
IJDAR manuscript No.
(will be inserted by the editor)

Harvesting maps on the Web

Aman Goel · Matthew Michelson · Craig A. Knoblock

Received: date / Accepted: date

Abstract Maps are one of the most valuable docu-
ments for gathering geospatial information about a re-
gion. Yet, finding a collection of diverse, high quality
maps is a significant challenge because there is a dearth
of content specific metadata available to identify them
from among other images on the Web. For this reason,
it is desirous to analyze the content of each image. The
problem is further complicated by the variations be-
tween different types of maps, such as street maps and
contour maps, and also by the fact that many high qual-
ity maps are embedded within other documents such as
PDF reports. In this paper, we present an automatic
method to find high quality maps for a given geograph-
ical region. Not only does our method find documents
that are maps, but also those that are embedded within
other documents. We have developed a Content Based
Image Retrieval (CBIR) approach that uses a new set of
features for classification in order to capture the defin-
ing characteristics of a map. This approach is able to
identify all types of maps irrespective of their subject,
scale and color in a highly scalable and accurate way.
Our classifier achieves an F1-measure of 74%, which
is an 18% improvement over the previous work in the
area.

A. Goel · C. A. Knoblock

Department of Computer Science and Information Sciences In-
stitute
University of Southern California, Marina del Rey, CA 90292
USA

E-mail: amangoel@isi.edu
E-mail: knoblock@isi.edu

M. Michelson

Fetch Technologies, 841 Apollo St. Suite 400, El Segundo, CA

90245 USA
E-mail: mmichelson@fetch.com

Keywords Map identification · K-Nearest Neighbor
Classifier · Water-filling features · Content Based
Image Retrieval (CBIR) · PDF documents

1 Introduction

Maps are one of the most important documents contain-
ing geospatial data about any region in the world. They
provide information about a wide variety of subjects
including road networks, transportation routes, natu-
ral terrain, buildings and other infrastructure, weather,
water and gas pipelines, etc. The Web is a great source
of information of all kinds, including maps devoted to
the aforementioned subjects. The capability to find and
process these maps automatically aids in the construc-
tion of useful geospatial knowledge bases. This in turn
permits queries similar in nature to those applied to
satellite image data, for example queries related to re-
gion, latitude/longitude, street name, etc. Researchers
have dealt with various problems in automatically pro-
cessing map documents, such as extraction of road lay-
ers [5], conflation of maps with satellite imagery [1] [2]
(see Figure 1), etc., but most of them assume that they
have a corpus of map images to process. In this work,
we tackle the problem of building that corpus by har-
vesting maps from the Web. In addition to the maps
that exist independently as images, we also parse and
extract suitable examples from documents devoted to
geospatial subject matter, such as PDF reports, etc.

There are a couple of challenges involved in this
task. First, we cannot rely on only one repository of
maps since those maps would describe only a particular
subset of properties of an area, such as its infrastruc-
ture or topological characteristics. Despite the wealth
of map data available via the Web, said data is highly



2

Fig. 1: A Washington D.C. map conflated with the satellite im-

agery of the region

distributed, in various formats and frequently embed-
ded in other objects such as PDF documents. Identify-
ing these maps among the multitude of images is hard,
since for most of them there is no metadata to indicate
that they indeed are maps. This would suggest that
we need to look at the actual content of each image to
determine whether it is a map or not.

Web based image search engines, such as Yahoo Im-
age Search1 are inadequate when tasked with finding
specific maps. Figure 2 shows a snapshot of the first
result page returned by this service for the query –
“tehran maps”. Only two of the 21 displayed images
are maps, namely, the 4th on the first row and the 5th
on the last row. The rest of the images are either satel-
lite images of Tehran or pictures of different places or
events. The reason for this is that a search engine in-
dexes an image based on the name of the file and the
text surrounding it in the webpage where it appears. It
does not look at the actual content of the image. There-
fore, if someone wishes to collect a sufficient number of
maps for Tehran to cover most of its area using this
search engine, he or she will have to browse through all
the results pages, hundreds of them, to select the few
good maps which appear on each page. If one wants to
find documents that contain maps using a search en-
gine, this manual process will be even costlier since it
would involve downloading each such file and looking
through the whole document. On the other hand our
system can make this search not only convenient, but
also fast and more accurate.

Since map is a very generic word, we would like to
define precisely what we mean by it in this paper when
we talk about identifying or harvesting maps. A map
is a high quality image which depicts a region of earth
with sufficient clarity so as to be useful for extracting
information from it. Therefore a very poor quality scan

1 http://images.search.yahoo.com/

Fig. 2: A snapshot of the first search result page for “tehran

maps” on Yahoo Image Search

of a paper map (Figure 3a) or a hand drawn map (Fig-
ure 3b) or a photograph of a paper map in bad light
(Figure 3c) or a picture with a tiny part of it display-
ing a map (Figure 3d) is not considered a map. A com-
puter vision system might be interested in identifying
any kind of map or even a photograph of a map, but our
system is meant for identifying those maps which can
be usefully processed to extract road intersections and
other features of the region for alignment with satellite
imagery. Figure 4 shows some of the images which we
want to identify as maps. As is evident from the collec-
tion, we consider software generated maps (Figure 4a
and 4b) and scans of paper maps (Figure 4c) as good
maps which can be processed successfully.

In this paper, we describe a method to automati-
cally collect high quality maps for any region, from the
Web. Figure 5 shows the architecture of our end-to-end
system. The rectangles in the diagram represent collec-
tions of data (e.g. documents, images). The quadrilat-
erals with slanting sides depict a process. Since search
engines have the most exhaustive index of the Internet,
we use them as the starting point. We query the search
engines for documents and images related to the area.
All the images embedded in the gathered documents
are then extracted and put together with the indepen-
dent images. This combined set contains maps of the
area as well as other nonmap images like pictures of
people, places etc.

Each image is classified by applying a K-Nearest
Neighbor classifier [10] based on Content Based Im-
age Retrieval (CBIR), which we call CBIR classifier in
this paper. Our CBIR approach finds the most simi-
lar images to each query image from a repository of
pre-labeled map and nonmap images based on a set of
similarity features. These features are derived from the
Water-filling algorithm described by Zhou et al. [12].
The use of this particular feature set in this work is due
to their efficacy in capturing characteristics germane to



3

(a) (b)

(c) (d)

Fig. 3: Images not considered as maps. Poor quality scans (3a),

Hand drawn (3b), Bad lighting (3c), Very small portion of the
whole image (3d).

maps, for example, sharp boundaries, high branching
of lines, etc. The image is then classified as belonging
to the same category to which the majority of the most
similar images belong.

We tested our system on real images from the In-
ternet which represent the actual distribution of various
map types for different regions. Our experiments show
that our classifier performs better than the classifier
used in the previous work by Desai et al. [3] by almost
20% in F1-measure. We attribute this result largely to
the use of the previously mentioned feature set, ver-
sus the use of Laws’ textures [9]. Also, our experiments
show that K-Nearest neighbor classifier is much bet-
ter at identifying maps than a Support Vector Machine
(SVM) [13] when the training data set is small in size.

We described our map classification algorithm in a
previous paper [4]. Further work documented in this ar-
ticle has been dedicated to modifying the Water-filling
algorithm in order to capture the properties of maps
more accurately. Also, we have ignored some of the
properties suggested by Zhou et al. and adjusted the

(a)

(b)

(c)

Fig. 4: Images to be identified correctly as maps

weights of others to make the algorithm more specific
to the task of identifying maps. We describe all these
changes in Section 4.1 and 4.2. We have also conducted
an elaborate set of experiments on a much larger and
diverse data set, with a focus on classifying maps which
are totally different from the labeled data in terms of
scale, locations etc. (e.g. classifying non-US maps based
on a repository of maps of cities in United States).

The major contributions of our paper are the fol-
lowing.

1) We have developed a set of features based on the
Water-filling algorithm which can capture the charac-
teristics of maps more accurately as well as more gener-
ically, independent of color, scale, origin, size etc.



4

(a)

Fig. 5: The architecture of our system

2) Our paper shows that CBIR based k-NN is more
suited to classification of maps as compared to Support
Vector Machines when the training data set is small
in size. When the data set size increases, our classifier
scales very well because it doesn’t require retraining on
the labeled data, unlike SVMs. Therefore the incorpo-
ration of new map data may take place with relative
ease.

3) We present an approach to map classification
based on the previously mentioned feature and clas-
sifier which not only outperforms the existing state-of-
the-art by almost 20% in F1-measure but also requires
less time and space for processing by a couple of orders
of magnitude.

4) Our paper describes an approach to finding doc-
uments containing maps related to a particular geo-
graphical location, focusing specifically on PDF files.

5) Finally, our paper describes an end-to-end sys-
tem, MapFinder, for harvesting maps from the Web
which is accurate, exhaustive and automatic. Given only

the name of a location, this system searches for im-
ages on the Internet, downloads and extracts candi-
date maps, classifies them using the classifier mentioned
above, and then presents a collection of maps ready to
be used for geo-referencing (among other applications).
Our system is very scalable in terms of increasing the
repository size, as well as including new map types for
identification.

The structure of this paper is as follows; we discuss
related work in Section 2. We describe the technique by
which we collect potential maps of a region in Section
3. We then lay out our technique for classifying these
images into maps or nonmaps in Section 4. We explain
the methodology of our experiments and present the
results in Section 5, which also compares the perfor-
mance of our system with the current state-of-the-art.
We discuss future work in Section 6, and conclude with
a discussion in Section 7.

2 Related Work

Previous work on harvesting maps from the Internet
was done by Desai et al. [3]. They used Laws’ Textures
[9] as the representative feature set to differentiate be-
tween maps and nonmaps. These features capture the
existence of various regular shapes, such as circles and
rectangles in images. We believe that such features are
not specific to maps in general, and therefore are not
very effective in differentiating them from nonmaps. For
classification, the authors trained a two-class SVM on
the 3,840 element feature vector based on this texture.
We, on the other hand, use Water-filling features with
CBIR based k-NN classifier. As demonstrated in the
experiments section, both, our feature set and classifier
performs better than their respective choices for this
application, and combining them together, we get a per-
formance improvement of almost 20% in F1-measure in
identifying maps. Also, our approach is more efficient in
terms of both time and memory requirement, since we
use only a 24 element feature vector and our method
takes about 3 seconds to process an average size im-
age (1000x1000 pixels), compared to 30 seconds, that
is required to extract Laws’ Texture. Further, we also
present a method to collect maps embedded in other
documents on the Internet. Our experiments demon-
strate that general documents like PDF files are indeed
useful sources for harvesting high-quality maps.

CBIR methods have been applied to various scien-
tific disciplines ranging from astronomy [17] to botany
[18]. Much attention has been given to CBIR meth-
ods in medicine, where they can have tremendous im-
pact [19] [20]. For example, in one medical system [20],



5

the authors use a CBIR-based k-Nearest Neighbor ap-
proach to classify medical images. This work also uses
Water-filling features for the CBIR component. How-
ever, this combination performs the worst among the
five different classification systems they have tested be-
cause Water-filling algorithm does not work well with
images having amorphous boundaries and gradual color
gradients, which is typical of medical images such as X-
ray images (Figure 6). On the other hand, maps gener-
ally have sharp boundaries and no color gradient, prop-
erties that we have exploited to our benefit in this ap-
plication. Also, the context in which they apply these
algorithms is very different from ours. Whereas our sys-
tem is geared toward automatically harvesting maps
from the Web, their system is used to classify images
so that they can be queried categorically.

Fig. 6: Medical images such as X-Ray photographs have fuzzy
boundaries which makes Water-filling features inappropriate for

their classification.

Tan et al. [24] recently proposed a method for iden-
tifying maps embedded in Web documents by analyzing
captions of images, references to them that are embed-
ded in text, and their size relative to the font. They do
not look at the actual content of the image. It might
be possible to combine the two approaches together to
take advantage of evidence about the content as well
as the text surrounding it to achieve more accurate re-
sults. Yet, unlike them, we do not assume that a highly
relevant library of documents is already provided to us,
but discover the Web documents that are likely to con-
tain useful maps ourselves. This also lets us gather more
diverse types of maps.

3 Finding candidate maps

The first step in harvesting maps is collecting images
from the web. This includes finding PDFs from which

we will extract the images. We use the Yahoo Image
Search Engine API2 for the purpose of collecting the
independent images. The choice of engine is mostly in-
fluenced by convenience and does not affect the per-
formance of the process. Any reasonable image search
engine is sufficient. To collect maps for a region, we
send two queries to the search engine. One query is
formed with the word “map” appended to the name of
the region (e.g. “Los Angeles map”). The other query
is formed by appending the word “maps” in place of
“map” (e.g. “Los Angeles maps”). We know that the
relevance of images to search queries falls sharply after
only a few result pages. As we go further in the list
of URLs returned, sorted by relevance, the existence of
maps becomes more and more sparse. Therefore, we use
the top 2,500 URLs returned for both the searches for
our purposes. We remove the duplicates from both the
lists and then merge them together.

The fact that the search engines fail to identify and
provide maps correctly, becomes evident when we look
at the images which are common between the two lists
returned by the search engine. Although there is lit-
tle semantic difference between the two search queries
when it comes to images, there is less than 10% over-
lap between the two lists. Therefore, a person search-
ing for maps on these search engines using only one of
the queries will miss most of the maps which can be
obtained by the other. The maps, among the images
returned, are of varied types and scales. This is one of
the advantages of using a search engine for harvesting
the maps. Limiting the search to a particular database
restricts access to all kinds of maps available freely on
the Internet. Also, new content is constantly added to
the Internet and indexed by the crawler of these en-
gines. This guarantees a supply of up-to-date maps and
greater detail about every region. Figure 7 shows some
of the different kinds of maps returned by the search
engine. There are physical maps (7a), street maps (7b),
political maps (7c), highway/freeway maps (7d), com-
mercial maps (7e), transportation maps (7f), etc.

Yet, all the good quality maps are not available
as separate images on the Internet. Many high qual-
ity maps exist embedded in documents such as PDF
reports. Therefore, in order to exploit these maps, we
query the Google Search Engine3 for URLs of PDF files
related to the region. Again, the choice of the search
engine is not fundamental to the performance of the
system, as the major difference between the various en-
gines is the relevance they attach to each document.
Since, we do not restrict ourselves to only the top few
URLs, the system effectively has access to the same

2 http://images.search.yahoo.com/
3 http://www.google.com



6

(a) (b)

(c) (d)

(e) (f)

Fig. 7: Different kinds of maps available on the Internet. Physical
maps (7a), Street maps (7b), Political maps (7c), Freeway maps

(7d), Commercial maps (7e), Transportation maps (7f).

files that would be returned by any other search en-
gine. We use the same query terms as explained ear-
lier for the images (e.g. “Chicago map” and “Chicago
maps”), but we also append the file-type qualifier to
restrict the results to PDF files only, which we focus on
for this study, based on the availability of geographic
reports. Therefore an example query for Chicago would
be “Chicago map filetype:pdf”. A PDF file generally
has text included in it along with the images. Hence
a search engine would return the PDFs with greater
accuracy based on the word “map(s)” included in the
query.

We have developed a PDF parser to extract the em-
bedded images out of the downloaded files. According
to the official PDF specification4 by Adobe, a PDF file
stores images, text and all other information in the form
of objects, which reference each other. The primary ob-
ject for images defines the width, height and type of
the image and the compression algorithm used to store
the image data. The actual image stream and optional
color maps are stored in other objects which are refer-
enced from the main object. Our parser reads through
the entire file to rebuild the objects in memory. Then
it replaces the static references with memory pointers.
Depending on the kind of compression, type of image,
color map, etc., the parser decodes the image stream
and then stores it to the hard disk. The parser is capa-
ble of decoding most of the standard methods of storing
images in PDFs including those based on ICC5 profiles
and JPEG formats.

As shown in the experiments section, PDFs indeed
contain a huge number of images embedded in them.
Although most of these are too small (e.g. company lo-
gos, map legends), it turns out that we still get about
one image per PDF file downloaded, which can be use-
ful (i.e. big enough for processing). The percentage of
maps among these useful images is higher (≈60%) than
among the independent images (≈50%) downloaded us-
ing the method described earlier. Also, the quality of
the maps is much higher. Figure 8a shows a sample
PDF returned when Google was searched for maps of
Tehran. We can clearly see a very high resolution and
detailed map embedded in it. Figure 8b and 8c show
two high quality images extracted from the PDFs that
we downloaded. The image in Figure 8c is of size 3675
pixels by 4575 pixels, which is quite difficult to find as
a standalone image on the web.

It should be noted that the process of collection of
independent images has almost no overhead. The entire
time taken is that required by the search engine to re-
turn the list of URLs and to download the images from
the Internet. In order to speed it up further, we use par-
allel threads to download these images. It also prevents
a very slow website from holding up the download of
images from other websites. We employ the same trick
to download PDFs from the URLs returned by Google.
But in this case we also process these PDFs to extract
the embedded images. Since our parser has been built
in-house for experimental purposes, it is not very op-
timized. Despite this, on an average, we require less
than a minute per PDF file for the parsing, extraction
and storage. This is not a very large time considering

4 http://www.adobe.com/devnet/pdf/pdf reference.html
5 http://www.color.org



7

(a)

(b) (c)

Fig. 8: Sample PDF file (8a). Sample images (8b, 8c) extracted

from some of the downloaded PDF documents.

the fact that there are fewer PDFs (≈50) than images
(≈1000) corresponding to a query for the maps of a city.

4 Classifying images

In this section we describe our approach used to sepa-
rate the actual maps from all the images collected by
the process described in the previous section. From each
image, we extract a set of features to be made explicit
shortly, based on the Water-filling features introduced
by Zhou et al. [12]. The Water-filling algorithm works
on the edge maps of the images instead of the original
images. An edge map is a binary image produced from
the original image by marking the sharp color gradi-
ents (edges) in black. Figure 9b shows an edge map for

a colored image (9a). Using the edge maps makes the
Water-filling features color invariant. Maps vary widely
in their colors schemes, which is mostly controlled by
the source of the maps. Previous work [6] dedicated to
identifying various features in a map based on color
have acknowledged the fact that variation in the colors
in a map makes any algorithm utilizing them applicable
only to a small percentage of maps, which are mostly
from the same source. Therefore, we ignore the color
scheme totally in favor of a color invariant strategy. We
explain the Water-filling features along with the mod-
ifications we have made to them in detail in Section
4.1.

Having extracted the features, we find nine images
from a repository of images that are most similar to the
image under consideration. The images in the repos-
itory have already been manually labeled as maps or
nonmaps and their features have been extracted and
indexed with them. The number of maps and nonmaps
among those nine images is calculated and the query
image is classified as belonging to the class that is in
majority. The process of finding the most similar im-
ages based on the content of the images (represented
by some features) is called Content Based Image Re-
trieval (CBIR). The technique of classifying an image
(or more generally, any object) based on the major-
ity among the most similar images (objects) is called
k-Nearest Neighbor classification (k-NN). We describe
this process in further detail in Section 4.2.

4.1 Extracting features that differentiate between
maps and nonmaps

The Water-filling algorithm quantifies the general com-
plexity of an image by the number of branches and
lengths in the edge map. It does this by simulating the
flow of water along connected canals which are repre-
sented by the connected edges in the edge map. We use
the standard Canny edge detector [16] for generating
the edge maps since it is more generally applicable to
the wide variety of maps and is immune to the varia-
tions of hue and saturation in the original images. Fig-
ure 9c shows a part of the edge map (Figure 9b), which
is circled, enlarged for clarity. The edge map consists
of several disjoint segments of lines like the one shown
in the center of Figure 9c. An average size map of di-
mensions 1000 x 1000 pixels can have any number of
segments between 50 and 3000 depending on its scale
and sparseness. For each of the disjoint segments, the
water starts flowing from a point along the lines. When
it reaches a fork-point, where the line is dividing into
two or more lines, the water starts flowing along all of
these lines simultaneously, in the same way as water



8

(a)

(b)

(c)

Fig. 9: (9a) A map in color, (9b) Its Canny edge map, (9c) A part
of it enlarged to show the disjoint segments.

flowing from one canal into multiple canals will flow
along each of them. The algorithm notes the number of
such fork-points (represented by “Fork Count”) as well
as the time required to fill the entire segment (“Filling
Time”). It also records the total amount of water stored
in the segment (“Water Amount”), which is the same
as the number of pixels in the segment.

We explain the Water-filling algorithm in detail in
Figure 10. Suppose that the top-left segment is one of
the many segments in an image that is being processed.
The three values below each instance of the segment
show the calculated parameters up to that time in the
course of the Water-filling algorithm tracing the seg-
ment. We show the Filling Time (“FT” in figure), Fork
Count (“FC”) and Water Amount (“WA”), which all
start with a zero value. The light pixels visible in other
instances of the segment represent water, filling up the
segment pixel by pixel. The progression of the algorithm
is from left to right in each row, starting with the top
row. The second instance of the segment (figure in the
middle in the top row) shows the situation when the
processing has just begun, with only one pixel (top-
most) having been filled up. Accordingly, the Filling
Time and Water Amount increase to one each. When
water reaches a fork-point (in the figure on the right in
the top row), indicated by the crossed pixel, where it
begins to flow in two or more directions simultaneously,
the Fork Count value increases by one. At the end, all
the pixels are filled and the final values are shown be-
low the last instance. The Fork Count is two because
the water forked at two places, marked by the crossed
pixels. The Water Amount is same as the number of
pixels in the segment i.e. 16.

(a)

Fig. 10: Water-filling algorithm

The Filling Time of a segment indicates the approx-
imate length of the longest path in the segment from



9

one end to another. Intuitively, a map will have longer
lines which represent streets, freeways and geographi-
cal or land/ocean boundaries, depending on the scale
of the map. On the other hand, a typical nonmap will
not have such long lines. For example, a picture of na-
ture or vegetation will have many short segments for
edges of leaves on trees and other growth. In an urban
landspace, the edge map will have several short seg-
ments for windows of building, or faces of people in a
crowd. Therefore, a map, in general, will have larger
number of long segments as compared to a nonmap im-
age.

The number of Fork Counts, on the other hand, rep-
resents the complexity of the segments. Again, a map
will generally have more Fork Counts because of the
branching of roads at intersection repeatedly or contin-
uous borders branching in different directions to repre-
sent neighboring states, countries, etc. Also, by virtue
of having longer connected lines in the edge map, the
Fork Count per segment will be higher for the maps.
In contrast, a nonmap with discrete windows or short
leaves will have Fork Counts of mostly zero or one.

The Water Amount in each segment represents the
the size of the segment. In a map, the large lengths
of the lines and high connectivity, as indicated by the
Fork Count, makes average size of segments large. In
the case of nonmaps, besides the fact that they have
lower Filling Time and Fork Count, the color gradient
causes the various connected lines to break in the mid-
dle. This causes the average segment size to be much
smaller. Figure 11 shows how the color gradient causes
even clear object boundaries to break up into smaller
segments. The edge of the dial of the watch breaks up
at several places even though a human eye can clearly
see the entire boundary in the original image.

(a) (b)

Fig. 11: Segments get broken because of the color gradient. Even

though the edge of the dial in the original image (11a) is a full
circle, it gets broken in the edge map (11b).

To capture the differences in distribution of Filling
Time, we distribute all the segments into 8 bins de-
pending on their individual Filling Times. The range
for the 8 bins is as follows : segments with filing time
of 1-2, segments with filling time 3-5, 6-9, 10-14, 15-
19, 20-24, 25-29, and finally segments with filling time
equal to or greater than 30. Therefore, we put all the
segments with Filling Time of 1 or 2 into the first bin,
all the segments with Filling Time between 3 and 5 in
the second bin, and so on. This gives us a histogram for
Filling Time values. Figure 12b shows the Filling Time
histogram of the edge map of a highway map (12a). It
is clear that the size of bins with longer filling times
is much larger. Similarly, Figure 13b shows that the
distribution of Filling Time in a nonmap (Figure 13a)
is very different, with the smaller filling times having
slightly larger portion of all the segments. As with Fill-
ing Time, we divide the segments into 8 bins for Fork
Count as well. The bins for Fork Count are as follows
: segments with Fork Count of 0-1, segments with Fork
Count of 2, 3, 4, 5, 6, 7, and finally segments with Fork
Count equal to or greater than 8. Figure 12c shows the
Fork Count histogram for the map. As we can see, there
are large number of segments with high Fork Counts.
Figure 13c on the other hand, shows the Fork Count
histogram of the nonmap. This image does not have as
many complex segments; but there are a large number
of segments with low fork counts which is representative
of the highly decomposed structure of a nonmap. We
also divide the segments based on Water Amount. The
bins for Water Amount are as follows : 0-2, 3-6, 7-11,
12-18, 19-24, 25-30, 31-37, 38- . We experimented with
various bin sizes for all three features. In order to dis-
criminate between the images in the best possible way,
we have adjusted the boundaries of each bin in such as
way that, for a property, their sizes are roughly equal
when averaged over a large set of images that we used in
our experiments. This implies that the variations in his-
tograms among images will be most pronounced. Any
other bin size configuration would tend to underesti-
mate the difference between images since the variation
would be smaller on average. This is similar in spirit to
the concept of maximizing entropy in probabilistic sys-
tems. Therefore, we can say that range of bins has been
chosen so as to separate segments such that change in
the number of segments in any bin reflects a character-
istic change in the nature of the image.

In this way, we generate eight values (corresponding
to the eight bins) for each property (i.e. Filling Time,
Fork Count and Water Amount) which combined to-
gether give us the 24 element feature vector for an im-
age in the Water-filling feature space. If t1, t2, ... , t8
are the bin values for the Filling Time, c1, c2, ... , c8



10

(a)

(b)

(c)

Fig. 12: A typical example of Filling Time histograms and Fork

Count histograms for maps (left column, 12b, 12c) and nonmaps

(right column, 13b, 13c).

are the bin values for the Fork Count and a1, a2, ... ,
a8 are the bin values for the Water Amount, then the
feature vector F = [t1 t2 t3 t4 t5 t6 t7 t8 c1 c2 c3 c4
c5 c6 c7 c8 a1 a2 a3 a4 a5 a6 a7 a8]

We implemented the feature extraction code in Java.
Zhou et al. suggest that in order to find the next pixel
to fill with water, we should look for all pixels that are
4-m neighbors of it. 4-m neighbors of a pixel are the
four pixels located to the north, south, east and west of
it. Due to the discrete nature of the pixels on the screen,
occasionally, connected pixels occur diagonally (Figure
14). This causes the flowing water to reach a dead end
at a point (circled in the figure) even though the line
actually goes on further. As a result, features found by

(a)

(b)

(c)

Fig. 13: A typical example of Filling Time histograms and Fork

Count histograms for maps (left column, 12b, 12c) and nonmaps
(right column, 13b, 13c).

using this algorithm do not represent the characteristics
of a segment to the fullest possible extent. The average
Filling Time, and segment size is much lower according
to this algorithm. This is why in addition to the 4-m
neighbors, we consider the diagonally located pixels as
well, in searching for the next connected neighboring
pixels to fill. As shown in the experiments section, this
small extension to Water-filling gives a much better es-
timate of the features that we intend to measure and
improves the performance of the system considerably.

The size of images on the Internet varies widely. Our
hypotheses is that for maps of a particular type, the ra-
tio of number of segments of a particular Fork Count,
Filling Time or Water Amount to the total number of



11

Fig. 14: Original WaterFilling algorithm terminates at points
without 4-m neighbors even if the line logically extends further

(a)

(b)

Fig. 15: The small map 15b is extracted from the larger map 15a

segments will remain roughly constant. The absolute
number of segments will increase with the size of the
image though. For example, consider the map shown in
Figure 15a. We took the top left quarter from this image
to create a new image Figure 15b. Figure 16a shows the
bin sizes for both the images for various Fork Counts.
As expected, the values for Figure 15b are smaller than
those for the entire image. Yet, the relative distribu-
tion is identical in both images as in evident from the
scaled down values of the larger image obtained by di-

viding them by four. In order to be able to match maps
of the same type in our nearest neighbor classifier, we
need to normalize the total number of segments in each
image, so that the number of segment in each bin also
becomes identical for similar maps. We have chosen to
normalize the total number of segments in each image
to 1000. We do this on each image in the following way.
First, we calculate the actual sizes of bins for Filling
Time, Fork Count and Water Amount. The sum of bin
sizes for each property will be equal to the total number
of segments in the image. Then we scale all the values
so that this sum becomes equal to 1000. These resul-
tant bin values are used to construct the feature vector
of the image. The nearest neighbor classifier also uses
the same values to calculate the distance between im-
ages in the feature space. Figure 16b shows the values
of Fork Count bins after the normalization. Looking at
the values, it becomes clear that both the histograms
are identical and hence describe similar types of maps.
When the nearest neighbor algorithm searches for sim-
ilar images for one of the maps, the other map is very
likely to be found as a close match, even though their
sizes are very different.

We would like to note here that the extraction of
these features is very fast as compared to that of Laws’
Textures which was used previously [3]. The system
described herein takes less than 3 seconds to process
a medium size image (1000 x 1000 pixels), versus a
method relying on Laws’ Texture, which takes about
30 seconds for the same image. Also, our feature vec-
tor has only 24 elements in it. This is a huge saving in
space considering the fact that Laws’ Texture generates
more than 100 times this many elements in its feature
vector, i.e. 3840. Therefore we gain an order of magni-
tude improvement in speed, combined with two orders
of magnitude improvement in space. Further, as shown
in our experiments, our features are more accurate as
well. Thus we have built an efficient and accurate solu-
tion.

4.2 CBIR based k-Nearest Neighbor Classifier

There exist a wide variety of useful maps on the Web
and the features of these maps are very different from
each other. For example, a physical map doesn’t have
clear boundaries, whereas a street map has sharp lines
for roads and blocks. Also, the same kind of map shows
different densities at various scales. A street map at
a low scale (Figure 17a) has large white space in be-
tween the lines of roads and other structures. On the
other hand, a street map displaying the entire city (Fig-
ure 17b) will have a very grid-like structure with roads
forming very small blocks and major freeways depicted



12

(a)

(b)

Fig. 16: Normalization for size invariance

by bold lines. Therefore, it is not possible to find a
common set of features among all these different maps
which can reliably represent any map in general. These
characteristics motivate the use of the CBIR-based k-
NN classifier. As alluded to previously, this system finds
the most similar images given a query image, from a
repository of pre-labeled images. This action is in turn
based on similarity of content (Figure 18).

A CBIR system finds the most similar images to
a given query image from a repository of pre-labeled
images based on the similarity in content between those
images. Therefore, when we supply a particular map as
query, the CBIR system finds those images that are
closest to this map in features. If there are sufficient
number of maps of this kind in the repository, then
most of the similar images returned would be maps of
the same type, since they would have the most similar
features. CBIR is essentially the image equivalent to
traditional text based Web search. Instead of finding
the most similar Web pages for a given set of query

(a) (b)

Fig. 17: Maps of Arlington, Virginia at different scales have very

different structure. Zoomed-in (17a), zoomed-out (17b).

terms, in CBIR the most similar images from a set are
returned for a given query image. Figure 18 provides
a visual representation of this concept. In this figure,
the query image comes into the system and the most
similar images are returned by it. This is the basis of
our classifier.

To exploit CBIR for classification, we use a voting,
k-Nearest Neighbor classifier [10]. We first use CBIR to
find the nine most similar images (neighbors) from the
combined set of images in the map and nonmap reposi-
tories based on the features mentioned above. We then
employ a simple majority voting mechanism. If the ma-
jority of returned images are maps, we classify the query
image as a map. If the majority of returned images are
nonmaps, we classify the query image as a nonmap.
Therefore, although it may be the case that other im-
ages on the Web will have clear edge structures (such
as diagrams), since our technique relies not only on the
edge features themselves, but also on the similarity to
the edge features of the images in our map repository,
such images will be filtered out. The accuracy of our
experimental results indeed show this to be the case.
We observed the performance of our system for differ-
ent number of nearest neighbors chosen. We tried the
following five different values: 5, 7, 9, 11 and 13, and
found the variation to not be statistically significant for
alpha = 0.5. Therefore, we decided to use the value of
nine to maintain a balance between the complexity of
finding the nearest neighbors and accuracy. If the num-
ber of nearest neighbors is too small, then, in case that
a few nonmap images exist too close to some maps in a
map cluster, they would swing the majority in the favor
of nonmaps leading to error in classification. However,
if the number of nearest neighbors used is big enough,
then the other map images in the cluster will also get
included and outweigh those nonmap images.



13

Fig. 18: A schematic of the CBIR method

Practically, we represent the repository of images
by an index of feature values for each image and its
name. We use the open-source CBIR system, Lire6 to
build and access this index quickly, though we have
modified it to support our features. The CBIR system
goes through the index calculating the similarity score
of each image in the repository with the query image.
The similarity score is calculated as follows: for each
histogram, we add up the absolute difference between
the corresponding bin values. Then we multiply each of
these three values with their corresponding weights and
add them together. The Lire system finds nine images
with the least similarity score. These are the images
which are most similar to the query image. In our im-
plementation we have assigned equal weights to all the
properties after trying a few combinations of weights,
such as assigning weights of 1.0 to two properties and
0.5 to the third one. We also tried setting the weights
of two properties to zero and of one property to 1.0. In
all these cases, we found the performance to be lower
than the case when the weights are equal.

We choose a CBIR based k-Nearest Neighbor clas-
sifier over other traditional machine learning methods
for the following reasons. CBIR similarity methods al-
low us to exploit image similarities without explicitly
modeling them. For instance, hydrography maps are
similar to other hydrography maps and urban city maps
are more similar to urban city maps but these types of
maps may be quite different from each other. By using
CBIR methods, these similarities can be exploited with-
out modeling them explicitly because the returned im-
ages encompass the image similarities implicitly (that
is why they are returned as similar).

In contrast, if we use traditional machine learning
methods, such as Support Vector Machines, we would
train a model for each class of map. Then if an incoming
image matches any of these map classes, we know it is a
map (since each class composes the image similarities).
That is, we can take the hydography maps and learn a

6 http://www.semanticmetadata.net/lire/

model of what a hydrography map should be. We can
then take the urban city map and learn an urban city
map model.

There are several problems with trying to learn a
model for each type of map. For one, the number of
such classes is not known in advance. Therefore, a user
will have to make a decision as to which maps consti-
tute a class and hope he or she made the correct choices
to lead to accurate classification. Along these lines, the
user must make decisions as to the granularity of the
classes (Is an urban-hydrographical map its own class
?), which can further complicate the creation of classes.
Also, learning a new model may be a non-trivial process
both in the work and time required. So, if a new class
is discovered or needed, this can become a prohibitively
costly problem since we need to train all the SVM mod-
els again with one more class to discriminate from. The
other option is to train a two-class SVM as was done
by Desai et al [3]. Such an SVM draws a hyperplane
in the feature space to separate instances of maps from
nonmaps. Yet, as explained earlier, since maps vary sig-
nificantly in their properties, it is difficult to find a hy-
perplane that can clearly separate the two classes with
minimal error since many nonmaps will have properties
similar to a particular kind of map and lie close to them
and maps of one kind might lie very far from maps of
other kinds in the feature space.

The other reason we chose CBIR based k-NN in-
stead of SVM has to do with robustness and scalabil-
ity. As we show in Section 5, our classifier is able to
learn models of different kinds of maps from a small
set of labeled images. On the same data set, SVM per-
forms relatively poorly since it requires more training
data to learn a reliable model of maps from all the dif-
ferent kinds of maps shown to it. As we increase the
training data size, SVM performs comparably to our
classifier, with the caveat that SVM training becomes
prohibitively expensive with increasing data set size.
However CBIR techniques are built on methods from
information retrieval which the major search engines
have shown to be fast and robust in very large, practical
settings. Further, we can freely tweak the size and com-
position of our repository to test the effect (something
we do in the experiments to test this idea). Using ma-
chine learning, we have to retrain a model each time we
tweak the training data set. In situations where train-
ing is costly, this is not a good solution. Therefore, by
using CBIR methods we can grow the repository over
time without retraining which allows for a scalable and
incremental solution to classifying maps and building
good map repositories.



14

4.3 Improvements over our previous work

We have done some preliminary work on harvesting
maps from the Web [4]. Since then we have made sev-
eral changes and additions to our methodology that we
elaborate here. The first major difference concerns the
Water-filling algorithm. In the previous approach we
did not consider the diagonal neighbors while tracing
the pixels to calculate various properties of each seg-
ment. In the present work we have modified the Water-
filling algorithm to consider them as well leading to
much more accurate measurements of these properties.
The second change concerns the normalization of his-
togram values to fit the size of images. This makes
our approach more size-invariant. We believe that both
these changes have made the feature vectors become a
better representative of the images.

In our earlier methodology, we considered two more
properties suggested by Zhou et. al., namely, Maximum
Filling Time and Maximum Fork Count, that we have
done away with now. These represented the maximum
values for Filling Time and Fork Count respectively in
the whole image. We found that these properties are
more relevant in an image of one solid object with a uni-
form background. In general maps and nonmaps, these
properties have very random values due to the irregu-
larity of these images. For example, the longest line in
an edge map can be broken into half just by removing
one pixel from the middle, thereby cutting the Filling
Time by 50%. Similarly, two highly branching segments
located close to each other can be joined by just a small
line, which could be a random stroke. Yet, this will re-
sult in a segment with a very high Fork Count due to
the addition of individual fork counts of the two seg-
ments. Therefore, these two features add noise to the
CBIR matching process, reducing the effectiveness of
other features. We also have made the weights of the
histograms equal, in distinction to previous implemen-
tation where the Water Amount histogram was given
lower weights.

These changes have contributed to significant im-
provement in both precision and recall of the system as
illustrated in Section 5.

5 Experiments and Results

We use the Yahoo Image Search Engine API7 to dis-
cover the images and the Google Search Engine to dis-
cover PDF documents from which the images can be
extracted out. We implement the Water-filling [12] al-
gorithm in Java. The images in the repository and their

7 http://developer.yahoo.com/search/image/V1/imageSearch.html

extracted features are indexed and retrieved using the
open-source CBIR system Lire8, which is in turn based
on the popular text-based indexing and retrieval system
Lucene9 [15]. We extend Lire to support retrieval based
on Water-filling features. The PDF parser is based on
the official specification by Adobe10.

The two major components of our classification pro-
cess are the extraction of Water-filling features from
the image and then its classification based on these fea-
tures using CBIR based k-NN. To test the contribution
of each component in our approach, we use four dif-
ferent experimental configurations, each of which iso-
lates the different components of our approach. The
“CBIR/WF” configuration is our full approach, comb-
ing Water-Filling (WF) features with our CBIR based
k-NN classifier (CBIR). We also use our CBIR classi-
fier with Laws’ Texture [9] (LT) features, which we call
“CBIR/LT”. We also combine the binary SVM classifier
with each of the feature sets, which we call “SVM/WF”
for the case that uses Water-Filling and “SVM/LT”
for that which uses Laws’ Textures. By combining each
of the classifiers with each of the feature choices we
can isolate the impact of the choice of features and
the choice of classifier. The different configurations with
their individual components are summarized in Table
1.

Table 1: Four different configurations to isolate the effects of the
features and the classifiers

Name of configuration Feature Classifier

CBIR/WF (MapFinder) Water-filling CBIR based k-NN

CBIR/LT Laws’ Texture CBIR based k-NN

SVM/WF Water-filling SVM

SVM/LT Laws’ Texture SVM

Our experimental methodology is as follows. We
download images located at the URLs obtained from
the Yahoo Image Search Engine for 16 different regions
of the world. In order to maintain an equal distribu-
tion between different regions, we randomly pick 500
images from each of these collections of images for the
purpose of our experiments, except for four cities for
which we could not find enough unique images. We la-
bel each image as a map or a nonmap based on the
criteria mentioned before. The distribution of the im-
ages among different regions and the number of maps
and nonmaps for each is depicted in Table 2. The “non-

8 http://www.semanticmetadata.net/lire/
9 http://lucene.apache.org/

10 http://www.adobe.com



15

map” images mentioned in the table are taken from the
CALTECH 101 data set [14].

Table 2: Distribution of images by source

Source of image # # #

(Keyword used) images maps nonmaps

africa 500 263 237

arlington 500 296 204

asia 500 298 202

baghdad 500 274 226

bangalore 450 241 209

bellevue 500 329 171

chicago 450 354 96

citymap 500 490 10

frankfurt 500 244 256

los angeles 500 256 244

new delhi 350 232 118

new york 500 145 355

nonmap 1000 0 1000

pittsburgh 500 284 216

seattle 500 245 255

shanghai 500 308 192

tehran 330 91 239

ALL 8,580 4,350 4,230

For our experiments, we randomly selected 2000 maps
and 2000 nonmaps from the entire set of images to build
the repository for the CBIR method. Since the repos-
itory acts as the set of labeled samples for the CBIR
method, we used this same set to train the binary SVM.
Then we tested each method on 2000 randomly chosen
maps and 2000 randomly chosen nonmaps that were
different from the images in the repository/training set.
We also wanted to see if our classifier retains the lead
over other systems for smaller repository sizes. To test
this, we carried out the same experiment as described
above, but with repeatedly smaller repository/training
sets. The test set was kept fixed in size and content.
The performance of each configuration was measured in
terms of Precision11, Recall12 and F1-measure13. Both
the training and testing data set were then returned to
the entire set of images. This procedure was repeated 10
times, each time selecting a fresh training and testing
data set, sampled randomly from the entire set. The av-
erage performance, over 10 runs, of each configuration
on the different repository sizes is shown in Table 3.

This table supports three hypotheses. First, it shows
that Water-filling is very good at capturing the general
characteristics of a map and is therefore a much better

11 Precision(P) = Number of images correctly identified as maps
/ Total number of images identified as maps
12 Recall(R) = Number of map images correctly identified /

Total number of map images
13 F1-measure(F1) = 2 x P x R / (P + R)

Table 3: Performance of all four configurations with varying

repository/training set sizes. (P=Precision, R=Recall, F1=F1-

measure)

Type of configuration P R F1

4000 images in training set

CBIR/WF (MapFinder) 77.39 71.20 74.17

CBIR/LT 70.23 67.77 68.20

SVM/WF 81.41 67.00 73.51

SVM/LT 69.23 47.62 56.43

3000 images in training set

CBIR/WF (MapFinder) 76.47 72.00 74.17

CBIR/LT 69.34 66.83 68.06

SVM/WF 81.12 65.95 72.75

SVM/LT 69.10 47.08 56.00

2000 images in training set

CBIR/WF (MapFinder) 76.67 70.40 73.39

CBIR/LT 68.59 67.19 67.89

SVM/WF 80.93 63.65 71.25

SVM/LT 68.85 45.36 54.69

1000 images in training set

CBIR/WF (MapFinder) 75.87 69.80 72.71

CBIR/LT 67.47 66.29 66.90

SVM/WF 80.36 60.75 69.16

SVM/LT 69.27 41.14 51.62

500 images in training set

CBIR/WF (MapFinder) 75.52 64.83 69.77

CBIR/LT 66.69 64.60 65.63

SVM/WF 79.94 55.80 65.72

SVM/LT 69.08 38.12 49.13

250 images in training set

CBIR/WF (MapFinder) 76.71 58.80 66.57

CBIR/LT 64.47 64.67 64.53

SVM/WF 79.32 51.60 62.53

SVM/LT 69.84 33.26 45.06

feature in discriminating between maps and nonmaps
than Laws’ Texture used in the previous work by Desai
et al. [3]. With regard to both classifiers, namely CBIR
based k-NN and Support Vector Machine, the preci-
sion, recall and F1-measure for systems using Water-
filling features is higher than those using Laws’ Texture.
When we look at the first two systems, CBIR/WF and
CBIR/LT, in Table 3, both of which use CBIR based k-
NN, the F1-measure is almost 6% higher with the use of
Water-filling features. In case of the next two systems,
SVM/WF and SVM/LT, the difference is as high as
17%. This clearly shows that just changing the feature
to Water-filling enhances the accuracy of classification.

The second hypothesis is that on a small training
set, CBIR based k-NN performs better than the conven-
tional Support Vector Machine. The first and third clas-
sifier/feature configuration in each group use Water-
filling features, but differ in the type of classifier. The
F1-measure for CBIR based system is almost 4% more
than that for the SVM when the training set has be-
tween 250 and 500 images. In fact, the difference re-



16

mains significant till the repository size grows to 3,000
images after which it becomes less that 1%. Since maps
vary a lot in their properties, and yet the SVM learns
one label for all kinds of maps, it requires more data
to converge to a good hyperplane that separates maps
from nonmaps. On the other hand, the CBIR makes use
of these differences to identify different kinds of maps
and thus has a recall of 59%. The SVM meanwhile has
a recall of 52%. When we look at the second and the
fourth configurations, both of which use Laws’ Texture,
the difference is more marked. Whereas the difference
in F1-measure is 12% for the larger training sets, the
difference becomes as significant as 20% for the small-
est sets. This demonstrates the fact that CBIR based
classifier is superior to SVM in this application, even
with the use of a suboptimal feature set.

The third claim we made in the beginning of the
paper was that our classification system improves upon
the current state-of-the-art by almost 20% in F1-measure
(for the largest training set). The big gain in accuracy is
the result of combining a better discriminating feature
set (Water-filling) with a more flexible classifier (CBIR
based k-NN). In the process, we gain on the speed of
classification as well as the maintainability of the sys-
tem as discussed in detail in section 4.2. All the values
of F1-measure reported in the table above are statisti-
cally significant.

Figure 19 shows the change in F1-measure of the
four configurations with the size of the repository/training
set. Our system maintains a consistent advantage over
the other systems for all sizes of the repository. This
shows the strength of our method. Even with a repos-
itory size as small as 250 images, it is able to classify
4000 images correctly with a precision of 77% and F1-
measure of 67%. This means that our system is able
to capture the most fundamentally unique features of a
map which enables it to correctly classify a much more
diverse set of images.

Figure 20 shows the precision, recall and F1-meausure
of only our system with change in the repository size.
The precision of our system remain fairly constant even
when the repository size is very small. It is the change
in recall which increases the F1-measure for the most
part. This implies that one can start collecting maps
with a very small group of images in the repository.
Since the precision is high, the images classified as maps
by this system can then be put back into the repository
with minimal human intervention to grow the size of
the repository for better performance. This process is
also called bootstrapping.

To test the robustness of our classifier on images un-
like those in the repository, we divide the images into
the repository and test set based on their origin. For

Fig. 19: F1-measure of the four configurations

Fig. 20: Performance of MapFinder with different repository sizes

example, US cities in general have a more regular grid
based structure to them which is not found in the other
parts of the world like India, Iran or China. Therefore,
we put all the US city images (for example, Figure 21)
in the repository and test the performance of the clas-
sifier on the set of images belonging to regions outside
US (for example, Figure 22). We also divide the im-
ages based on the size of region they represent. In this
case, we put all the city images (for example, Figure
21 and Figure 22) in the repository and test the accu-
racy of classification on maps of continents (for exam-
ple, Figure 23). We compare the performance on the
two distributions of images mentioned above with the
standard distribution, in which the repository and test
sets are composed by picking uniformly from the entire
data set. Both the repository and test sets have 4000
images, 2000 being maps and the other 2000, nonmaps.



17

The precision, recall and F1-measure of classification
are presented in Table 4.

Fig. 21: Example of a US city map. It has regular grid-like struc-

ture that is missing in cities of other countries such as India.

Fig. 22: Example of a map of a city in India.

The results show that the precision remains practi-
cally unchanged. From the point of view of a real world
implementation of our algorithm, this implies that the
user of this system can put the same confidence in the
classification of a map from any part of the world even
if the classifier has seen that area for the first time.
Combining this with the fact that the algorithm main-

Fig. 23: Example of a map of a continent.

Table 4: Performance of the classifier tested on images totally

different from the repository

Division of images into Precision Recall F1-
repository and test set measure

Repository - US cities 76.19 62.55 68.70

Test set - non-US cities

Repository - Cities 75.51 51.80 61.45

Test set - Continents

Both repository and 77.39 71.20 74.17
test set picked uniformly

tains its superiority to others even when the repository
is very small makes MapFinder the most practical al-
ternative to any existing system for identifying maps.

5.1 Improvement from the previous implementation

Since we introduced MapFinder in our previous paper
[4], we have experimented extensively with all the major
properties of this system. We have made several major
change that are explained in Section 4.3. In order to
evaluate how all these changes have translated into im-
provement in performance of MapFinder, we run the
same basic experiment as explained before on its previ-
ous implementation as well. Table 5 shows the results.

Table 5: The improvement in performance of MapFinder since
previous paper

Implementation Precision Recall F1-measure

Current 77.39 71.20 74.17

Previous paper [4] 67.79 57.98 62.50

Improvement +9.60 +13.22 +11.67



18

There is an almost 12% improvement in F1-measure
of the system, a direct result of the algorithmic im-
provements outlined in this paper. The precision and
recall have improved by almost 10% and 13% respec-
tively. This demonstrates two facts. First, MapFinder is
more able to differentiate between the maps and non-
maps than previously. This is attributed to a better
selection of properties (e.g. rejection of Maximum Fill-
ing Time and Maximum Fork Count) and the choice
of their weights, which lets the CBIR system select the
neighbors more accurately. Second, the significant in-
crease in recall shows that MapFinder can now capture
the fundamental characteristics of the maps more ac-
curately. This is a direct consequence of improved fea-
tures, arising from the adaptation of the Water-filling
algorithm to our task. The values of precision, recall and
F1-measure mentioned here for the previous implemen-
tation, based on the new data set, are lower than those
reported in our previous paper because the current data
set is larger and much more diverse than the previous
set and is a more accurate representation of the images
in the wild.

5.2 Extracting maps from documents such as PDF files

We believe that PDF documents are a good source of
images and maps of a region. To test this, we queried
the Google Search Engine, with search queries such
as “Los Angeles maps filetype:pdf”, “Africa maps file-
type:pdf” etc. We downloaded 210 PDFs in this way.
We have developed a PDF parser which extracts im-
ages embedded in the PDF files in a wide variety of
formats and encodings. We extracted 2266 images from
all the PDF files. After removing images which were too
small (e.g. company logo, legend symbols for maps), we
were left with 310 images. The reason for pruning is
two-fold. One, maps that are too small are not of much
use since they are either too dense or contain too little
information for any practical use. Also, small images do
not contain enough pixels to let the MapFinder algo-
rithm reliably extract its features. We consider any im-
age that has both its width and its height less than 300
pixels to be too small for use. After manual labeling,
we divide these 310 useful images into 182 maps and
128 nonmaps. This shows that the PDFs returned by
the search engine indeed contain useful maps (182 maps
in 210 PDFs). The performance of MapFinder on these
310 images was measured in terms of Precision, Recall
and F1-measure. As before, the repository was created
by picking 2000 map and 2000 nonmap images ran-
domly from our entire set of images. We measured the
performance three times by creating fresh repositories
each time. Table 6 shows the distribution of map and

nonmap images in the downloaded PDFs along with
the average values of Precision, Recall and F1-measure
observed.

Table 6: Harvesting maps from PDFs

Number of PDFs 210

Total extracted images 2266

Useful images 310

Actual maps 182

Actual nonmaps 128

Classification by MapFinder

Precision 67.07

Recall 60.44

F1-measure 63.58

This table supports our claim that it is possible to
harvest maps from documents like PDF files, over and
above the independently available images on the Inter-
net. Although MapFinder is still able to classify these
images reliably, the performance for the embedded im-
ages is lower than that for the individual images. As
we mentioned earlier, the images embedded in PDFs
are generally of a much higher quality. In fact, many of
the images are stored in a compressed bitmap format,
which when extracted produce a high resolution image.
In the process of classification in MapFinder, we first
convert the images to the GIF format for implementa-
tion reasons. Due to the high quality and richness of
colors in the extracted bitmaps, the conversion to GIF
format leads to the formation of color edges from the
color gradients. These give maps a more nonmap-like
property (large number of small edges). It is important
to note here that this problem is not inherent in the
algorithm, but is a side effect of the choice of imple-
mentation.

Overall, these experiments verify and support the
efficacy of the different parts of our end-to-end system
for harvesting maps from the World Wide Web.

6 Future Work

The most important issue we will address in the future
is that some maps are misclassified by our system when
the majority vote is borderline, for example, when the
number of maps is four and number of nonmaps is five.
We have found that the one image that sways the clas-
sification is often among a very small set of nonmaps
(≈10), which repeatedly get selected by the CBIR sys-
tem because they have a map like quality to them. Fig-
ure 24a, shows one such nonmap. The edge map 24b,
has many squares in the background, which is simi-
lar to the block structure found in cities. We can deal



19

with this ambiguity by employing relevance feedback
techniques from information retrieval. Such relevance
feedback could help us to identify and prune away such
“culprit” images that consistently sway the vote in mis-
classifications.

(a)

(b)

Fig. 24: A typical culprit image which consistently sways the vote
towards misclassification because of its map-like properties.

Even though we have changed the weights given to
the features from our previous work, so that we ignore
two of them and make the remaining three equally im-
portant, we have not tried changing the weights for each
bin of the histograms individually. It does seem possible
that some of the bins could have a more significant role
in differentiating maps from nonmaps than others. Ex-
periments can be carried out to determine the strength
of each of these bins by extensively changing weights
for them in steps. We think that it will be possible
to achieve even higher precision through these experi-
ments.

Our results point to the necessity of using the cor-
rect features for CBIR. While we chose Water-filling,
which is good for images such as maps with strong edge
maps, other methods could perhaps work as well. For
instance, the “salient point” features based on wavelets
[21] and another set of features based on shape simi-
larity [22] could be well suited to our task, since maps
seems to share certain shapes within them. Lastly, meth-
ods have been proposed to more efficiently store color
information [23], which makes retrieval more efficient.

Although we use textures based on edge maps to make
our method color invariant, color information might
help in discriminating maps. It will be interesting fu-
ture work to compare the various features and their
efficiency and accuracy for map classification.

7 Conclusion

In this paper we present an autonomous, accurate and
scalable method for harvesting maps from the World
Wide Web. Our method first scours the Web to find
both stand-alone images and those embedded within
documents. Then, our classification algorithm separates
these discovered images into a set of maps and non-
maps for the query region. We find that Water-filling
features are much better at capturing the features of
maps that differentiate them from nonmaps. We also
find that a CBIR based classification method outper-
forms an SVM based method when trained on fewer
labeled samples. We show the robustness of our classi-
fier by using a repository of US city maps to identify
maps of other regions outside the US that do not even
have a similar grid-like structure. Finally, it is demon-
strated that the combination of a superior feature set
and classifier contributes to an overall system which
outperforms the current state-of-the-art.

By extracting images from PDFs, we collect new
high quality maps that are generally not available as
independent files. In fact, we find that the percentage
of images that are maps, is higher in PDFs than among
the independent image files obtained from image search
engines.

In addition to being very accurate, our system is
much more scalable as well, since adding more images
to the repository for better performance requires only
extracting their features and adding them to the in-
dex. On the contrary, an SVM classifier needs to be re-
trained every time a new image is added to the training
set, which for a sufficiently large set requires significant
time. Further, our classifier needs a fraction of the time
and memory required by previous work [3].

We have suggested some work which can further
improve the performance of the system. Yet, despite
the future work proposed, our technique provides an
automatic, accurate, practical and scalable solution to
the problem of creating useful map repositories from
the Web. More importantly, by plugging our method
in with methods for aligning raster maps with satellite
images we can build effective GIS systems by scouring
the freely available images on the Web to build map
collections for any given region in the world.



20

8 Acknowledgements

We thank the anonymous reviewers for their helpful
comments and suggestions on improving this paper.

This research is based upon work supported in part
by the National Science Foundation under award num-
ber IIS-0324955, in part by the United States Air Force
under contract number FA9550-08-C-0010, and in part
by a gift from Microsoft. The U.S. Government is au-
thorized to reproduce and distribute reports for Gov-
ernmental purposes notwithstanding any copyright an-
notation thereon. The views and conclusions contained
herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of any of
the above organizations or any person connected with
them.

References

1. Chen, C.C., Knoblock, C.A., Shahabi, C.: Automatically

conflating road vector data with orthoimagery. GeoInfor-

matica 10(4) (2006), pp. 495-530

2. Chen, C.C., Knoblock, C.A., Shahabi, C.: Automatically and

accurately conflating raster maps with orthoimagery. GeoIn-

formatica 12(3) (2008), pp. 377-410

3. Desai, S., Knoblock, C.A., Chiang, Y.Y., Desai, K., Chen,

C.C.: Automatically identifying and georeferencing street

maps on the web. In Proceedings of the 2nd International
Workshop on Geographic Information Retrieval (2005), pp.

35-38

4. Michelson, M., Goel, A., and Knoblock, C.A.: Identifying

Maps on the World Wide Web. In Proceedings of the 5th

International Conference on Geographic Information Science
(2008), pp. 249-260

5. Chiang, Y.Y., Knoblock, C.A., Shahabi, C., Chen, C.C.: Ac-

curate and automatic extraction of road intersections from
raster maps. Geoinformatica 13(2) (2009), pp. 121-157

6. Chiang, Y.Y., Knoblock, C.A: Classification of line and char-

acter pixels on raster maps using discrete cosine transforma-
tion coeffients and support vector machines. In Proceedings

of the 18th International Conference on Pattern Recognition

(2006), pp. 1034-1037

7. Chiang, Y.Y., Knoblock, C.A., Chen, C.C.: Automatic ex-

traction of road intersections from raster maps. In Proceed-
ings of the 13th ACM International Symposium on Advances

in Geographic Information Systems (2005), pp. 267-276

8. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A.,
Jain, R.: Content-based image retrieval at the end of the

early years. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 22 (2000), pp 1349-1380

9. Laws, K.: Textured Image Segmentation. Ph.D. Dissertation,
University of Southern California, January 1980.

10. Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern
Classification Techniques ISBN 0-8186-8930-7 (1991)

11. Fix, E., Hodges, J.L.: Discriminatory analysis, nonparamet-
ric discrimination: Consistency properties. Technical report
4, USAF School of Aviation Medicine, Randolph Field, TX

(1951)

12. Zhou, X.S., Rui, Y., Huang, T.S.: Water-filling: A novel way

for image structural feature extraction. In Proceedings of

the International Conference on Image Processing (1999), pp.
570-574

13. Vapnik, V.: The Nature of Statistical Learning Theory.

Springer-Verlag, 1995. ISBN 0-387-98780-0
14. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual

models from few training examples: an incremental bayesian

approach tested on 101 object categories. In Proceedings of
IEEE CVPR Workshop on Generative-Model Based Vision

(2004)
15. Lux, M., Becker, J., Krottmaier, H.: Caliph emir: Semantic

annotation and retrieval in personal digital photo libraries.

In Proceedings of CAiSE ’03 Forum at 15th Conference on
Advanced Information Systems Engineering (2003), pp. 85-

89

16. Canny, J.: A computational approach to edge detection.
IEEE Trans. Pattern Analysis and Machine Intelligence 8

(1986) pp. 679-714

17. Csillaghy, A., Hinterberger, H., Benz, A.O.: Content based
image retrieval in astronomy. Information Retrieval 3(3)

(2000), pp. 229-241

18. Wang, Z., Chi, Z., Feng, D.: Fuzzy integral for leaf image
retrieval. In Proceedings of IEEE Intl. Conference on Fuzzy

Systems (2002), pp. 372-377

19. Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A
review of content-based image retrieval systems in medical

applications. Clinical benefits and future directions. Interna-
tional Journal of Medical Informatics 73 (2004), pp. 1-23

20. Lehmann, T.M., Guld, M.O., Deselaers, T., Keysers, D.,

Schubert, H., Spitzer, K., Ney, H., Wein, B.B.: Automatic
categorization of medical images for content-based retrieval

and data mining. Computerized Medical Imaging and Graph-

ics 29 (2005), pp. 143-155
21. Tian, Q., Sebe, N., Lew, M.S., Loupias, E., Huang, T.S.:

Image retrieval using wavelet-based salient points. Journal

of Electronic Imaging 10(4) (2001), pp. 835-849
22. Latecki, L.J., Lakamper, R.: Shape similarity measure based

on correspondence of visual parts. IEEE Trans. Pattern

Analysis and Machine Intelligence 22(10) (2000), pp. 1185-
1190

23. Deng, Y., Manjunath, B.S., Kenney, C., Moore, M.S., Shin,
H.: An efficient color representation for image retrieval. IEEE

Trans. Image Processing 10(1) (2001), pp. 140-147

24. Qingzhao Tan, Prasenjit Mitra, C. Lee Giles: Effectively
Searching Maps in Web Documents. In Proceedings of Eu-

ropean Conference on Information Retrieval (2009), pp. 162-

176


