thus, a number of
systems exploit efficient interactive map processing techniques where the user provides
some input to help in the recognition process. Two basic approaches have been used in
various studies. The first approach allows a user to provide sample inputs to guide the
extraction of the layers. The second approach allows the user to provide input to repair
or improve the layers after they have been extracted. We will review each approach in
turn.

A significant challenge in map processing is the variations in how layers are rep-
resented from one map to the next. One way to address this challenge is to allow the
user to provide examples of the layer or layers that a user wants to extract from a
map and use the examples to learn how to extract the layer(s). This has been done
using several different methods. In the work by Wise [2002] on extracting soil maps,
the user provides a seed pixel for each soil layer and then the system uses that seed
pixel in a flood-fill algorithm that adds additional pixels if they are adjacent and within
some threshold of the RGB value, hue, and brightness. The approach was successfully
used to extract layers represented by dithered patterns of different colors, but they
recognize that the results could depend on which seed pixel was selected for defining
the threshold value. In the work by Bessaid et al. [2003], they extract the layers from
four-color maps and the user provides examples of each of the four colors (brown, black,
green, and blue) since the actual colors vary from one map to the next. In the work
by Chiang and Knoblock [2013], they incorporate user input to identify multiple colors
that have comprised the road lines in scanned maps. The user selects a single point in
the center of a road (as shown in Figure 27) and the system then detects the road lines
based on a Hough transform [Duda and Hart 1972] for each color. When the majority
of the detected Hough lines are near the point that the user has selected, the system
assigns that pixel color as a road color. This allows the system to determine all of the
colors that comprise a road line using only a single point selected by the user. Chiang
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and Knoblock [2011] exploit a similar technique for determining the color of a text
layer. The user provides an example of a text string, and the system uses the dominant
pixel color to extract the text layer.

Since maps can be noisy and complex, a related challenge is extracting the layers
when there is missing information, overlapping features, or disconnected lines. A num-
ber of systems have provided the ability for a user to interact with the system to correct
the extracted layers [Suzuki and Yamada 1990; MapScan 1998; Ablameyko et al. 2001;
Esri ArcScan4]. The capabilities of these systems are all quite similar in that they
allow a user to interactively correct, add, or reject vector lines. Ablameyko et al. [2001]
present a set of techniques that focus on connecting broken vectors by allowing the
user to specify either two vectors to connect or the length of a sequence of vectors to
connect. This addresses a common problem in map extraction where the vector layers
are broken due to the overlap with other layers. The other work that is particularly
notable is MapScan for Windows [MapScan 1998], which provides an extensive set of
editing operations for dealing with extracted map vectors. In particular, the tool set
provided by Mapscan includes the usual operations for adding, deleting, moving, and
splitting nodes, as well as operations for adding, deleting, and connecting segments.
However, Mapscan is a commercial system, and the details of the techniques used are
not available. Although these interactive approaches are useful for processing a single
map, the user interaction steps need to be repeated for each input map, and hence they
do not scale well (in production) when there are a large number of maps to process.

Instead of building map processing systems that are specifically tailored to a particu-
lar map type, using interactive map processing techniques provides a general approach
that makes it possible to process a wide variety of map types. The existing systems
described earlier already demonstrate the generality of using interactive approaches.
The remaining challenges are twofold. First, we need to develop interactive techniques
that minimize the user input and then utilize that input to build end-to-end systems
for extracting and recognizing features. Second, we need to develop systems that learn
from the user input so that more of the processing can be automated over time.

4.7. Georegistering Maps

There are numerous maps—especially historical maps—that lack the metadata de-
scribing the details of the map location, datum, and projection used to create the map.
In order to address this limitation and make use of the data extracted from these
maps in a GIS environment, researchers have worked on various techniques for au-
tomatically georegistering a map. Commonly, there are three steps in the process of
georegistering a map. The first step is to extract a set of reference features from the
map that can be used for georegistering the document. The second step is to find a
set of control point pairs that relate the extracted features with another georeferenced
dataset. This is the most difficult step to automate, and in many commercial products
(e.g., Esri ArcGIS), this step is performed manually. The third step is to then use this
mapping to transform the map through rubbersheeting or conflation [Saalfeld 1993]
so that the map is aligned with other geospatial data. Figure 28 shows the overall
approach to georegistering a map.

In the first step, the features that are typically extracted from a map for georegistra-
tion are a set of road features such as a set of road intersections [Chen et al. 2008] or the
entire road network [Chiang et al. 2009], as described in Section 4.4. Road features are
often used because they tend to be graphically stable features that change infrequently
(current roads in Europe often follow the same paths as the original Roman roads).

4Esri ArcScan (http://www.esri.com/software/arcgis/extensions/arcscan).
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Fig. 28. The process of georegistering a map with unknown coordinates.

In the second step, the task is to determine the precise geolocation of the extracted
features by comparing them against an already georeferenced dataset (“reference”).
The georeferenced dataset is typically an accurate road network in vector format often
from a current, digitally produced data layer. If the map to be processed already has
some basic geolocation information (e.g., projection and geodetic datum used), then
this is a relatively straightforward matching problem between the features extracted
from the map and the georeferenced dataset. However, the more general case is a map
with limited or no geolocation information where the problem is to find a small set
of features extracted from a map and match them with a large set of georeferenced
features in a large road network dataset (called an asymmetric matching problem [Li
2009]). This problem has been solved in several ways, depending on the assumptions
made about the map. Chen et al. [2008] developed an approach that assumes the
rotation of the map is known and then finds the translation and scale of the map
using an efficient point pattern-matching algorithm (called GeoPPM). The Chen et al.
approach is robust to noise and can deal with large numbers of missing or extraneous
intersection points, which means that the technique works well on historical maps,
which typically have fewer intersection points because there were typically fewer roads.
More recently, Li [2009] developed the SIPPM matching algorithm, which maps the
points and their relationships into polar coordinates to provide a technique that can
support the mapping with rotation in addition to translation and scale. Their results
show that they can map the features on a map to a georeferenced dataset with tens
of thousands of points in less than 6 seconds, although the approach may be less
tolerant to noise. At the conclusion of this step, these algorithms will produce a set
of control points between the locations of the extracted features from a map and the
corresponding features in the georeferenced dataset. These control points can then
be analyzed to provide the precise geocoordinates, scale, and rotation (in the case of
SIPPM) of a map. In addition, the complete set of control points provides a detailed
mapping between the two datasets that can be used in the next step.

In the third step, the problem is to actually modify the map so that it aligns with the
corresponding georeferenced dataset. This is particularly useful for either overlaying
a map on top of an image or improving the alignment of an extracted vector layer from
a map with other spatial layers. This step is based on a technique called conflation
developed by Saalfeld [1993], which addresses the problem of how to merge two vector
maps and their features. In this approach, a map is partitioned into a set of trian-
gular regions using Delaunay triangulation. Delaunay triangulation is used because
it maximizes the angles of the triangulations, which reduces the possible distortion
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Fig. 29. Rubbersheeting a map to an image.

introduced in this process. Using these triangular regions, the map or map layer can
then be rubbersheeted to the georeferenced dataset so that the two layers are aligned
(as shown in Figure 29). In the case of a raster layer, the map would be stretched to
align with the other layer; in the case of a vector layer, the vector geometry would
simply be updated based on the alignment of the triangles.

In general, the work described previously has shown that it is possible to both find
and exploit control points to automatically register a map even when the metadata
describing a map is missing. However, these techniques still assume that the general
location of the map is known and that there exists a reference dataset for that region.
An interesting challenge is to build a reference dataset for the whole world and develop
techniques that can automatically register a map to a location anywhere in the world
and determine the correct metadata for that map.

5. CHALLENGES AND OPPORTUNITIES

As seen in this article, there has been a significant amount of interest in and research
on map processing over the years. Existing research efforts have been scattered over
many organizations and countries, have addressed a wide variety of issues, and have
been published in many different venues. The authors hope that this article will pro-
vide a more integrated view of the large body of work that has been conducted. Past
research has typically focused on specific map types, because the research is often
driven by the need to extract the data from a specific set or series of maps. Although
much progress has been made on solving numerous problems in map processing, there
are many, many problems left to solve. Furthermore, we believe that the ability to
extract and georeference the data in maps will unlock a wealth of information that has
many applications, including constructing new maps, building better and more detailed
gazetteers, performing historical research about areas that have changed over time,
and conducting medical research on links between man-made features and diseases.

Given the history of scattered funding and the narrow focus on specific map types,
the question is how to accelerate the progress in the area of map processing. We
believe that this can be best achieved by encouraging researchers to make their soft-
ware and datasets available. This will allow other researchers to build on the current
state of the art instead of having to reimplement each component individually. The
availability of datasets also means that researchers can then directly compare their
techniques against other algorithms and evaluate their techniques on maps that have
been processed by others. If researchers make their software available under open
source licenses, it also means that we can begin to put together integrated systems
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that combine the best algorithms, which will then provide a set of tools that can be
used by others for extracting data from their own maps. As has been described in this
survey, it is difficult to draw direct linkages between certain techniques and types or
qualities of maps. Map processing still depends on the expertise of the analyst to choose
an appropriate technique for a particular extraction task depending on the type and
quality of the map document at hand. Thus, currently there is no unified or generic
map processing framework that would make it possible to select the best-performing
techniques and methods for map processing work for various kinds of maps. However,
if the community can be better integrated, a systematic understanding of existing so-
lutions can be developed and evaluated to provide the basis for an initial framework in
the near future.

Beyond the issue of developing a more integrated community, there are also several
areas of specific research that we want to highlight as deserving more attention. First,
processing maps is hard due to the complex overlapping data provided in many maps.
Thus, we believe that it is especially important to develop interactive techniques that
reduce the user effort in map processing and allow users to apply their own expertise to
extract, verify, and even correct the extracted data. By developing efficient interactive
techniques, we can better exploit the knowledge and human abilities for understanding
map representations and possibly integrate learning processes to improve the systems.
Second, there is a vast amount of historical data captured in maps that could have
a wide variety of uses, but often the historical maps are the hardest documents to
process. Therefore, we believe that there should be more focus and more research
funding directed to the problems of extracting data from noisy maps. Third, little work
has addressed the problem of the provenance, accuracy, and reliability of the extracted
results. As map processing research comes into its prime, there is the opportunity to
extract a great deal of information from maps. As a community, we need to record the
provenance of these extracted data, develop techniques to estimate the accuracy, and
provide methods to quantify the reliability of the generated spatial data.
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