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Abstract— Automatically assigning semantic class labels
such as WindSpeed, Flight Number and Address to data
obtained from structured sources including databases or web
pages is an important problem in data integration since
it enables the researchers to identify the contents of these
sources. Automatic semantic annotation is difficult because
of the variety of formats used for each semantic type (e.g.,
Date) as well as the similarity between different semantic
types (e.g., Humidity and Chance of Precipitation). In this
paper, we show that by exploiting different kinds of latent
structure within data we can perform this task accurately.
We show that this improvement happens in spite of higher
complexity in terms of both the inference procedure and
the increased number of labels. We study how increasing
the amount of structure taken into account by the model
improves accuracy of semantic labeling. Finally, we show
that when exploiting all the relationships, we obtain a
significant improvement in field labeling accuracy over the
regular-expression-based approach, while still keeping the
complexity low.
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1. Introduction
Automatic semantic annotation of structured data elements

is an important problem in information integration. It helps
in identifying the contents of various sources so that further
operations can be performed on them. For instance, once
the semantic type of the data in different sources is known,
these sources can be joined together. Each domain has some
common semantic types defined in them. For example, the
weather domain presents information about Temperature,
Humidity, and Visibility, the flights domain presents infor-
mation about Flight Number, Airport, and Time of Arrival
and the spatial domain presents information about Address,
Latitude, and Longitude. The first column of Table 1 shows a
sequence of fields extracted from a weather forecast website
and its second column shows their semantic types or labels.
Formally defined, the task of semantic annotation is to assign

these semantic labels to the sequence of fields when their
identity is unknown.

Automatic semantic annotation is difficult to perform
accurately. There are two main reasons for this. First, the
semantic types have many different formats in which they
can be written. Table 2 shows some of the various ways
of writing the value of 9 miles for Visibility. There are
variations in the choice of the unit, its abbreviation, the
precision of the numeric value, and even in the representation
of a particular edge case value as a non-numeric term (for
example, Clear). Therefore, even if the model has seen
examples of a few formats, a new format may not be recog-
nized by the model. Second, several semantic types can look
similar to each other. Humidity and ChanceOfPrecipitation
are two such semantic classes. Both of them are percentage
values, written as a numeric value followed by a percent
symbol (e.g., 40%). This makes it hard for the model to
discriminate between these semantic types.

Researchers have used CRFs to perform semantic an-
notation in the past. Zhu et al. [17] used CRFs to labels
objects on a webpage by exploiting the relationship between
adjacent items. Tang et al. [15] used tree-structured CRFs to
identify different information elements such as Telephone
Number and Secretary Name in official reports. Both of
these approaches exploit the relationships among the field
labels. The problem with this approach is that in the presence
of many semantic types and weak dependencies between
adjacent fields, these approaches do not perform as well.
Instead, we propose to exploit the structure within the fields
by modeling the relationship between the labels of the field
and the labels of their tokens as well as the relationships
among the adjacent tokens to achieve high field labeling
accuracy. In this paper, we show that as we exploit more and
more of the latent structure within the data, we can achieve
higher field labeling accuracy. We show that this holds true
even when the complexity of the inference increases and we
add many more labels that the model has to choose from. We
also show that our graph structure keeps a low limit on the
complexity of the inference algorithm which is proportional
to Lf × L2

t , where Lf is the number of field labels and Lt



Table 1: A sample data tuple extracted from a weather forecast
website. The table shows the fields, their corresponding semantic
classes, their tokens (generate by our lexer) and their semantic
classes.

Fields Field Tokens Token
labels labels

90292 Zip 90292 ZipValue
76◦F TempF 76 TempFValue

◦ DegreeSymbol
F TempFUnit

50% Humidity 50 HumidityValue
% PercentSymbol

5mph WindSpeed 5 WindSpeedValue
mph WindSpeedUnit

Los Place Los CityName
Angeles, Angeles CityName
CA , Symbol

CA StateAbbr
4 : 05 pm Time 4 HourValue
EDT : TimeSeparator

05 MinuteValue
pm AmPm
EDT TimeZone

Table 2: The various formats of writing the same value of
Visibility in the weather domain.

Numeric Value Unit
9 miles

mi
mi.
MI.
Mi.
-no unit-

9.0 miles
9.00 miles
14.5 kilometers

km
clear

is the number of token labels.
The rest of the paper is structured as follows: In section 2,

we give a brief overview of the CRF models. In section 3, we
first explain our method of generating tokens from the fields
and extracting features from them, which is common to all
graph structures. Then we present different graph structures
that we build incrementally to exploit more structure within
the data. We describe how we generate these graphs, how
we train the CRF models from them and our method of
performing prediction on unlabeled graphs. We also discuss
the complexity of each graph structure. In section 4, we
present the results of our experiments and in section 5, we
discuss the related work. We conclude in section 6.

2. Conditional random field models for
labeling data

Conditional Random Field-based models [4] learn the
probability distribution of labels conditioned on the evi-
dence. The variables and their mutual probabilistic depen-
dence is presented as nodes and edges respectively. There-

Fig. 1: Six graph structures that capture the various proba-
bilistic dependencies between the data elements.

(a) (b)

(c) (d)

(e) (f)

fore, the training examples are in the form of labeled graphs
and prediction involves assigning values to the nodes of an
unlabeled graph.

CRF models represent the relationships between the labels
and the evidence and the relationships between mutually
dependent variables (those that are connected via edges) in
terms of feature functions. A feature function applies on a
fully connected subgraph, called a clique. A feature function
that applies on only one node is called a one-node feature
function and that which applies on two nodes is called a two-
node feature function. A feature function when applied on
a clique, takes as input one label value for each node in the
clique and checks if those values are the ones that it expects.
It also considers the features of the evidence around those
nodes. It returns a value of 1 or 0 depending on whether
the required conditions are satisfied or not, respectively.
Learning the model entails learning appropriate weights for
these feature functions.

More formally, let the features of the evidence be rep-
resented by a feature vector, X , the labels be presented
by the feature vector, Y = {yi}, the feature functions be
represented by F = {fi} , and their weights by W = {wi}.
The potential for a clique is defined as:

φ(clique) = exp
(∑

i

fi(yclique|x)
)

(1)

The potential of the whole graph is the product of the
potentials of all the cliques. The sum of the graph potential
for all possible label assignments is called the partition
function and represented by Z(X). The likelihood of a
particular label assignment to the random variables P (Y =
y|X = x) is defined as the ratio of the graph potential for



that label assignment to the partition function as follows:

1/Z(x) ∗ exp
(∑

c

(∑
k

wkfk(yc, x)
))

(2)

CRFs do not have a closed form solution for the weights.
The weights are found by numerical optimization techniques
such as gradient based approaches [8]. The gradient with
respect to the weight wk is given below. The term p(yc =
y|x) is the marginal probability of the clique variables. These
marginals are found using inference algorithms such as belief
propagation [10]. The labels are predicted for an unlabeled
graph using potential maximization algorithms, such as the
Viterbi algorithm [16].∑

c

fk(yc = yk, x)−
∑
c

∑
y

p(yc = y|x)fk(yc, x) (3)

3. Exploiting structure within data for
accurate labeling

There are three kinds of probabilistic dependencies that
are generally seen among various data elements in structured
data. They are as follows: 1) The dependency between the
labels of neighboring fields, 2) The dependency between
field labels and their token labels, and 3) The dependency
between neighboring tokens within a field.

We can exploit all of these dependencies through dif-
ferent graph structures used for training the CRF models.
Since a CRF graph represents the relationship between
two random variables by means of edges between their
nodes, it means that the more relationships one exploits,
the more complex the graph structure becomes. A more
complex graph structure also requires higher computational
complexity inference techniques. Therefore, there is a trade-
off between the numbers of relationships one exploits and the
complexity and hence the time required to perform inference
on these graphs.

In this work, we present six different graph structures con-
structed from the structured data by incrementally exploiting
more structure within the data. These graphs are shown in
figure 1. The simplest graph is one where there is only one
node corresponding to each field. The purpose of the CRF
model that uses this graph is to learn to predict the label
for each field independently. This graph structure is show in
figure 2(a) and is discussed in section 3.2. There is only one
kind of label-to-label dependency that can be exploited here,
the one between adjacent field nodes. The corresponding
graph structure is shown in figure 2(b).

In addition to fields, the model can also take tokens into
account for each field. These graphs are shown in figure 2(c)
and 2(d) and are discussed in section 3.3.

Finally, we can also take into account the relationships
between tokens. These graphs are show in figure 2(e) and
2(f) and are discussed in section 3.4.

In the following subsection, we discuss the process of
tokenization of these fields and the extraction of features
from the tokens.

3.1 Tokenization and Extraction of features

We generate the tokens from the fields using our own
lexical analyzer. This lexical analyzer splits the field string
at whitespaces and then splits the resultant parts in such a
way that each token is either purely alphabetic (e.g., Cloudy),
purely numeric (e.g., 76, -4.5), or a single symbol character
(e.g., ◦, %).

Once the tokens have been generated, we assign features
to each token. There are three different classes of features,
the ones that apply to purely alphabetic tokens, the ones
that apply to purely numeric tokens, and the ones that
apply to symbol tokens. Table 3 lists all the features that
we use. Some of the features listed are generic features,
whose particular instance is generated based on the to-
ken from which it is generated. For example, the feature
Starts_With_Alpha_〈X〉 is a generic feature and its particular
instance for the token Cloudy will be Starts_With_Alpha_C.
One of the important features is the identity of the token
itself. Since CRF models assign weights to features based
on their frequency of appearance, this feature is useful for
those semantic types that consist of a small lexicon of terms
(e.g., Country Names). The features used by us are generic
and can apply to any domain. We have picked features that
capture the basic properties of any token. It is very easy to
add new domain specific features to this set of features, if it
is so required. However, all our experiments use only these
features.

Table 3: Features used to characterize the tokens.

Features Description
Alphabetic features
Alpha_Length_〈N〉 Length. N = 1,2, ...
Starts_With_Alpha_〈X〉 First character.

X = A, a, B, ...
Capitalized_Token Token is capitalized.
All_Uppercase_Token Whole token is uppercase.
Alpha_Id_〈Token〉 Token itself is feature.

Token = California, NW
Numeric features
Num_Length_〈N〉 Length. N = 1,2, ...
Before_Decimal_Len_〈N〉 # of digits before decimal.
After_Decimal_Len_〈N〉 # of digits after decimal.
Negative_Num Number is negative.
Starting_Digit_〈N〉 First digit. N = 0, 1,2, ...
Unit_Place_Digit_〈N〉 Units place digit.

N = 0, 1,2, ...
Tenth_Place_Digit_〈N〉 Tenth place digit.

N = 0, 1,2, ...
Symbol features
Symbol_〈Sym〉 Symbol itself is feature.

Sym = %, :, ◦



3.2 Graphs with field nodes only
Figure 2(a) shows the simplest graph structure generated

from the data. Each field has a separate graph which contains
only one node. This node represents the random variable
associated with the field label. We tokenize the field into
tokens, extract features for each token and then combine
them into one set of features. These features are assigned to
the field node. For example, the field node for ‘76◦F ’ will
have the features, Num_Length_2, Starting_Digit_7,
Symbol_◦, Alpha_Length_1 and others, where the first
two features have been extracted from token ‘76’, the third
feature has been extracted from ‘◦’ and the fourth feature
has been extracted from the token ‘F ’.

We use only one class of feature functions for this graph
structure. These feature functions are of the form:

f(field_node, field_label) (4)

These feature functions return the value 1 if the field node
has a feature pm and input value field_label is some lj . We
find the marginals for a field node by finding the potential
of the node for each value of label lj and then dividing
the potentials by the sum of the potentials, Z(x). Once the
marginals are calculated, the gradient can be calculated from
them. We train our model in this way.

We predict the most likely label for a new field node by
finding the label lj for which the potential of the node and
therefore of the graph (since the graph consists of only one
node) is the highest. The complexity of the inference method
as well as the labeling method is O(Lf ), where Lf is the
number of field labels.

In every domain, it is generally the case that there is
some order to the fields. This means that a field is im-
mediately followed by one of a small set of fields. For
example, the Temperature field type is generally followed
by SkyCondition and a WindSpeed field is generally
followed by WindDirection. We exploit this relationship
in the graph structure shown in 2(b). This graph is formed
by connecting the fields in a linear chain. We capture this
relationship using the following feature function:

f(field_node1, field_node2, field_label1, field_label2)
(5)

where it returns 1 if the input field_label1 is some label lj
and input field_label2 is some label lk. Otherwise, it returns
the value 0. Therefore, this graph uses the two classes of
feature functions shown in equation 4 and 5.

We perform inference on this graph using the belief
propagation algorithm [10]. We predict the most likely label
assignment to the field nodes using the Viterbi algorithm
[16]. The complexity of performing inference on this graph
is again O(Lf ). Yet, the model uses more feature functions
for these graphs. This graph structure better represents the
field labels since they consider both the features of the fields
as well as the neighboring fields. Our experiments show that

these graph structures indeed give higher field labeling acur-
racy. This happens because the neighborhood information
helps disambiguate between similar fields. For example, the
fact that Humidity and Sky Condition are generally reported
together prevented the model from mislabeling some of the
Humidity values as Chance Of Precipitation because these
values appeared close to a Sky Condition value. The model
based on the graph structure in figure 2(a) did make some
of these mistakes.

3.3 Adding token nodes to the field nodes
The features used to represent the fields in the models

described above are derived from the tokens of the fields.
It seems more appropriate to predict the identity of the
tokens based on their own features and derive the iden-
tity of the field based on the tokens. For example, the
field type Temperature can have token types Tempera-
tureValue, DegreeSymbol, and TemperatureUnit and the field
type Time can have the constituent token types Hours,
TimeSeparator, Minutes and Seconds. We create a new
graph structure, where each field node will have token nodes
as it children.

The graph structures shown in figures 2(c) and 2(d) show
how these graphs look. We do not exploit the field-label-to-
field-label relationship in the left figure, while we do so in
the right figure.

The graph shown in figure 2(c) does not have any features
belonging to the field node itself. Instead the features belong
to the token nodes. We use two new classes of feature
functions to represent relationships in these graphs. The first
class of feature functions are written as:

f(token_node, token_label) (6)

These feature functions take a token_label and a
token_node as inputs and returns 1 if the token_node has
a feature pm and the token_label is some label lj . These
feature functions represent the dependency of the labels of
token nodes on their features.

The second class of feature functions are written as:

f(field_node, token_node, field_label, token_label)
(7)

These feature functions take a field_label for a field_node
and a token_label for a token_node and return 1 if the
field_label is some label lj and the token_label is some
label lk. These feature functions represent the co-occurence
of the field labels with their token labels.

We use belief propagation to perform inference on these
graphs. The graphs are already in the form of a tree, as
required by the algorithm. The prediction for a new graph is
made using a modified Viterbi algorithm called the max-sum
algorithm [3]. This algorithm maximizes the sum of the log
of the potentials of the various cliques in the graph.

Compared with the graph structure in figure 2(a), this
graph is more natural because it finds the labels of each



token based on its own features and then finds the label of
the field based on the labels assigned to its tokens. Yet,
this graph introduces more nodes to be labeled and also
introduces a large set of token labels to chose from. This
increases the ambiguity while training as well as during
prediction. As we show in our experiments, this graph
structure gives higher field labeling accuracy than the graph
structure that has only one node in the graph. This happens
because when the features of the tokens are combined into
one set (as in figure 2(a) and 2(b)), most of the features
from different semantic types are similar. For example, if
we look at the semantic type Temperature and Humidity,
both these types have numeric values, and the values are
between 0 and 100. The main difference appears in the
fact that Temperature values end with a F or a C, but
Humidity ends with a percentage (%) symbol. But, when
these features are distributed over their own tokens, the most
distinguishing tokens namely the F or C in one and the %
symbol in the other have very distinct features. The CRF
model can differentiate between these much better. With
high confidence on these tokens, the field labels tend to
be correctly assigned due to their co-occurence relationship
with these tokens labels (e.g., the strong co-occurence of
Temperature with TemperatureUnit).

In addition, this graph structure also solves an important
problem of identifying the semantic types of the various
components within a field. For example, in order to compare
two Date fields that are written in different formats, (e.g.,
07/21/2011 and 21 July, 2011), it is required that the
semantic meaning of the various components of each date
string are known so that they can be compared effectively.
Therefore, the graph structure described here improves the
accuracy of labeling while solving a larger problem.

The graph shown in figure 2(d) is an extension on the
graph described above. In this graph, we also join the field
nodes via edges. We exploit the neighboring relationships
among the field nodes in the same manner as we did in the
graph in figure 2(b) via the feature function presented in
equation 5.

In order to perform inference in these graphs, we first
need to convert them into a tree structure. We perform this
conversion as follows: we make the first (leftmost) field node
the root of the whole graph. All its token nodes are already
its children. We also make the field node to its right, its
child. This is repeated at each field node. This gives us a
tree, where each node has one parent and each node can
have zero or more children. We then apply belief propagation
algorithm to this graph to perform inference.

Prediction on a new unlabeled graph is performed by first
converting it into a tree structure as described above and
then applying the max-sum algorithm [3] starting from the
leaf nodes to find the most likely joint assignment of labels
to all the field and token nodes. This graph structure is more
complex than the one described above. We show in our

experiments that exploiting the field-node-to-field-node label
dependency helps improve the field labeling accuracy over
the simpler model that does not exploit these relationships,
similar to the results obtained for the graph structures in
figure 2(a) and 2(b).

3.4 Connecting the tokens with each other
There is an important relationship between neighboring

tokens within a field. In general the order of the token
types within a field remains roughly constant. For example,
Minutes always follows Hours in every format of Time,
Temperature Unit (‘F ’ or ‘C’) always appears after the
Temperature Value token within a Temperature field and
State Name always written after CityName within an
Address field. To exploit these strong relationships, we
connect the tokens within the fields together. Figures 2(e)
and 2(f) show how the graphs look in this case. Figure 2(e)
shows the graphs where we do not exploit the neighborhood
relationships between fields, whereas figure 2(f) shows the
graph structure where we do.

We represent the relationships between labels of neighbor-
ing token nodes by a new class of feature functions. These
feature functions are written as:

f(token_node1, token_node2, token_label1, token_label2)
(8)

This function returns the value 1 only when token_label1 is
some token label lj and token_label2 is some token label lk.
Therefore, this graph has three classes of feature functions.
Two of these classes are the same as we used in the graph
structure shown in figure 2(c).

We cannot use belief propagation to perform inference on
these graphs since they have cycles in them. Therefore, we
convert each graph into a different graph called a junction
tree [5]. A junction tree (JT) is formed by replacing all the
three-node cycles in the original graph by a single junction
tree node (JT node) and connecting the JT nodes that share at
least one node in the original graph. See [5] for the detailed
general algorithm for converting any graph into a junction
tree. We convert our graphs into junction trees as follows: if
the field has only one or two token nodes, then it is replaced
by just one JT node. Otherwise, for each field, we take two
token nodes at a time starting from the left and replace the
three-node cycle formed by them and the field node with one
JT node. Figure 2 shows the junction tree constructed from
the CRF graph in figure 2(e). Since, the adjacent JT nodes
share the field node and a token node, they are connected
with each other. This always gives us a linear chain of (N−
1) JT nodes for N token nodes. Since this is a linear chain,
we apply belief propagation to this graph. The possible states
that a JT node can take is a power set of the labels that each
node within the clique that they represent can take. Therefore
the complexity of the belief propagation algorithm is equal
to:

Lf × L2
t (9)



Fig. 2: The junction tree for one field and its tokens.

where Lf is the number of field labels and Lt is the number
of token labels. This complexity is low enough to allow us to
apply the belief propagation algorithm on graphs of practical
sizes.

To label a new graph, we convert it into a junction tree,
as explained above. We then use the Viterbi algorithm to
find the most likely states for all the JT nodes. The Viterbi
algorithm is constrained so that the states on the nodes that
are shared by two adjacent JT nodes are the same. For
example, since the two JT nodes in figure 2 share the field
node and the middle token node, both JT nodes can only take
values so that the labels values for the two shared nodes in
the same.

Figure 2(f) is the most complex graph structure that we
use. It exploits all the three dependencies among the field
and the tokens. It uses the three feature functions used for the
graph structure explained above. In addition it also uses the
field label to field label feature function that we used in the
graphs in figure 2(b) and 2(d) to exploit the neighborhood
relationships among field labels.

Like in the previous graph, this graph also contains cycles.
As a result we again convert these graphs into junction trees.
Since the field nodes are connected to each other in a line,
the two-node-cliques formed by consecutive field nodes are
also converted into JT nodes for these graphs. These JT
nodes share the field nodes with the JT nodes formed by
token nodes under these field nodes (as explained for the
previous graph). This results in a linear chain junction tree
as shown in figure 3. Due to the linear structure, belief
propagation algorithm can be applied to this graph. Since,
the new JT nodes represent two field nodes, the number of
states that they can take is:

L2
f (10)

where the terms mean the same as before. Generally, this
term will always be smaller than Lf × L2

t since the total
number of tokens is generally larger than the total number
of fields. Therefore the complexity of performing inference
on this algorithm remains bounded as before.

We similarly generate a CRF graph from unlabeled data,
convert it into a linear chain junction tree and then use the
Viterbi algorithm on it to predict the labels for fields and
tokens.

4. Experiments on real world data
We tested the six graphical structures in three different

domains: weather forecast, flight status and geocoding. For

Fig. 3: The junction tree for the fully connected graph in
figure 2(f). We have drawn the JT node formed from the
field nodes’ clique slightly elevated to differentiate it from
the JT nodes formed from field and token nodes. Yet, this
is a linear chain.

each domain, we scraped data1 from 100 different web pages
of four different web sites to obtain 400 tuples of data in
each domain. We also defined a set of field level and token
level semantic classes that we wanted to identify in each
domain. We tokenized the fields in each tuple using our
lexical analyzer. We then labeled all the fields and their
tokens using the labels for the semantic classes already
defined. We then extracted the features for each token. The
average number of fields per tuple in the weather forecast
domain was 31, in flight status domain it was 14 and in the
geocoding domain it was 3.5. Table 4 shows the web sources
used in each domain and also mentions the number of field
and token semantic types in each domain.

Table 4: Experimental setup

Domain Details Data sources
weather #field types = 15 wunderground.com
forecast #token types = 37 unisys.com

weather.com
noaa.com

flight #field types = 8 flytecomm.com
status #token types = 17 flightview.com

continental.com
delta.com

geocoding #field types = 5 geocoderus.com
#token types = 12 geocoderca.com

geonames.com
worldkit.com

We ran four experiments on every graph structure in each
of the three domains. In each experiment, we trained a CRF
model on the graphs created from 300 tuples from three
sources and tested it by labeling the 100 tuples from the
fourth source. We then averaged the field and token labeling
accuracy for each graph structure. Table 5 shows the average
field labeling accuracy for each graph structure in each
domain. The geocoding domain is a relatively simple domain
with only five field types. Therefore, even the simplest graph
structure gives high field labeling accuracy and there is
little scope for improvement as we take advantage of more

1We used a tool called AgentBuilder, from Fetch Technologies.



structure within the data. However, there is an improvement
of 1% from the simplest graph structure to the most complex
graph structure in the field labeling accuracy.

All the differences in the table for the other two domains
are statistically significant for p = 0.05. The results for
the weather forecast and the flight status domains show
that the accuracy increases each time we exploit additional
relationship among the labels. For example, the accuracy
for graph structures where the relationship between the
neighboring field labels is exploited (right column) is always
more than the accuracy for the graph structures where it
is not (left column), except in only one case for the flight
status domain where the source flytecomm.com has dates
that are in a very different format from other sources and
also appear out of the normal order so that all of them get
consistently mislabeled. The accuracy also increases when
we exploit the relationship between the field labels and the
token labels. Further, when we connect the adjacent token
nodes to exploit their neighborhood relationships, we get a
significant improvement in labeling accuracy. There is an
improvement of 10% in the weather domain and 7% in the
flight domain from the graph structure that has only one
field node to the graph structure that has both the field and
token nodes and all of them are connected. These results
clearly show that exploiting each new relationship gives us
a better model and hence higher field labeling accuracy.
These experiments represent the real accuracy that one might
achieve while using these graph structures since we never
test our models on the same data that we trained it on. Yet,
despite the fact that each new source uses its own formats
and representations, the model is able to successfully identify
the semantic labels for a high percentage of fields.

The following is an example of how the model exploits the
inter-label relationships to correctly label a field that uses a
format not seen before by it: The weather source, unisys.com,
represents temperature in fahrenheit (TemperatureF) using
only a numeric value and the unit, and without a degree
symbol. (for example, ‘62 F ’). None of the other three
sources, on which the model was trained had such an
example of this class. Yet, the model was able to assign the
correct semantic label to these fields by taking advantage
of the strong relationship between the field level label
TemperatureF and the token level labels TemperatureFValue
and TemperatureFUnit, and a strong correlation between the
TemperatureFUnit token label and the feature Alpha_Id_F.
In contrast, in the graph structure in figure 2(a), all such
fields that had integer values were labeled as Humidity due
to the lack of the differentiating feature Symbol_◦ and a
strong correlation between the label Humidity and the feature
After_Decimal_Len_0.

Table 6 shows the token labeling accuracy results for
the four graph structures in all three domains. There is an
improvement in token labeling accuracy every time we add
one more relationship to the model for use. There is an

Table 5: Result of experiments on all six graph structures.
The average field labeling accuracy improves as we exploit
more structure within the tuple and the fields.

Domains Fields not Fields
connected connected

Weather Fields only 0.79 0.83
forecast Field and tokens 0.80 0.85

Tokens connected 0.85 0.89
Flight Fields only 0.90 0.88
status Field and tokens 0.90 0.93

Tokens connected 0.93 0.97
Geo- Fields only 0.97 0.97
coding Field and tokens 0.98 0.98

Tokens connected 0.98 0.98

average improvement of 5% in the weather domain and 6%
in the flights and geocoding domain between the simplest
graph structure that involves tokens (figure 2(c)) and the
graph structure that exploits all relationships (figure 2(f)).
The average token labeling accuracy is around 85% across
all the different graph structures and domains. This means
that the model is able to correctly identify the semantic types
of the tokens within the fields with high accuracy. Some of
the tokens types are so similar to each other that it is difficult
to differentiate between them. For example, the token types,
TemperatureV alue, HumidityV alue, PressureV alue,
and V isibilityV alue all look very similar to each other and
yet our models are able to use the identity of the neighboring
fields and tokens to correctly identify them.

Table 6: The average token labeling accuracy for experi-
ments on all six graph structures.

Domains Fields not Fields
connected connected

Weather Field and tokens 0.81 0.85
forecast Tokens connected 0.83 0.86
Flights Field and tokens 0.81 0.84
status Tokens connected 0.85 0.87
Geo- Field and tokens 0.84 0.85
coding Tokens connected 0.89 0.90

An alternate approach to assigning semantic labels to
fields is based on matching unlabeled fields with regular
expressions that are generally known to represent a particular
semantic class. We compare a CRF model utilizing the
graph structure in figure 2(f) with a sophisticated regular
expression based pattern matching model proposed by us in
[7]. In this work we generate regular expressions of varying
generality to match the given labeled examples. For example,
patterns such as 25, 2-digit, and numeric are generated for a
temperature value 25. The labels are assigned to unlabeled
fields based on how well they match the regular expressions
for each semantic type. We used the same experimental set
up for running experiments on our previous approach. The
average field labeling accuracy of both the approaches is
presented in table 7.

In all the three domains, the labeling accuracy of the
CRF model is much better than the accuracy for the regular



expression based approach. This is because the regular
expression based approach it is unable to generalize the
structure of a semantic class from the examples that it has
seen. Therefore, even a slight change in the structure, such
as the introduction of a dot after an abbreviated unit can
mislead it. On the other hand, since our model learns many
different types of dependencies among labels, even if some
such relationships do not hold true due to changes in the
structure, other dependencies such as the relationship with
neighboring fields can still help the model make the right
prediction.

Table 7: Comparison of our graph structure that exploits
all the three relationships with a regular expression based
approach. The new model performs much better on all
domains.

Domains Regular expression CRF
based model model

Weather 0.65 0.89
Flight status 0.42 0.97
Geocoding 0.36 0.98

5. Related Work
Semantic annotation is a problem that occurs in various

domains and on various kinds of documents. Named entity
extraction [9] is a form of semantic annotation problem
where the task is to assign named entity tags to various
words or phrases in a text document such as a news report.
Similarly, semantic annotation can also be applied to reports,
where the task is to identify the various pieces of information
such as telephone numbers, etc. An example of semantic
annotation in semi-structured sources is the problem of
identifying the various information fields on webpages [6].
Finally, the semantic annotation of structured sources such as
databases is performed under the name of schema matching
[2]. In this paper, we solve the problem of assigning semantic
labels to structured data obtained from databases or web
pages. Unlike schema matching, we do not label entire
columns of data. Instead we assign labels to all fields in
a tuple, which corresponds to a row in a database table. The
advantage of our approach is that it is applicable to sources
with missing and optional fields since we do not need the
data to be available in a regular tabular format.

CRF models were proposed by Lafferty et al. [4], where
they presented experiments on linear chain graph structures
for performing part-of-speech tagging of natural text. Re-
searchers then applied the same structure to other problems
such as noun phrase chunking [13] and extracting tables from
documents [11]. Later researchers demonstrated the use of
other graphical structures such as factorial graphs [14], two-
dimensional grid structures [17] and tree-structured graphs
[15]. In this paper, we use various kinds of graph struc-
tures, which include linear chain graphs, hierarchical tree

structured graphs and also cyclic graphs. We compare their
capability in exploiting the various patterns within data and
also examine the computational complexity of performing
inference on them. In addition, we also show that the cyclic
hierarchical tree structure graph (Figure 2(f)) is well suited
to accomplish the task of semantic annotation and achieves
high accuracy both in field and token labeling.

There have been two main works using CRF models to
perform semantic annotation. Zhu et al. [17] used the CRF
model to assign semantic labels to the image, description,
price and title of a product on a commercial product web-
page. They mapped the web objects to two-dimensional
grids and exploited the spatial proximity and relationship
to assign labels to them. In the other work, Tang et al.
[15] used tree-structured graphs to represent the layout of
the information elements on semi-structured reports. In both
these cases, the researchers exploit the dependence of the
field labels on their structures and the relationship between
adjacent field labels. In this paper, we present six different
graph structures that exploit different combinations of inter-
label relationships including the graph that only exploits the
relationship between adjacent field labels (figure 2(b)). We
show that we can achieve a significant improvement in the
labeling accuracy if we exploit the relationships between the
field labels and the token labels as well as the relationships
among neighboring token labels.

One of the other advantages of our graph structures is that
we also assign semantic labels to the tokens of the fields.
This is essential in comparing data values from different
sources which might be using different formats. Borkar et al.
[1] used HMMs [12] to assign semantic labels to the tokens
of US addresses. They trained a linear chain HMM model
that learns the transition probabilities beween the various
labels and the emission probability of the various kinds of to-
kens from these labels. The semantic types used by them are:
HouseNumber, StreetName, CityName, StateName, ZipCode.
In contrast to their approach, we use a more powerful model
than HMMs, which allows the use of overlapping features.
Also, we do not need to train a separate model for each field
level semantic type. Instead our model can simultaneously
identify the field level type of an item of data as well as the
semantic types of its tokens. For example, in the geocoding
domain, our model can identify the semantic type of a field
as being Latitude, Longitude or Address and also identify
their token labels such as LatitudeDegree, LatitudeMinutes,
HouseNumber, and StateName.

An alternate approach to graphical models, such as CRFs
and HMMs, that can be applied to the problem of semantic
annotation involves learning the syntactic rules that describe
the syntax of the semantic classes using regular expressions.
We proposed this approach in [7]. In this approach, we
generate regular expressions of varying generality from the
examples of the semantic types and then match these with
new unlabeled examples to predict their label. We presented



results comparing the approach proposed in this paper with
our previous work and show that the new approach performs
much better as compared to the previous approach. The
previous approach could not handle variations in the formats
easily and fails as soon as the format changes even slightly.
In addition, it cannot take advantage of the information
available about the neighboring fields and tokens. Since our
model exploits many different classes of relationships and
combines them in a probabilistic way, it can handle such
variations because many of these relationships still hold true
for the new format.

6. Conclusion
In this paper we have shown that we can get high labeling

accuracy from CRF models by exploiting the latent structure
within data. We showed that in spite of increased complexity
and higher number of labels, exploiting more structure
improved the labeling accuracy for fields as well as the
tokens. We also showed that the complexity of the graph
structure that exploits all three relationships is bounded by
Lf × L2

t , where Lf is the total number of field labels and
Lt is the total number of token labels.

There are many domains where entities have such hier-
archical structure within them. For example, this approach
can also be applied to assign part-of-speech labels to phrases
within sentences, where the phrases can be split into words
and the relationships between the labels of adjacent words
can be used to achieve higher labeling accuracy for phrases.
Similarly this approach can also be used for named entity
recognition to identify top level entities such as Address as
well as low level entities within them, such as, City Name,
State Name, or Country Name.

One of the factors that impact the speed of training is the
number of feature functions used in the model. Presently,
we use all feature functions that can be generated from the
training examples. In future, we will explore techniques of
pruning this space to reduce the training time. We will also
experiment with more complex feature functions that can
be formed from conjunctions or disjunctions of elementary
features functions. For example, a feature function that says
that an Hour token can either have one or two digits is
a better descriptor of this semantic type than two separate
feature functions, one of which associates the feature of
having one digit with the semantic type and the other
associates the feature of having two digits with it. Both of
the above mentioned directions can reduce the total number
of feature functions used in the CRF model, while building
more expressive CRF models.
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