
Mapping Hierarchical Sources into RDF
using the RML Mapping Language

Anastasia Dimou∗, Miel Vander Sande∗, Jason Slepicka†,
Pedro Szekely†, Erik Mannens∗, Craig Knoblock† and Rik Van de Walle∗

∗Ghent University – iMinds – Multimedia Lab

Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium

Email: {firstname.surname}@ugent.be
†University of Southern California, Information Sciences Institute

Department of Computer Science, USA

Email: {slepicka,pszekely,knoblock}@isi.edu

Abstract—Incorporating structured data in the Linked Data
cloud is still complicated, despite the numerous existing tools.
In particular, hierarchical structured data (e.g., JSON) are un-
derrepresented, due to their processing complexity. A uniform
mapping formalisation for data in different formats, which would
enable reuse and exchange between tools and applied data, is
missing. This paper describes a novel approach of mapping
heterogeneous and hierarchical data sources into RDF using the
RML mapping language, an extension over R2RML (the W3C
standard for mapping relational databases into RDF). To facilitate
those mappings, we present a toolset for producing RML mapping
files using the Karma data modelling tool, and for consuming
them using a prototype RML processor. A use case shows how
RML facilitates the mapping rules’ definition and execution to
map several heterogeneous sources.

I. INTRODUCTION

Most of the data that we would like to have as Linked

Data currently exists in formats other than RDF; much of it

exists in relational databases. Many languages [1], tools and

different approaches [2] have been proposed to convert data

from relational databases to RDF. In 2012, the “R2RML: RDB

to RDF Mapping Language” 1 became a W3C recommendation,

standardizing a language for mapping relational databases to

RDF. While databases account for a significant amount of

data, a growing number of datasets are represented in other

formats. For example, government and scientific data are often

published in spreadsheets or text delimited (e.g., CSV) files.

Vast amounts of data are accessible via Web APIs that return

data in XML or JSON. ProgrammableWeb.org, an index of

Web APIs reports over 10,000 different APIs in 2014, 74

of which return their results in RDF, while the number that

produce JSON or XML is over 5,000 each. In contrast to RDB

systems, different solutions were introduced for these different

serializations, but neither uniform nor corresponding language.

In order to leverage these heterogeneous data in Linked

Data applications, not only do we need solutions to express

mappings from multiple data formats into RDF but we also

need those solutions to map their cross-file links, too. Current

approaches that automatically define classes and properties

from the schema of the source data (e.g., map the XML schema

1http://www.w3.org/TR/r2rml/

to an ontology or define an RDF property for each object in a

JSON file) solve the problem on a per-file basis, while in the

effort to generalise the approach, a lot of the data semantics

are getting lost. Furthermore, hierarchical sources are usually

preprocessed, only providing partial access to their data.
In this paper, we present a solution that supports the

definition of mappings and the generation of an RDF rep-

resentation of data in hierarchical format. To this end, we

use RDF Mapping Language (RML), a language to specify

mappings for heterogeneous and hierarchical serializations

into RDF, according to an RDF schema or ontology of the user’s

choice. RML is defined as a superset of the R2RML mapping

language. We accompany RML with a toolset that makes the

language operational and practical. The toolset consists of

Karma, an integrated development environment that facilitates

the creation of mappings for a large subset of RML, and an

implementation of a prototype RML processor to execute them.
The rest of the paper is organized as follows: Section II

discusses related solutions existing today. Section III describes

how the RML language handles the mapping of hierarchical

sources to RDF. Section III-C describes in detail how RML

extends R2RML and III-D summarizes the extension. Sec-

tion IV describes how Karma facilitates the creation of RML

mapping definitions and section V addresses the challenges of

implementing an RML processor. Finally, sections VI and VII

present the solution’s evaluation, conclusions and future work.

II. STATE OF THE ART

Several solutions exist to execute mappings from different

file structures and serializations to their RDF representations.

To be more precise, different mapping languages beyond

R2RML are defined for databases [1], which, in turn, already

has several implementations2. Similarly, mapping languages

were defined to support conversion from data in CSV and

spreadsheets to the RDF. The XLWrap’s mapping language [3],

the Mapping Master’s M2 [4] and Vertere3 are a few of them.
In the case of mappings from XML to RDF, there is

more diversity on the proposed solutions. To the best of our

2http://www.w3.org/2001/sw/rdb2rdf/wiki/Implementations
3https://github.com/knudmoeller/Vertere-RDF

2014 IEEE International Conference on Semantic Computing

978-1-4799-4003-5/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSC.2014.25

151

knowledge, there are no mapping languages defined. Instead,

the different tools rely mostly on existing XML solutions.

Krextor [5] and the AstroGrid-D4 mapping tools rely on

XSLT, while other implementations, like Tripliser5 and the

XSPARQL [6], deploy mappings using XPath and XQuery.

Finally, there are some other approaches that try to map the

XML schema to OWL ontologies. These XML solutions lead to

mappings on the syntactic level rather than on the semantic

level or fail to provide a solution applicable to a broader

domain. Furthermore, those solutions can not be extended to

cover other file serializations beyond XML. Besides the afore-

mentioned XML solutions, XSPARQL approximates a Global-
As-View approach that performs dynamic query translation to

convert different sources to RDF. XSPARQL generates RDF by

integrating data from XML files and relational databases, once

it has mapped them to RDF, and interlinks them with other

RDF data. Tarql’s6 function follows also a querying approach

to convert CSV to RDF.

Most existing tools deploy mappings from a certain source

format to RDF (source-centric approaches). There are only a

few tools that provide mappings from various source formats

to RDF but even those tools deal with the different files they

support separately following again a source-centric approach.

Datalift7, DataTank8, Open Refine9, Simile RDFizers10 and

Virtuoso Sponger11 are a few of the most well-known.

III. MAPPING HETEROGENEOUS RESOURCES USING RML

While R2RML efficiently handles mapping definitions of

data in relational databases to RDF, no uniform mapping

language exists to support other formats. RML is defined as

its superset, aiming to extend its applicability and broaden its

scope beyond tabular structures, and define mappings of data

in heterogeneous formats. In this section, we briefly introduce

R2RML, discuss its limitations due to its assumption of a

tabular input and describe how RML extends R2RML to handle

hierarchical structures.

A. Mapping relational databases to RDF using R2RML

The input to an R2RML mapping is a relational database

and the output an RDF dataset. The mapping to the RDF data

model is based on one or more Triples Maps and occurs over

a Logical Table iterating on a per-row basis. A Triples Map

specifies rules that generates a number of RDF triples from

each row and consists of three main parts: the Logical Table,

the Subject Map and zero or more Predicate-Object Maps. For

instance, the triples of Listing 4, lines 24 - 31 are generated

from Table I by applying the Triples Map in Listing 1.

A Logical Table (rr:LogicalTable) is either an SQL table

or an R2RMLView. In the former case, a Logical Table is

4http://www.gac-grid.de/project-products/Software/XML2RDF.html
5http://daverog.github.io/tripliser/
6https://github.com/cygri/tarql
7http://datalift.org
8http://datatank.com
9http://openrefine.org
10http://simile.mit.edu/wiki/RDFizers
11http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger

NAME BIRTH DATE DEATH DATE
Robert Theodore McCall 1919-12-23 2010-02-26
Ronald Anderson 1929-12-06

TABLE I
THE SQL TABLE “ARTWORKS” WITH INFORMATION ABOUT ARTISTS.

represented by a source that has exactly one rr:tableName

property that points to the table’s name [line 4]. In the latter

case, a Logical Table stand for the results of executing an

SQL query (the R2RMLView) against the input database and

is represented by a source that has exactly one rr:sqlQuery

property, whose value is a valid SQL query.

The Subject Map (rr:SubjectMap) defines the rule that

generates unique identifiers (URIs) for the resources and is

used as the subject of all the RDF triples that are generated

from this Triples Map [line 5]. Therefore, the RDF triples

generated from one row in the Logical Table using a certain

Triples Map all share the same subject.

The Predicate-Object Map (rr:PredicateObjectMap) [line
6] defines the rule that generates pairs of Predicate Maps
and Object Maps that, together with the subjects generated by

the Subject Map, generates one or more RDF triples for each

row. A Predicate-Object Map consists of Predicate Maps [line
7], which define the rule that generates the triple’s predicate

and Object Maps or Referencing Object Maps [line 8], which

defines the rule that generates the triple’s object.

1 @prefix rr: <http://www.w3.org/ns/r2rml#>.
2 @prefix ex: <http://www.example.com/>.
3 <#ArtistMapping>
4 rr:logicalTable [rr:tableName "ARTISTS";];
5 rr:subjectMap [rr:template "http://ex.com/{NAME}"];
6 rr:predicateObjectMap [
7 rr:predicate ex:birth_date;
8 rr:objectMap [rr:column "BIRTH_DATE"];];
9 rr:predicateObjectMap [

10 rr:predicate ex:status;
11 rr:objectMap [rr:constant ex:artist]].

Listing 1. An R2RML mapping document for the database table ARTISTS.

The Subject Map, the Predicate Map and the Object Map

are Term Maps, namely rules that generate an RDF term (an

URI, a blank node or a literal) from a Logical Table row. A

Term Map can be a constant-valued term map (rr:constant)

that always generates the same RDF term, [line 11], or a

column-valued term map (rr:column) that is the data value

of a referenced column in a given Logical Table row [line 8],

or a template-valued term map (rr:template) that is a valid

string template that can contain referenced columns [line 5].

The referenced columns are column names that exist in the

triples map’s Logical Table.

Furthermore, R2RML supports cross-references between

Triples Maps, when the subject of a Triples Map is the

same as the object generated by a Predicate-Object Map.

A Referencing Object Map (rr:RefObjectMap) is used then

to point to the Triples Map that generates on its Subject

Map the corresponding resource, the so-called Referencing

Object Map’s Parent Triples Map. If the Triples Maps refer to

different Logical Tables, a join between the Logical Tables is

required. The join condition (rr:joinCondition) performs the

join exactly as a join is executed in SQL. The join condition

152

consists of a reference to a column name that exists in the

Logical Table of the triples map that contains the Referencing

Object Map (rr:child) and a reference to a column name that

exists in the Logical Table of the Referencing Object Map’s

Parent Triples Map (rr:parent).

B. Dealing with hierarchy and heterogeneity

Three features of relational databases’ tables make R2RML

mappings fairly easy to process: (i) each row is a self-

contained extract of data that can be processed independently;

(ii) the columns in each row can be referred to unambiguously;

(iii) for each reference to a column in a single row, a unique

value is returned. In hierarchical data, there is no concept of

a row to iterate over, an element name can appear multiple

times in the hierarchy, and a reference can map to a collection

of values. This requires the following adaptations:

(i) Explicit reference to the iteration pattern: This lends

R2RML a simple “per row” iteration model that R2RML Triples

Maps take advantage of. Re-using R2RML to map data from a

CSV file to the RDF model is straightforward, because a CSV

file shares the same features. However, hierarchical sources

do not have such an implicit iteration model, nor an implicit

way of referring to their values, as columns are in the case

of database tables. Therefore, the R2RML mapping language

needs an explicit reference to an iteration pattern, before it can

be used for data in other structures and serializations.

(ii) Abstract reference to the input data: A generic mapping

language needs to deal with different data formats and serial-

izations which use different ways to refer to their data values

(e.g., XML’s elements and attributes or JSON’s objects). When

targeting a generic and extendable solution, the database-

specific references from the core model of R2RML need to be

excluded. To this end, any reference to the input file should

remain detached from the core model and be defined in a form

relevant to the input file’s serialization. In this regard, R2RML

considers the columns’ names as a reference point derived

from its own query language SQL. Thus, the references to the

data in other serializations should be addressed as they are

defined at their corresponding query languages, e.g., XPath for

XML serializations or JSONPath for JSON serializations. As a

more generic model is targeted, it is crucial not to impose a

uniform way to refer to the data, but rather provide a loose-

coupling between the references to input data using their query

languages and the mapping language definition.

(iii) More than one triple per Predicate-Object Map:
R2RML refers to the input data with column names and, for

each reference, only expects a single value returned, as a cer-

tain column name occurs only once on each row. Considering

this, it is assumed that, as a mapping definition has a single

subject definition, only one subject will be generated on every

iteration and only one triple for every subsequent Predicate-

Object mapping definition. In contrast, in hierarchical input

sources, a certain reference point (e.g., an element in the case

of XML) may occur more than once on a certain iteration.

Therefore, a generic solution should handle those multiple

occurrences that occasionally generate more subjects and more

triples after a single mapping definition.

Overall, in order to deal with other serializations, the scope

of R2RML needs to be broadened. A solution is required

that preserves the mapping definitions as in R2RML but tries

to efficiently tackle the burdens posed by the hierarchical

structure of data being, for example, in XML and JSON files.

We propose RML that deals with the aforementioned issues.

In the next section, we provide a description of RML

mapping definitions, while a concrete example of an iteration

over the hierarchical sources is described in Section V. In

the remainder of this section, we consider a simple scenario

where we have two source files to be mapped to their RDF

representation. The first file (Listing 2) is an XML file with

information about artists. The file contains exactly the same

data as the database table (Table I). The second file (Listing 3)

is a JSON file with information about artworks in a museum.

We map the two files into the RDF data model considering the

mapping definitions as provided in Listing 5. The expected

output is demonstrated in Listing 4.

<Artists>
<Artist>
<Name>Robert Theodore McCall</Name>
<Birth_Date>1919-12-23</Birth_Date>
<Death_Date>2010-02-26</Death_Date>
</Artist>
<Artist>
<Name>Ronald Anderson</Name>
<Birth_Date>1929-12-06</Birth_Date>
<Death_Date/>
</Artist>
</Artists>

Listing 2. artist.xml file with information about the artists.

[... { "Title": "Apollo 11 Crew",
"Artist": "Ronald Anderson",
"Ref": "NPG_70_36",
"Sitter": [{ "Name": "Neil Armstrong",

"Birth Date": "1930-08-05" },
{ "Name": "Buzz Aldrin",
"Birth Date": "1930-01-20" },

{ "Name": "Michael Collins" }],
"DateOfWork": "1969" },

{ "Title": "Neil Armstrong",
"Artist": "Robert Theodore McCall",
"Ref": "S_NPG_2010_51",
"Sitter": [{ "Name": "Neil Armstrong" }],
"DateOfWork": "2009" }, ...]

Listing 3. museum.json file with information about artworks in a museum.

C. Mapping hierarchical sources to RDF using RML

In this section, we explain how RML extends R2RML to

handle hierarchical sources. We describe how database-specific

components are decoupled and we introduce new concepts to

cover each requirement approached in the previous section.
Specifying the input data: In R2RML a Triples Map consists

of a Logical Table, a Subject Map and multiple Predicate-

Object maps. The R2RML Logical Table is extended in RML

to a resource named Logical Source (rml:LogicalSource)

which is used to specify the input file whose data needs to be

mapped. In R2RML, the Logical Table was specified providing

the table’s name. In the case of RML, the source (rml:source)

property is introduced to specify the source file. The reference

to the source file can be a URI or a relative reference to a local

153

@prefix ex: <http://ex.com/>.
@prefix crm: <http://www.cidoc-crm.org/cidoc-crm/> .

ex:NPG_70_36 a crm:E22_Man-Made_Object ;
crm:P102_has_title "Apollo 11 Crew" ;
crm:P14_carried_out_by ex:Ronald+Anderson ;
crm:P62_depicts ex:Neil+Armstrong,

ex:Buzz+Aldrin, ex:Michael+Collins.

ex:S_NPG_2010_51 a crm:E22_Man-Made_Object ;
crm:P102_has_title "Neil Armstrong" ;
crm:P14_carried_out_by ex:Robert+Theodore+McCall ;
crm:P62_depicts ex:Neil+Armstrong.

ex:Neil+Armstrong a crm:E21_Person ;
rdfs:label "Neil Armstrong".

ex:Buzz+Aldrin a crm:E21_Person ;
rdfs:label "Buzz Aldrin".

ex:Michael+Collins a crm:E21_Person ;
rdfs:label "Michael Collins".

ex:Ronald+Anderson a crm:E21_Person ;
rdfs:label "Ronald Anderson";
ex:birth_date "1929-12-06"ˆˆxsd:date.

ex:Robert+Theodore+McCall a crm:E21_Person ;
rdfs:label "Robert Theodore McCall";
ex:birth_date "1919-12-23"ˆˆxsd:date;
ex:death_date "2010-02-26"ˆˆxsd:date.

Listing 4. The RDF output.

file. In our example, line 11 of Listing 5 points to the JSON

file in Listing 3 and line 46 points to the XML file in Listing 2.

Referring to the input data: R2RML uses the column names

to refer to the input table as its query language SQL does.

Similarly, RML considers that the references to the data should

be addressed as they are defined at their corresponding query

languages, e.g., XPath for XML serializations or JSONPath

for JSON serializations. To this end, a Reference Formula-
tion (rml:referenceFormulation) declaration is introduced

allowing for each Triples Map to define the expected form

of references to the data. Each subsequent reference to the

input data (rml:reference) should be a valid expression of

the specified reference formulation, as a valid column name is

for R2RML. In our example, line 12 and line 47 of Listing 5

specify the Reference Formulation used for the references to

the input dataset.

Iterating over the input data: As mentioned earlier, the

iteration pattern cannot always be inferred in RML, but needs

to be specified for every Triples Map. Therefore, the iterator
(rml:iterator) property is introduced. The iterator deter-

mines the iteration model over the file, considering a pattern

that repeats several times over the data, and specifies the

extract of data to be mapped during each iteration. In R2RML,

each iteration returns a row of a database table, while in RML

each iteration returns an extract of data to be mapped. In the

example in Listing 5, line 13 specifies the iteration pattern over

a JSON file, while line 36 specifies another iteration pattern

for a different Triples Map that generates other RDF triples.

Line 48 determines the iteration pattern over an XML file.

Referring explicitly and implicitly to the input data: Any

further reference to the extract of data, for example within

the Subject Map or the Object Map, should also conform

with the Reference Formulation specified at the Triples Map’s

1 @prefix rr: <http://www.w3.org/ns/r2rml#>.
2 @prefix rml: <http://semweb.mmlab.be/ns/rml#> .
3 @prefix ql: <http://semweb.mmlab.be/ns/ql#> .
4 @prefix crm: <http://www.cidoc-crm.org/cidoc-crm/> .
5 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
6 @prefix ex: <http://ex.com/>.
7 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
8
9 <#ArtworkMapping>

10 rml:logicalSource [
11 rml:source "museum.json";
12 rml:referenceFormulation ql:JSONPath;
13 rml:iterator "$.[*]";];
14 rr:subjectMap [
15 rr:template "http://ex.com/{Ref}";
16 rr:class crm:E22_Man-Made_Object;];
17 rr:predicateObjectMap [
18 rr:predicate crm:P102_has_title;
19 rr:objectMap [rml:reference "Title";]];
20 rr:predicateObjectMap [
21 rr:predicate crm:P14_carried_out_by;
22 rr:objectMap [
23 rr:parentTriplesMap <#ArtistMapping>;
24 rr:joinCondition [
25 rr:child "Artist";
26 rr:parent "/Artists/Artist/Name"]]];
27 rr:predicateObjectMap [
28 rr:predicate crm:P62_depicts;
29 rr:objectMap [
30 rr:parentTriplesMap <#AstronautMapping>]].
31
32 <#AstronautMapping>
33 rml:logicalSource [
34 rml:source "museum.json";
35 rml:referenceFormulation ql:JSONPath;
36 rml:iterator "$.[*].Sitter";];
37 rr:subjectMap [
38 rr:template "http://ex.com/{Name}";
39 rr:class crm:E21_Person];
40 rr:predicateObjectMap [
41 rr:predicate rdfs:label;
42 rr:objectMap [rml:reference "Name"]] .
43
44 <#ArtistMapping>
45 rml:logicalSource [
46 rml:source "artist.xml";
47 rml:referenceFormulation ql:XPath;
48 rml:iterator "/Artists/Artist"];
49 rr:subjectMap [
50 rr:template "http://ex.com/{Name}";
51 rr:class crm:E21_Person;];
52 rr:predicateObjectMap [
53 rr:predicate rdfs:label;
54 rr:objectMap [rml:reference "/Artists/Artist/Name";];];
55 rr:predicateObjectMap [
56 rr:predicate ex:birth_date;
57 rr:objectMap [
58 rml:reference "Birth Date";
59 rr:datatype xsd:date;]];
60 rr:predicateObjectMap [
61 rr:predicate ex:status;
62 rr:objectMap [rr:constant ex:artist]].

Listing 5. The RML mapping definition for the XML file.

Logical Source. The reference can be explicitly defined with

the full path [line 54], or relative to the Triples Map’s iterator

[line 50], where both of them refer to the same data value

of the current extraction. As R2RML does not allow cross-

row references, RML does not allow references to data outside

the current extract. Possible references are restricted towards

data on a lower level in the hierarchical structure. Therefore,

a single Triples Map cannot directly create triples which

contain RDF terms generated on previous or future points in

the iteration. However, this can be achieved by performing

joins, as described later on.

Generating a subject but multiple objects on an iteration:
While in R2RML a certain column name occurs only once, in

154

Fig. 1. On the left: R2RML diagram. On the right: RML diagram with R2RML features in light grey, extensions over R2RML in darker grey and additions
over R2RML in dark grey.

the case of RML, an expression specified at a Term Map could

be satisfied more times. As generating a single subject per

iteration is a fundamental assumption of R2RML’s definition,

RML keeps the restriction that any reference used in the

Subject Map definition should occur only once in the extract of

data returned from a certain iteration. In our example, line 38

could not be the Subject Map in the place of line 11, as the

latter is satisfied more than once per iteration. However, RML

does not put any restrictions when the reference included in a

Predicate or Object Map is satisfied more than once and, thus

multiple predicates or objects are generated.

Integrated mapping of input data: As R2RML supports

cross-table references, RML aims to support cross-file refer-

ences by extending the Referencing Object Map. In RML, as

in R2RML, if a Referencing Object Map refers to the same

input source, a Parent Triples Map definition is only required

to generate object resources considering another Triples Map

definition. In RML though, such a reference is only valid

when the Parent Triples Map’s iteration pattern is nested

deeper in the hierarchy than the child map. In our example,

the <#ArtworkMapping> refers to the <#AstronautMapping>

whose iteration pattern [line 36], is deeper in the hierarchy

compared to the one specified for the child map [line 13]. In

this sense, the parent-child relationship is inverted in relation

to the document hierarchy but consistent with R2RML naming

conventions. In RML, the parent and child maps can also

refer to different files. The join condition’s Child indicates the

reference to the data value extracted at the current iteration.

The Parent Reference indicates a data extract of the Parent

Triples Map. Each one of the Child and Parent References are

specified in the syntax the Reference Formulation specified

in the Logical Source of the Triples Map foresees. In our

example, the museum’s mapping is enriched with additional

data from the XML file regarding the artists. A joint mapping

definition is considered to keep the used sources aligned and

have a single point of definition for the resources generated

for the museum’s artists and the resources generated for the

artists based on the complementary file. As the join occurs

between two references that are in different formats, the Child

Reference at line 25 is defined using the JSONPath according

to its Triples Map’s Reference Formulation, while the Parent

Reference at line 26 is defined using the XPath syntax as this

is the language specified in the Parent Triples Map of the

Referencing Object Map. Therefore, the Child Reference and

the Parent Reference of a Join Condition may be defined using

different Reference Formulations, if the Triples Map refers to

sources of different formats.

D. Summary of RML extensions to R2RML

As displayed in Figure 1, RML keeps R2RML’s corner-

stones intact but extends those features that were relational-
database specific aiming to broaden its scope. In summary,

RML extends R2RML’s Logical Table to a Logical Source

rml:LogicalSource which can be, not only a relational

database’s table, but also a source file. In the same context,

instead of exclusively defining table names, RML can support

any reference to any source file within its Logical Source.

While in R2RML it is mandatory that a table will be used

as an input, in RML a broader range of input sources is

supported. Therefore, RML introduces the Reference Formula-

tion property rml:referenceFormulation that clarifies which

file format is parsed and how the references to the extracts

of this input are defined. Furthermore, since RML needs to

process files that do not have an explicit iteration pattern as

relational databases have, the iterator property rml:iterator

is introduced to be used when the iteration pattern needs to be

specified. Since specifing hierarchical data elements requires

a more rich language than just column names, the rr:column

property of R2RML is extended in RML as rml:reference and

its value is expected to be a valid expression in the language

specified by the Reference Formulation.

An RML mapping definition follows the same synax as

R2RML. The RML vocabulary namespace is http://semweb.

mmlab.be/ns/rml# and the preferred prefix is rml. More details

regarding RML can be found at http://semweb.mmlab.be/rml.

IV. CREATING RML DOCUMENTS

To provide users with a semi-automatic way to quickly

generate RML mapping definitions, an extension was built for

Karma, an information integration tool. More specifically, the

Karma GUI and semantic model learning capabilities were

enhanced to accommodate RML’s needs.

Figure 2 is a stylized example of how a user would

model the example museum JSON data source. For each

data element, the user assigns semantic types to describe the

relationships between the data element. The figure shows the

user attempting to assign the semantic type rdfs:label to

the Artist field to describe a class (e.g., crm:E21_Person).

The figure also shows a list of semantic types suggested

by Karma to the user by reasoning about OWL Ontologies,

learning from past user actions, and using Conditional Ran-

dom Fields. With each new semantic type and class, Karma

develops a graphical representation of the relationships. The

classes become internal nodes in a graph and the semantic

relationships between the classes become links that tie the

classes together. Meanwhile, the semantic types connect the

155

Specify Semantic Type
for the Artist column

Edit automatically-
proposed links

Fig. 2. Building the RML mapping for the museum dataset using Karma.

classes to the data, which form external nodes. Each class gets

assigned an id, if there are multiple instances of the class, for

instance, crm:E21_Person has two: the Artist (E21 Person1)

and the Sitter (E21 Person2). After each addition to the graph,

Karma attempts to create a minimum weight Steiner Tree that

best describes the relationships between the data and then it

adds links to the graph. If the user does not agree with the

automatically proposed links, they are able to edit them.

Generating RML Mapping from Karma Model

Once the user is satisfied with the model, Karma generates

an RML mapping document from the Steiner Tree graph

representation. It begins with generating Triples Map for

the root of the tree and all subsequent internal nodes of

the tree. To create a Subject Map for the node E22 Man-
Made Object1, Karma starts with outputting the node’s class,

(crm:E22_Man-Made_Object), as the class of the Subject Map.

Karma then searches the node’s links for one marked as a

classLink, which corresponds to the node’s URI. Karma uses

this to generate the template for Subject Map. If no such link

exists, no template is added, because the internal node is a

blank node. If one does exist, like Work URI in this case,

Karma normally outputs a template containing just the path to

the data element in the appropriate reference formulation. For

instance, the expression in JSONPath would be $[*].Work_URI.

In this example, however, the Work URI data element

does not correspond to the source data. In Karma, users can

derive new data elements from the source data by performing

cleaning and transformation actions in ways that may not map

to RML. One such action that will map to RML, however, is

leveraging the ability to execute user-provided Python code

to generate URIs instead of its usual purpose of transforming

and cleaning data. Karma can parse the Python code to see if

it can be translated into a valid template. If so, the template

of line 15 is added to the Subject Map instead of the new

data element. Otherwise, the original non-compliant template

is generated from the new data element and the user is notified.

To create the Logical Source for the Triples Map,

Karma begins by outputting the worksheet’s name

[line 11], as the Source name and adds JSONPath as

the rml:referenceFormulation according to the source data

behind the worksheet: JSON. Accordingly, it also generates

an rml:iterator in the appropriate reference formulation.

If a data element containing the URI exists for the node

represented by the Triples Map, Karma outputs a path

expression that leads to the parent of that data element,

whether it is the root of the document or a nested element.

Alternatively, if the Triples Map represents a blank node,

Karma searches through the data elements of the leaf nodes to

find the deepest nested table and generates a path expression

for that data element’s parent likewise.

After generating the Subject Map and Logical Source,

Karma processes each of the node’s links to generate

Predicate-Object Maps. For each link, Karma outputs a Pred-

icate Object Map containing the link’s semantic type. If

the link target is a leaf node, namely a data element in

the source data, Karma generates an Object Map, like for

crm:P102_has_title. For that Object Map, Karma outputs

an rml:reference that captures the path to the field in

the appropriate Reference Formulation relative to the iter-

ator, in this case Title. If the link targets another internal

node, Karma generates a Referencing Object Map with an

rr:parentTriplesMap pointing to the Triples Map that corre-

sponds to the link target.

V. PROCESSING RML DOCUMENTS

Unlike R2RML, implementing a processor for RML is more

complex, since it deals both with tabular (relational databases

and CSV) and hierarchical sources (XML and JSON). Therefore,

it demands a scalable and abstract approach to support the

extracts of data in different structures (tabular and hierarchical)

and different formats (e.g., XML and JSON serializations of

hierarchical resources) in a uniform way.

While RML syntax is used for the mapping document

definition, in order to deal with the aforementioned extrac-

tion’s caveats, RML relies on expressions in a target language

(rml:referenceFormulation). Such an expression is used

wherever values need to be extracted from the source, namely

whenever an RDF Term Map or an iterator (rml:iterator) ap-

pears. To ensure consistency, the expression should be a valid

expression according to the language specified in the Triples

Map (rml:referenceFormulation). In order to deal with these

embedded expressions, an RML processor is required to have

a modular architecture where the extraction and mapping

156

modules are executed independently of each other. When the

RML mappings are processed, the mapping module deals with

the mappings’ execution as defined at the mapping document

in RML syntax, while the extraction module deals with the

target language expressions. An extractor corresponding to the

specified target language executes the expression and returns

the specified value. Therefore, the role of the extractor is

limited in parsing the defined source and providing to the

mapping module the corresponding extract of data as specified.

An RML processor can be implemented using two alternative

models: mapping-driven or data-driven. In the former case,

the processing is driven by the mapping module. It requests

an extract of data from the extraction module, considering

the iteration pattern specified at the Logical Source. In the

latter case, the processing is driven by the extraction module.

It passes an extract of data to the mapping module, which

applies the mapping rules valid for the particular extract. The

expressivity of such languages is usually very high. However,

to limit complexity and increase efficiency of implemented

processors, a well-defined set of constraints is included in

the RML definition. This advocates streaming solutions, since

datasets do not always fit in the processor’s memory. A side-

effect of a streaming approach, is the inability to support some

features of expression languages. For instance, XPath has look-

ahead functionality that requires access to data which is not

yet known. Nevertheless, in practice, most of the expressions

only require functionality within this subset. As a result, the

W3C XSLT 3.0 Working Draft [7] already mentions a streaming

specification. For functionality not supported by streaming, a

fallback mechanism to in-memory processing can be provided.

As a proof of concept, we created a Java implementation of

an RML processor12. In the remainder of this section, we de-

scribe the processing of Triples Maps in RML, disambiguating

further the processing of Referencing-Object Maps.

A. Processing Triples Maps

Unlike R2RML, data can no longer be approached in a purely

row-based fashion as hierarchical structures follow different or

arbitrary iteration patterns. Therefore, this iteration pattern is

defined at the Logical Source. The iterator (rml:iterator)

enables the processor to traverse through the source on a

per data-extract (e.g., XML element) manner. For each extract

of data, the Subject Map and the Predicate-Object Maps

of the Triples Map are applied. The expressions present in

rml:reference or rr:template refer to values in the current

extract, analogue to the column name references of a row

in R2RML. Unless the Term Maps to be executed define

constants, the extraction module takes care of the processing

of the expressions used and returns the corresponding values

to the mapping module. Although these patterns allow a pro-

cessing strategy analogue to R2RML, there is an important be-

havioural distinction. For tabular data (e.g., CSV or RDB), the

combination of row and column guarantees a single value is

returned, a fundamental assumption of R2RML. However, with

12https://github.com/mmlab/RMLProcessor

the path expression languages used for hierarchical sources,

such assumption cannot be made. Therefore, RML expects the

combination of data-extract and expression to return one or

more values. Note that the RML requires expressions outside

the iterator to retrieve only text nodes.

When the iteration is executed, each data-extract is passed to

the mapping module. The Subject Map is executed first and

computes the subject of all generated triples of this Triples

Map. The expressions used to define the subject’s URI template

should be validated only once per extract. In compliance to

R2RML and despite the distinct behaviour mentioned above,

this expression is only allowed to return a single value. After

the Subject Map is generated, the Predicate-Object Maps are

executed. A single Predicate-Object Map can contain npom

Predicate Maps and mpom Object Maps. Even though the ex-

pressions used to define the subject’s URI should be validated

only once per extract, the same restriction is not applicable

for the Predicate-Object Maps in the case of RML. For each

Predicate Map, an expression returns ipom values, constructing

an equal amount of predicates. For each Object Map, an

expression returns jpm values, constructing an equal amount

of objects. Therefore, a Predicate-Object Map generates a total

of (npom× ipom)× (mpom× jpom) triples in the case of RML.

B. Processing Referencing Object Maps

Processing Referencing Object Maps handles different lev-

els of complexity. In the simplest case, the Parent Triples Map,

defined in the Referencing Object Map, and the current Triples

Map share the same source and the subject pattern of the

Parent Triples Map is the same or narrower of the one at

the current Triples Map [line 30]. This allows the processor

to evaluate both Term Maps together, generating both subjects

together and combining them in the desired triple.

In case the Referencing Object Map uses a different Logical

Source, a Join Condition needs to be specified, as in R2RML

[line 23]. However, RML supports referring to a source file of

different structure and serialization. The mapping module of

the processor triggers the extractor of the extraction module to

iterate over the source file according to the iterator’s pattern.

For each data-extract, the parent’s reference value is compared

to the child’s reference value. When both values are equal, the

URI of the Object Map is generated executing the Subject Map

of the Referencing Object Map against the matching extract

of data. Then, the generated URI is assigned as the generated

object of the original Predicate Object Map.

As soon as the triples are generated, they can be either

loaded to a triple store or written to a file. Overall, an

RML processor needs to be accompanied not only by an

RML processor but also by other validators for each separate

extractor to validate the expressions of the target languages.

VI. EVALUATION

We evaluate our approach comparing our solution to

Datalift [8], one of the pioneer tools for mapping data in

different file formats to RDF. Datalift was selected as it also

offers the full stack of defining and executing mappings of

157

various raw data (CSV, RDF, XML and SHP files) to RDF and

is a representative XML approach. For our evaluation, we used

data of events taking place during Gent festival. The data is

in XML files, one for each day of the ten days of festivities

and are available at http://semweb.mmlab.be/rml/example. We

evaluate our approach based on the following criteria:

Semantic quality of the RDF output: Karma proposes a

semantic representation for the data which is crucial for the

enhanced quality of the generated output. Since RML supports

defining mappings of more sources in a combined way, Karma

can propose mapping recommendations of enhanced quality as

it builds a more comprehensive understanding of the domain.

Datalift neither recommends nor maps multiple files together.

Datalift limits further the eventual generated RDF output

due to its entity-per-row assumption when mapping tabular

data, which is often encountered to other solutions, too, and

the restrictive XSLT transformation, one of the most common

approaches for mapping data in XML. Each line of tabular

data becomes a resource and each column an RDF property as

the W3C direct mapping suggests. In the case of XML files,

a generic XSLT transformation is performed to produce RDF

from a wide range of XML documents. On the contrary, an

RML based implementation defines triples of different subjects

for a certain data extract, achieving semantically richer output.

For our evaluation, we relied on Karma to provide us

with a mapping recommendation and tried to reproduce it on

Datalift. Our RML based solution generated an RDF output with

resources of different types and links among data of different

input sources, while Datalift provided an output of a single

type and no links between data of different input sources.

Assistance in defining the mappings: Datalift provides

a User Interface as Karma, but is limited on assisting users

to coordinate the mapping procedure and fire its execution.

Datalift follows a two-steps manual procedure on a per-file
basis to edit the mappings. Initially, it converts data to raw RDF

without taking into account vocabularies, namespaces or links

to existing datasets. Users then select from a list of available

classes and properties to assign to the raw RDF but interlinking

resources is difficult, if not impossible. In contrast, besides

proposing a mapping recommendation, Karma, relying on

RML, accomplishes the mappings in one step. Over the course

of building a model for a complicated dataset, Karma saves

the users of debugging and iteratively going over the output

to verify that all triples are generated and linked properly by

graphically reasoning about and verifying the model. The users

can also get instant feedback on their model by testing which

triples are generated, in contrast with Datalift users.

Reusability of the mapping definitions: Datalift users

need to redefine the mappings for every new file mapped,

because the mapping definitions are tied to the implementation

and the specified source; as it happens to most of the proposed

solutions so far. An RML based solution reuses the same

mapping definitions for similar input sources, either of the

same format or not, and across different tools for editing

and executing mappings (mapping documents generated using

Karma are used to perform the mapping execution on RML

processor). For our evaluation, we reused the same RML

mappings for the ten input files, unlike Datalift where we

needed to redefine the mappings for each one of the ten files.
Scalability of mappings’ execution: Datalift processes the

mapping of different files depending on their format, thus it

can not be easily extended to support e.g., mappings of data

in JSON, as the full functionality needs to be implemented

from the beginning. An RML processor, in contrast, is source-

independent and, thus easily extended to cover other input

sources, as the core of the mappings execution is uniformly

implemented and any new extractor can be easily configured.
Overall, our solution relying on RML mapping formalisation

is optimal as semantically richer and better interlinked output

is achieved, while mappings are reused for sources describing

the same domain and are interoperable across different tools.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel approach for mapping

heterogeneous hierarchical sources into RDF using the RML

mapping language. We presented how R2RML is extended to

support hierarchically structured data and described a semi-

automatic approach to building RML mapping documents using

Karma as well how to execute the mappings to build RDF with

a prototype RML processor.
For future work, RML can be extended to support views

on sources, built by queries. This captures the issue of

data cleaning and transformation to enhance the mapping’s

applicability. Next, the efficiency of RML processing can be

improved. A possible optimization is the use of execution

plans that efficiently arrange the execution order depending

on their dependencies. Finally, RML could be used to specify

the triples’ provenance, by taking advantage of the RDF-nature

of the mapping documents.

REFERENCES

[1] M. Hert, G. Reif, and H. C. Gall, “A comparison of RDB-to-RDF
mapping languages,” in Proceedings of the 7th International Conference
on Semantic Systems, ser. I-Semantics ’11. ACM, 2011, pp. 25–32.

[2] S. S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T. Thibodeau Jr, S. Auer,
J. Sequeda, and A. Ezzat, “A survey of current approaches for mapping
of relational databases to rdf,” W3C RDB2RDF Incubator Group Report,
2009.

[3] A. Langegger and W. Wöß, “XLWrap – Querying and Integrating Arbi-
trary Spreadsheets with SPARQL,” in Proceedings of the 8th International
Semantic Web Conference, ser. ISWC ’09. Springer-Verlag, 2009, pp.
359–374.

[4] M. J. O’Connor, C. Halaschek-Wiener, and M. A. Musen, “Mapping
Master: a flexible approach for mapping spreadsheets to OWL,” in
Proceedings of the 9th International Semantic Web Conference on The
Semantic Web - Volume Part II, ser. ISWC’10. Springer-Verlag, 2010,
pp. 194–208.

[5] C. Lange, “Krextor - an extensible framework for contributing content
math to the Web of Data,” in Proceedings of the 18th Calculemus and
10th international conference on Intelligent computer mathematics, ser.
MKM’11. Springer-Verlag, 2011, pp. 304–306.

[6] S. Bischof, S. Decker, T. Krennwallner, N. Lopes, and A. Polleres,
“Mapping between rdf and xml with xsparql,” Journal on Data Semantics,
vol. 1, no. 3, pp. 147–185, 2012.

[7] M. Kay and Saxonica, “Xsl transformations (xslt) version 3.0 working
draft,” http://www.w3.org/TR/xslt-21/#streaming, 2012.

[8] F. Scharffe, G. Atemezing, R. Troncy, F. Gandon, S. Villata, B. Bucher,
F. Hamdi, L. Bihanic, G. Képéklian, F. Cotton, J. Euzenat, Z. Fan, P.-Y.
Vandenbussche, and B. Vatant, “Enabling Linked Data publication with
the Datalift platform,” in Proc. AAAI workshop on semantic cities, 2012.

158

