
A Scalable Approach to Incrementally Building
Knowledge Graphs

Gleb Gawriljuk1, Andreas Harth1, Craig A. Knoblock2, and Pedro Szekely2

1 Institute of Applied Informatics and Formal Description Methods (AIFB),
Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

2 Information Sciences Institute, University of Southern California,
Marina Del Rey, CA 90292, United States of America

Abstract. We work on converting the metadata of 13 American art
museums and archives into Linked Data, to be able to integrate and query
the resulting data. While there are many good sources of artist data, no
single source covers all artists. We thus address the challenge of building
a comprehensive knowledge graph of artists that we can then use to link
the data from each of the individual museums. We present a framework
to construct and incrementally extend a knowledge graph, describe and
evaluate techniques for efficiently building knowledge graphs through the
use of the MinHash/LSH algorithm for generating candidate matches,
and conduct an evaluation that demonstrates our approach can efficiently
and accurately build a knowledge graph about artists.

1 Introduction

To be able to link the data about artists from the 13 museums and archives of
the American Art Collaborative1, we need a reference data set that contains all
or most of these artists. Ideally, such a reference set would combine the known
information from all of the high-quality sources available today. Given that such
a reference set does not exist, we have to create the set from the input sources.
Constructing a consolidated set is challenging as we need to link the common
entities across large sources. Linking entities is challenging because the data is
often inconsistent due to errors, misspellings, or out-of-date information.

We present an approach to building knowledge graphs by consolidating data
from multiple sources. Constructing such a knowledge graph involves several
challenges. First, when consolidating the data from various data sources, we had
to align the data across available sources. Second, given the size of the data
sources we had to develop a scalable approach that could link the data across
sources with millions of entities. Finally, since the web is subject to a constant
growth, we designed an approach that makes it easy to include new sources by
extending an existing knowledge graph with the data of any new data sources
that become available.

1 http://americanartcollaborative.org/

2 A Scalable Approach to Incrementally Building Knowledge Graphs

In our approach, each knowledge graph provides data about entities of a spe-
cific type. We define a knowledge graph as a set of typed properties between an
entity and its property values. Given multiple datasets, we use an initial dataset
to create an initial knowledge graph, and then incrementally consolidate further
datasets into the knowledge graph. To consolidate data sources into the knowl-
edge graph, we use a five-step approach. One step in the approach applies the
MinHash/LSH (Locality-sensitive Hashing) algorithm [8] to produce candidates
for rule-based matching functions. Therefore, we reduce the number of compar-
isons the matching functions must execute, and thus are able to perform entity
linkage at scale.

In the remainder of the paper, we first present a motivating example of
building a knowledge graph of artists. Second, we describe our scalable approach
to incrementally building knowledge graphs. Third, we cover an experiment in
which we construct a knowledge graph consolidating 161,465 artist entities from
initially 17,539,125 entities, to demonstrate the scalability of the approach. We
evaluate precision and recall on a manually built ground truth with 200 artist
entities. Finally, we compare the work to other related work and present our
conclusions.

2 Motivating example

To illustrate our objective, we provide an example of consolidating data about
the pop artist Roy Lichtenstein from four sources. We use the available SPARQL
endpoints to access data from the Union List of Artist Names (ULAN), contain-
ing descriptions of 109,415 artists provided by the Getty2, and the Smithsonian
American Art Museum (SAAM), containing descriptions of 8,407 artists. We use
the downloadable RDF files from DBpedia, which provides data about 1,176,759
people, and the Virtual International Authority File (VIAF), which provides
data about 16,244,546 people3. Table 1 shows which data source provides what
data about Roy Lichtenstein.

After all four sources are consolidated, the resulting knowledge graph holds
the data about Roy Lichtenstein from all four source within one cluster. The
cluster has links to the identifiers denoting Roy Lichtenstein from all four con-
solidated data sources, including provenance information. In case two or more
sources provide the same value for a property, the knowledge graph mentions
the value once and adds provenance for each source which includes the value.

3 Building and extending a knowledge graph

We first give a general overview, and then discuss each step in detail. Our ap-
proach is designed to incrementally consolidate one data source at a time. The

2 http://www.getty.edu/
3 Please note that not all of the people in DBpedia and VIAF are artists.

A Scalable Approach to Incrementally Building Knowledge Graphs 3

Table 1. List of properties expressed in the shared domain ontology by data source.

Property name ULAN SAAM DBpedia VIAF Knowledge graph

name X X X X X
alternateName X X X
givenName X X X X
familyName X X X X
gender X X
nationality X X
birthDate X X X X X
deathDate X X X X X
birthPlace X X X X
deathPlace X X X X
description X X X X X

initial data source is used to create an initial knowledge graph. With each sub-
sequent data source as input, we extend the knowledge graph with data of the
subsequent data source as shown in Figure 1.

Fig. 1. An illustration of the incremental growth of the knowledge graph.

Our approach consists of five steps as illustrated in Figure 2. In the first step,
the input data source is filtered to only select the entities relevant for the final
knowledge graph. Then, the schema of the input data source is mapped to either
the input knowledge graph or, if no input knowledge graph is provided, to the
schema which should be used for the construction of the initial knowledge graph.

Fig. 2. The distinct steps of the approach.

After the input data source is filtered and mapped, there is a choice. In case
no input knowledge graph is provided, the input data source is used to build
an initial knowledge graph. For each entity in the initial data source, an entity
in the knowledge graph is created in the consolidation step. In case an existing
knowledge graph is provided next to the input data source, we continue with

4 A Scalable Approach to Incrementally Building Knowledge Graphs

the candidate generation step, in which we apply the MinHash/LSH to generate
candidates within the input knowledge graph for entities in the data source.
The linking step evaluates each generated candidate using rule-based matching
functions to decide which candidate is a match. In the final step, the input data
source is consolidated with the input knowledge graph based on the matching
links selected by the matching functions.

The approach can be adjusted through parameters concerning the candidate
generation and the linking steps. For the candidate generation, the user can
specify MinHash/LSH parameters which define how strict the MinHash/LSH
searches are for the candidates. For the linking step, the user can define the
rule-based matching functions and similarity thresholds.

3.1 Filter

In case the input data source includes additional entity types, the filter step can
be applied as an optional step to identify the entities of the target type in the
data source. In the filter step, we execute the candidate generation step followed
by the linking step for the input data source with the input knowledge graph. By
applying the filtering step, we link entities in the data source to the knowledge
graph and, thus, identify the linked entities as entities of the target type. Then,
the approach proceeds to the next step only with the identified entities.

3.2 Schema mapping

The schema of the input data source has to be mapped to the schema of the
knowledge graph to be generated. Both the candidate generation and the linking
step require to know which property in the data source semantically corresponds
to a property in the knowledge graph. This is defined by the schema mapping.
We use Karma [10], which automates the mapping from a source to an ontology,
to build the source mappings for the datasets. For mapping the sources, we use
schema:Person from the schema.org ontology.

3.3 Candidate generation

The most time-consuming task in our approach is linking the entities from the
data source to the entities in the knowledge graph. As mentioned by Doan et
al. [4] hashing techniques can be applied to scale up the entity linkage. Therefore,
to improve the scalability of our approach, we execute the candidate generation
step to apply the MinHash/LSH hashing technique [8] before the entity linkage.

We apply the MinHash/LSH algorithm to find candidate entities in the
knowledge graph for each entity in the data source which are likely to match,
so that we only need to compare the found candidates. Hence, we significantly
reduce the number of pair-wise comparisons required to execute and, therefore,
speed up the approach.

A Scalable Approach to Incrementally Building Knowledge Graphs 5

MinHash/LSH operates over an n-gram representation of the name values4.
The algorithm then hashes similar entities into the same cluster. The similarity of
two entities is defined by the Jaccard similarity between the two sets of n-grams
representing the two entities5.

How well the MinHash/LSH performs regarding recall and precision depends
on the number of used minhashes m and the number of items in the generated

hashes i. With m and i the LSH threshold t can be approximated as t = 1
i

1
m .

Thus, by adjusting m and i we can adjust the LSH threshold.

The LSH threshold t has the characteristic that t is the Jaccard-similarity
between the entity e1 in the knowledge graph and the entity e2 in the data
source so that e1 has a 50% chance to become a candidate. In other words, if
the LSH threshold is set to 80%, an entity e1 has a 50% chance to be selected
as a candidate of entity e2, when the Jaccard-similarity of e1 and e2 is 0.8.
Hence, the threshold can be seen as a parameter to adjust the LSH trade-off
between recall, precision, and performance. If a high recall is important then
the threshold needs to be low and the candidate generation will require more
time. If the performance of the MinHash/LSH and precision are important the
threshold needs to be high.

To select the most effective LSH threshold for finding candidate based on
the entity’s name, we conduct extensive experiments of the MinHash/LSH. We
assess the MinHash/LSH with either alternative m or alternative i which results
in various LSH thresholds. Table 2 shows the resulting LSH thresholds with their
recall and precision on the ground truth described in Section 4.1.

Table 2. LSH thresholds with their recall and precision.

t 34% 40% 46% 52%

Precision 14.12% 15.69% 23.12% 26.96%
Recall 100% 99.50% 99.50% 98.01%

The objective of the candidate generation step is to find as many matching
candidates as possible. Hence, we need to keep the recall high. To have a high
recall, we apply the MinHash/LSH with a low threshold of 46%. A low threshold
leads to a low precision because we find many false candidates. However, we
tolerate a low precision of the candidate generation because the precision will
be increased in the following linking step.

3.4 Linking

The linking step evaluates the clusters of candidates resulting from the Min-
Hash/LSH algorithm. We apply rule-based matching functions to decide whether

4 The 2-gram of the first name ’Roy’ consists of { R, Ro, oy, y }.
5 The Jaccard similarity between sets S and T is defined as |S∩T |

|S∪T | .

6 A Scalable Approach to Incrementally Building Knowledge Graphs

the candidate and the target entity in the knowledge graph are the same real-
world entity. The objective for the matching functions is to increase the precision
as much as possible while not decreasing the recall.

When applying a matching function, the function iterates over each cluster.
For each cluster, the function examines its matching rules for each candidate.
If the candidate fulfills the matching rules, the candidate stays in the cluster;
otherwise, the candidate is removed. As the clusters contain the data of each
candidate and the target entity, the matching rules can leverage that data to
decide whether a candidate is a match or not.

The matching functions can be exchanged with each other or chained to a
sequence of functions, each evaluating a certain aspect of the candidate data. For
example, when comparing people entities, we can define two matching functions
to first check the similarity of the names and remove candidate with a low
similarity and, then, further remove candidates with a different birth year.

3.5 Consolidation

In the final consolidation step, we either construct an initial knowledge graph
from the initial data source or extend the input knowledge graph with the se-
lected links of the input data source.

The data model of the knowledge graph illustrated in Figure 3 is based on the
schema:Role concept, which provides a way to represent multiple provenance
information for one property value. Each distinct property value of an entity is
modeled as a feature role holding the property value and its provenance. We use
the properties of schema:Person to describe artists and the PROV-O6 ontology
to model the provenance properties. The provenance indicates for each property
value the time of inclusion, the data source and the linking method used.

Fig. 3. Knowledge graph data model.

We construct the initial knowledge by creating a new entity for each en-
tity in the data source, with a unique URI within the knowledge graph and a
schema:sameAs property pointing to the original URI.

The knowledge graph is extended by adding only the properties and property
values of the data source which do not exist yet for the relevant entity. Given
the data of the existing knowledge graph Dkg and the data of the subsequent
data source Ds, the extended knowledge graph De

kg holds the data from Dkg

6 http://www.w3.org/TR/prov-o/

A Scalable Approach to Incrementally Building Knowledge Graphs 7

with data from Ds which was not there before De
kg = Dkg ∪Ds. Figure 4 shows

how the consolidation of a subsequent data source would add an already existing
name value (A), a new name value (B) and a new birth date value (C) to an
entity in the knowledge graph. The addition of the existing alternative name (A)
is represented by the added provenance to the existing feature role.

Fig. 4. Addition of a feature.

After all matched candidates are processed, the entities from the subsequent
data source that were not matched to any existing entity in the knowledge graph
need to be consolidated. Hence, we iterate over the data source and include each
unmatched entity as a new entity in the knowledge graph.

4 Evaluation

We evaluate our approach by assessing the quality of the results and the run-time
performance.

4.1 Ground truth

To quantify precision and recall, we manually build up a ground truth7. The
ground truth holds links for the alphabetically first 200 artist entities which are
represented in each of the four data sources. Because each entity exists in ULAN
and SAAM, we know that the entities are artists even if they are not typed as
an artist in DBpedia or VIAF. If a data source includes duplicates for an entity,
these duplicates are included in the ground truth as well. Hence, links found by
the approach that are not in the ground truth can be assumed to be wrong.

7 https://bitbucket.org/GlebGawriljuk/aifb-isi-knowledgegraphconstruction/

raw/168b6ec21654e1de01d546567f7232b77daaf1a2/groundTruth_final_2015.tsv

8 A Scalable Approach to Incrementally Building Knowledge Graphs

4.2 Quality evaluation

To evaluate the quality of the results, we review the steps of the approach in-
dividually for each source, starting with the candidate generation (LSH). We
apply two matching functions in sequence. First, we apply the Hybrid-Jaccard
function to check the similarity of the name values between the candidate and
the target entity and only keep the candidates with a similarity above 0.5. Sec-
ond, we apply the ’birth year’ function to check whether the candidate has the
same birth year as the target entity.

We start with the ULAN data and create a total of 109,414 entities in the
initial knowledge graph. Consolidating the 8,406 SAAM entities, we link 3,443
entities and introduce 4,963 new entities, resulting in 114,377 knowledge graph
entities. Then, we identify 58,944 DBpedia artist entities, link 34,838 of them,
and introduce 24,106 as new entities, leading to 139,396 knowledge graph entities.
Lastly, we identify 1,798,285 VIAF artist entities; we link 1,775,303 entities and
introduce 22,982 as new. We merge many VIAF entities, as the VIAF data
contains many duplicates and incomplete data (i.e., some records only have a
last name) and our matching is solely based on the first and last name. The final
knowledge graph holds 161,465 entities.

Table 3 shows the results of the ground truth evaluation based on the fol-
lowing quality measures:

– N: the number of ground truth entities which are introduced as new entities
to the extended knowledge graph.

– T: the number of ground truth entities for which candidates are found.
– C: the number of candidates that are found for all ground truth entities.
– Cc: the number of correct candidates for all ground truth entities including

duplicate candidates.
– Ct: the number of correct candidates for all ground truth entities excluding

correct duplicate candidates.
– Ci: the number of incorrect candidates for all ground truth entities.

When evaluating precision and recall we have to consider that the knowledge
graph can hold duplicate entities which are all correct candidates for a target
entity. Therefore, we differentiate between the number of correct candidates
including the duplicates (Cc) and the number of correct candidates excluding
the duplicates (Ct). Both precision and recall measures are based on Ct. The
precision can be calculated based on Cc as well, however, the precision would be
always higher and would only differ in at most 1%.

In the candidate generation step we achieve a high recall and a low precision
for all data sources. On the one hand, we miss only a few correct candidates due
to a low LSH threshold, because the target’s name differs from the candidate’s
name, due to a missing middle name, spelling errors or missing values. Therefore,
both have a Jaccard similarity near or below our LSH threshold. Such candidates
have only a chance of 50% or less to be found by the MinHash/LSH. On the
other hand, the MinHash/LSH also finds incorrect candidates due to similar
name value between the candidate and the target entity.

A Scalable Approach to Incrementally Building Knowledge Graphs 9

Table 3. Results of the ground truth quality evaluation.

T C Cc Ct Ci N Recall Precision

ULAN Initial KG - - - - - 202 - -

SAAM
Candidate generation 200 1,841 201 200 1,640 0 100% 10.87%

Linking
Hybrid-
Jaccard

200 217 201 200 16 0 100% 92.59%

birth year 187 188 188 187 0 13 93.50% 100%

DBpedia
Candidate generation 199 1,550 211 197 1,339 1 98.50% 12.83%

Linking
Hybrid-
Jaccard

197 226 208 196 18 3 98.00% 91.59%

birth year 187 192 190 187 0 13 93.50% 100%

VIAF
Candidate generation 271 1,468 293 272 1,175 7 97.84% 18.80%

Linking
Hybrid-
Jaccard

271 369 290 270 79 0 97.12% 77.36%

birth year 262 276 266 260 10 9 93.53% 96.30%

We anticipate to reduce the number of candidates and increase the precision
by applying the Hybrid-Jaccard function on the found candidates. We manage
to increase the precision close to 90% for all data sources, with a slight decrease
in recall. This is achieved by removing incorrect candidates while keeping most
of the correct candidates in the cluster. E.g., in the case of the SAAM consoli-
dation, we decrease the number of candidates from 1,841 to 221 while keeping
the number of correct candidates at 201.

We try to further increase the precision by applying the ’birth year’-function.
Furthermore, we tolerate a decrease of the recall as a trade-off to the increased
precision. We achieve to increase the precision for all data source consolida-
tions. As foreseen, for all consolidation the recall decreases. The recall decreases
because the ’birth year’-function removes correct candidates due to errors in
the birth year values of the entities. An example is a correct candidate “Pietro
Aquila” with “1592” as birth year value from ULAN8 but “1650” from SAAM9.

We do not achieve a 100% precision because some incorrect candidates always
remain, in case an incorrect candidate has a similar name and no birth year value.
Due to a similar name both the LSH and the Hybrid-Jaccard keep the candidate
in the cluster. The ’birth year’-function cannot evaluate the candidate because
of the missing birth year and, thus, the incorrect candidate stays in the cluster.

The results show that we manage to achieve a high recall during the candidate
generation as anticipated. Furthermore, we increase the precision by applying the
Hybrid-Jaccard-function. Lastly, we succeed in further increasing the precision
for the cost of a lower recall by executing the ’birth year’-function.

We tolerate a decreasing recall for an increasing precision because we argue
that a higher precision is more important than a high recall. With a high recall,
we can be sure to find all correct candidates for the cost of creating noise in form
of schema:sameAs links between non-matching entities. In such a case, each data

8 http://vocab.getty.edu/ulan/500018769
9 http://edan.si.edu/saam/id/person-institution/121

10 A Scalable Approach to Incrementally Building Knowledge Graphs

source added would lead to more noise, wrongly consolidating more entities into
one entity in the knowledge graph. In contrast, by prioritizing a high precision
we ensure that different entities are not consolidated into one entity, leading to
less noise (but more potential duplicates) in the knowledge graph.

4.3 Performance evaluation

For performance evaluation we measure the run-time for each step and review the
run-time in relation to the data size. Experiments are conducted on an Ubuntu
machine with 4 AMD Opteron 62xx class 2GHz CPU cores and 32 GB RAM.

Table 4. Overall performance per data source in hours:min:sec.

Step ULAN SAAM DBpedia VIAF

Candidate generation - 00:15:59 01:55:14 29:58:26
Linking - 00:01:37 01:11:22 55:02:13
Consolidation 00:02:12 00:04:49 00:23:20 156:34:12
Total 00:02:12 00:22:25 03:29:56 229:00:39

Table 4 shows the run-time of each step of the approach for each data source.
We find a long run-time for the Hybrid-Jaccard rule and the consolidation on the
VIAF data source for two reasons. Firstly, the VIAF data source is significantly
larger than the other data sources. Secondly, VIAF includes significantly more
different name values for each entity in multiple languages and variations. Hence,
the Hybrid-Jaccard rule must evaluate more values for each target entity when
linking the VIAF entities. Overall we can observe an increasing run-time with
each run as the size of both the knowledge graph and the data sources increases.

5 Related work

The challenge of automatic knowledge graph construction is a trending topic in
current research10. The body of work can be divided into three groups.

The first group, such as DIG [16], Knowledge Vault [5], CiteSeerX [1], Pu-
jara et al. [12], the Knowledge Graph Identification [13] and NELL [3], builds
knowledge graphs with a fixed schema from data retrieved using information
extraction techniques. Similarly, we build up the knowledge graph with a fixed
target schema. However, we do not apply information extraction techniques to
retrieve data from the web. Our focus is on using existing structured web data
sources, consolidating their data, and providing an integrated view on the data
from multiple data sources within a single knowledge graph.

The second group, such as Reverb [6], OLLIE [11], and PRISMATIC [7], uses
open information extraction without a fixed schema. Again, our approach differs

10 For example, the series of workshops on Automated Knowledge Base Construction
(AKBC), http://www.akbc.ws/.

A Scalable Approach to Incrementally Building Knowledge Graphs 11

in the objective: we integrate structured data rather than extract data. Also,
we operate on a fixed schema, while the open information extraction approaches
assume no fixed schema.

The third group consolidates data from structured data sources to build
up the knowledge graph. We consider our work strongly related to LDIF [14],
YAGO [15], YAGO2 [9], and Freebase [2], which we now discuss in detail.

The Linked Data Integration Framework (LDIF) [14] designs a similar ap-
proach to construct knowledge graphs. Both LDIF and our approach consolidate
web data into a knowledge graph by mapping input data to a target schema,
linking entities, and consolidating the data based on the found links. The most
significant difference is that LDIF uses a Hadoop implementation to parallelize
the work of their transformation modules. In contrast, we scale by applying the
MinHash/LSH algorithm. Furthermore, both approaches include provenance in-
formation in the knowledge graph. However, where LDIF includes only the origin
of data, we additionally include the processing information.

YAGO [15] builds up a knowledge graph by defining entity classes from the
conceptual Wikipedia categories and WordNet terms that do not represent an
entity. However, entity data is included only from Wikipedia as all WordNet
terms representing an entity are removed. Hence, no entity resolution among
the entities in Wikipedia and WordNet is applied. YAGO2 [9] does apply entity
resolution, but only on the location entities from Wikipedia and GeoNames11

Similar to our approach, the entity resolution techniques can be seen as multiple
rule-based matching functions. Their approach first matches the location entities
based on their names. If multiple candidates are found, YAGO2 uses the data
from the geo-coordinates of the entities to decide which candidate is a match.
However, these rules are fixed part of the approach and cannot be exchanged.

Freebase [2] is a tuple database which is collaboratively created, structured,
and maintained. Freebase provides an HTTP-/JSON-based API to maintain the
data through read and write operations. However, entity linking is carried out
in an interactive way with user input required for consolidation.

6 Conclusion

We have addressed the problem of efficiently building a consolidated knowledge
graph of a specific entity type from data spread over multiple large data sources.
Our approach works by aligning the data to a domain ontology, identifying the
candidate links using the MinHash/LSH techniques, generating links with high
precision using entity linking rules, and finally building the knowledge graph.

We have applied our approach to building a knowledge graph about artists
containing 161,465 artists consolidated from four data sources. We have eval-
uated the resulting knowledge graph and showed that on a sample of data it
has an average recall of 96,82% and a precision of 99,17%. We also have demon-
strated that we are able to efficiently construct a knowledge graph of high quality,
processing 17,539,125 entities in about 10 days on modest hardware.

11 http://www.geonames.org/

12 A Scalable Approach to Incrementally Building Knowledge Graphs

References

1. G. Alexander, I. Ororbia, J. Wu, and G. C. L. Citeseerx: Intelligent information
extraction and knowledge creation from web-based data. In Proceedings of the 4th
Workshop on Automated Knowledge Base Construction at NIPS, 2014.

2. K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collabo-
ratively created graph database for structuring human knowledge. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, 2008.

3. A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. J. Hruschka, and T. Mitchell.
Toward an architecture for never-ending language learning. In Proceedings of the
Twenty-Fourth Conference on Artificial Intelligence (AAAI), 2010.

4. A. Doan, H. A., and Z. Ives. Principles of Data Integration. Elsevier, 2012.
5. X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,

S. Sun, and W. Zhang. Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 2014.

6. A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open information
extraction. In Proceedings of the Conference on Empirical Methods in NLP and
Computational Natural Language Learning (EMNLP), 2011.

7. J. Fan, D. Ferrucci, D. Gondek, and A. Kalyanpur. Prismatic: Inducing knowledge
from a large scale lexicalized relation resource. In Proceedings of the 1st Interna-
tional Workshop on Formalisms and Methodology for Learning by Reading, 2010.

8. A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. In Proceedings of the 25th International Conference on Very Large Data
Bases, 1999.

9. J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. Yago2: A spatially
and temporally enhanced knowledge base from wikipedia. Artificial Intelligence
Journal, 194:2861, January 2013.

10. C. Knoblock, P. Szekely, J. Ambite, A. Goel, S. Gupta, K. Lerman, P. Mallick,
M. Muslea, and M. Taheriyan. Semi-automatically mapping structured sources into
the semantic web. In Proceedings of the 9th Extended Semantic Web Conference
(ESWC), 2012.

11. M. Mausam, Schmitz, R. Bart, S. Soderland, and O. Etzioni. Open language
learning for information extraction. In Proceedings of the Conference on Empirical
Methods on NLP and Computational Natural Language Learning (EMNLP), 2012.

12. J. Pujara and L. Getoor. Building dynamic knowledge graphs. In Proceedings of
the Knowledge Extraction Workshop at NAACL-HLT, 2014.

13. J. Pujara, H. Miao, L. Getoor, and W. Cohen. Knowledge graph identification. In
Proceedings of 12th International Semantic Web Conference, 2013.

14. A. Schultz, A. Matteini, R. Isele, P. Mendes, C. Bizer, and C. Becker. Ldif - a
framework for large-scale linked data integration graphs. In Proceedings of 21st
International Conference on World Wide Web, 2012.

15. F. Suchanek, G. Kasneci, and G. Weikum. Yago - a core of semantic knowledge.
In Proceedings of the 16th International Conference on World Wide Web, 2007.

16. P. Szekely, C. A. Knoblock, J. Slepicka, A. Philpot, A. Singh, C. Yin, D. Kapoor,
P. Natarajan, D. Marcu, K. Knight, D. Stallard, S. Karunamoorthy, R. Bojanapalli,
S. Minton, B. Amanatullah, T. Hughes, M. Tamayo, F. Flynt, R. Artiss, S. Chang,
T. Chen, G. Hiebel, and L. Ferreira. Building and using a knowledge graph to
combat human trafficking. In Proceedings of the 14th International Semantic Web
Conference, 2015.

