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Abstract

The query reformulation approach (also called semantic query optimization) takes

advantage of the semantic knowledge about the contents of databases for optimization.

The basic idea is to use the knowledge to reformulate a query into a less expensive

yet equivalent query. Previous work on semantic query optimization has shown the

cost reduction that can be achieved by reformulation, we further point out that when

applied to distributed multidatabase queries, the reformulation approach can reduce

the cost of moving intermediate data from one site to another. However, a robust and

e�cient method to discover the required knowledge has not yet been developed. This

paper presents an example-guided, data-driven learning approach to acquire the knowl-

edge needed in reformulation. We use example queries to guide the learning to capture

the database usage pattern. In contrast to the heuristic-driven approach proposed by

Siegel, the data-driven approach is more likely to learn the required knowledge for

the various reformulation needs of the example queries. Since this learning approach

minimizes the dependency on the database structure and implementation, it is appli-

cable to heterogeneous multidatabase systems. With the learning capability, the query

reformulation will be more e�ective and feasible in real-world database applications.

�The research reported here was supported by Rome Laboratory of the Air Force Systems Command

and the Defense Advanced Research Projects Agency under contract no. F30602-91-C-0081. Views and

conclusions contained in this report are the authors' and should not be interpreted as representing the

o�cial opinion or policy of DARPA, RL, the U.S. Government, or any person or agency connected with

them.



1 Introduction

Query optimization methods have been studied since the introduction of declarative data

models and languages [Ullman 88]. This is because it is often di�cult to e�ciently imple-

ment declarative queries. The query reformulation approach, also known as semantic query

optimization approach in previous work [Chakravarthy et al. 90, Hammer and Zdonik 80,

King 81, Siegel 88], addresses the problem di�erently from the conventional syntactical ap-

proaches [Apers et al. 83,Jarke and Koch 84] in that it brings to bear a richer set of knowl-

edge about the contents of databases to optimize queries. The use of semantic knowledge

o�ers more potential for cost reduction than that can be derived from syntactic and physical

aspects of queries alone.

Figure 1 illustrates a simple example of how query reformulation works in a query process-

ing system. Suppose we have a database containing 3 instances, and each has 3 attributes,

A1, A2 and A3, where A1 is indexed. We also have a set of database abstractions, which are

rules that describe the contents of a database. Suppose a query that contains two constraints

is addressed to the database system. The query reformulation uses the database abstractions

to reformulate the given query into a less expensive yet equivalent one to reduce the cost of

query execution. In this example, the query reformulation unit reformulates the given query

into a query that contains only one constraint. This remaining constraint is on an indexed

attribute so it is less expensive, while the retrieved data is still the same as that retrieved by

the original query. In addition to adding a constraint on indexed attribute, there are many

other ways to reduce the cost of the query by reformulation [King 81]. For example, we can

predict that the query will return NIL (empty set). The reformulation system can use the

database schema to estimate the access cost of the queries and guide the search for the least

expensive equivalent query.

A1   A2   A3
A      1      2
B      1      2
C      0      2

Database

Query
Reformulation

Database AbstractionsLearning?

Reformulated query:
A1 = ’C’

Answer

A1   A2   A3
C      0      2

A2 <= 0 and A3 = 2

Given Query:

(A1 = ’C’) => (A3 = 2)
(A2 <= 0) => (A1 = ‘C’)
(A1= ’C’) => (A2 = 0)

Figure 1: Learning for Query Reformulation

To make this approach feasible, we need a very e�cient algorithm for the reformulation,

so that the overhead will not exceed the saving. We have developed an e�cient prototype

reformulation algorithm to address this issue [Hsu and Knoblock 93]. The next issue is that

we need a robust and e�cient methodology to acquire su�cient knowledge for reformulation.

Most of the previous work relies on the semantic integrity constraints that are encoded by



domain experts. However, it is not always the case that the domains of databases are

well understood so that su�cient semantic integrity constraints can be easily encoded. As

indicated in dash lines in Figure 1, we would like a system that can automatically learn

the database abstractions. This paper describes an example-guided, data-driven learning

approach to address this problem.

The idea to automatically derive rules for reformulation is proposed originally by [Siegel 88].

In his approach, although example queries are used, the learning is mainly driven by a �xed

set of heuristics, which are designed based on the database structure and implementation.

Our approach di�ers from theirs in that we do not rely on explicit heuristics. Instead, our

approach focuses more on the example queries and the data they retrieve to identify the

rules needed for reformulation. The advantage of our approach is that it minimizes the de-

pendency on the database structure and implementation, and it is more likely to capture the

semantic aspects of the queries, and the various reformulation needs of the example queries.

The reminder of this paper is organized as follows. The next section briey describes

more about the query reformulation approach and what kind of knowledge is used. Section 3

describes our learning approach. Section 4 discusses the issues of maintaining the learned

database abstractions. Section 5 compares this learning approach with other related work in

knowledge discovery and machine learning. Section 6 reviews the contributions of the paper,

and discusses the general issues that arise from this learning approach.

2 Query Reformulation

The goal of the query reformulation is to search for the least expensive query from the space

of semantically equivalent queries to the original one. Two queries are de�ned to be se-

mantically equivalent [Siegel 88] if they return identical answer given the same contents of

the database1. The reformulation from one query to another is by logical inference using

database abstractions, the abstracted knowledge of the contents of relevant databases. The

database abstractions describe the databases in terms of the set of closed formulas of �rst-

order logic. These formulas describe the database in the sense that they are satis�ed by

all instances in the database. They are of the form of implication rules with an arbitrary

number of range propositions on the antecedent side and one range proposition on the con-

sequent side. Figure 2 shows the schema and a small set of database abstractions for the

database geoloc, which stores data of geographical locations. In all formulas the variables

are implicitly universally quanti�ed.

The �rst two rules in Figure 2 state that for all instances in the database, the value of

its attribute country name is "Germany" if and only if the value of its attribute country

code is "FRG". The range propositions can be an interval for attributes of numeric type(see

Rule 3) or a set of possible values for attributes of string type(see Rule 5). Figure 3 shows

three queries addressed to the database geoloc. The query Q1 retrieves the geocode of the

1There are other de�nitions of semantic equivalence [King 81] that require the queries to return identical

answer given any contents of the database. However, this more restrictive de�nition would require using

semantic integrity constraints, which are not usually available.



Schema:

(Database geoloc

:Attributes (latitude real number :indexed)

(longitude real number :indexed)

(geocode string :length 4)

(country name string :length 20)

(country code string :length 3))

Rules:

1:(geoloc.country name = "Germany") =) (geoloc.country code = "FRG")

2:(geoloc.country code = "FRG") =) (geoloc.country name = "Germany")

3:(geoloc.country code = "FRG") =) (47.15 � geoloc.latitude � 54.74)

4:(geoloc.country code = "FRG") =) (6.42 � geoloc.longitude � 15.00)

5:(geoloc.country name = "Taiwan")

=) (geoloc.geocode 2 ("gdpp" "wcsp" "bccc" "gtsa"))

6:(51.15 � geoloc.latitude � 53.74)^(7.55 � geoloc.longitude � 14.87)

=) (geoloc.country name = "Germany")

Figure 2: Example Database Schema and Database Abstractions

geographical locations in Germany, while query Q2 retrieves the geocode for the instances

with country code "FRG". The �rst clause (geoloc ?geoloc) in both queries binds the

variable ?geoloc to the instances of database geoloc. The second and third clauses bind

the variable and constant to the values of attributes of ?geoloc respectively. With rules 1

and 2, we can reformulate the query Q1 to Q2 by replacing the constraint on country name

with the constraint on country code. We can inversely reformulate Q2 to Q1 with the same

rules. Basically, there are three types of reformulation. Given a query Q, let C1; . . . ; Ck

be the set of constraints in Q, the following reformulation operators return a semantically

equivalent query:

� Constraint Addition: Given a rule A ! B, if a subset of constraints in Q

implies A, then we can add constraint B to Q.

� Constraint Deletion: Given a rule A ! B, if a subset of constraints in Q

implies A, and B implies Ci, then we can delete Ci from Q.

� Query Refutation: Given a rule A! B, if a subset of constraints in Q implies

A, and B implies :Ci, then we can assert that Q will return NIL.

Replacing constraints is treated as a combination of addition and deletion. Note that

these reformulation operators do not always lead to more e�cient versions of the query.

Knowledge about the access cost of attributes is required to guide the search. Usually, we

can estimate the cost from the database schema. For example, because the string length of

country name is long and expensive to evaluate, reformulating Q1 to Q2 from rules 1 and 2

will reduce this cost. From rule 3, we can reformulate Q2 to Q3 by adding a new constraint

on an indexed attribute latitude. The DBMSs will take advantage of the indexed attribute



Q1:

(retrieve (?geocode)

(:and (geoloc ?geoloc)

(geoloc.geocode ?geoloc ?geocode)

(geoloc.country name ?geoloc "Germany")))

Q2:

(retrieve (?geocode)

(:and (geoloc ?geoloc)

(geoloc.geocode ?geoloc ?geocode)

(geoloc.country code ?geoloc "FRG")))

Q3:

(retrieve (?geocode)

(:and (geoloc ?geoloc)

(geoloc.geocode ?geoloc ?geocode)

(geoloc.country code ?geoloc "FRG")

(geoloc.latitude ?geoloc ?latitude)

(geoloc.longitude ?geoloc ?longitude)

(?latitude � 47.15) (?latitude � 54.74)))

Figure 3: Equivalent Queries

to speed up the retrieval. The reformulation process does not need to be step-by-step,

from one equivalent query to another, as described here. We have developed an e�cient

reformulation algorithm [Arens et al. 93, Hsu and Knoblock 93], which �res all applicable

database abstractions simultaneously, and then formulates the least expensive equivalent

query from the partial result of the rule applications.

We also extended the algorithm to reformulate queries to distributed databases [Hsu and

Knoblock 93, Arens et al. 93]. We found that the reformulation approach can reduce the

intermediate data that is transferred from remote database sites to the local retrieval system.

This is often the most costly aspect of the multidatabase queries. Consider the following

hypothetical example. Suppose that there are two databases in the multidatabase system,

one for the data of ports, and another for ships. A query is given to retrieve the data of ports

that can accommodate ships of the type tanker. This query may be very expensive because

all data of ports must be retrieved and compared with the data of tankers. Suppose that

the system learned from the ship database that if the ship type is tanker, then its draft is at

least 10m. With this knowledge, the original query can be reformulated such that the system

only retrieves data of ports whose depth are greater than 10m. This additional constraint

may reduce a signi�cant amount of data needed to be retrieved from the ship database. The

cost is thus reduced substantially.

Table 1 provides statistical data concerning the preliminary experimental results of the

multidatabase query reformulation. In this experiment, the SIMS system is connected with

two remote Oracle databases. One of the databases consists of 16 tables, 56,078 instances,

the other database consists of 14 tables, 5,728 instances. The queries used were selected from

the set of SQL queries constructed by the original users of the databases. The �rst three



queries are single database queries, while the others are multidatabase queries. This initial

results indicate that our algorithm can reduce the total cost of the retrieval substantially. In

most multidatabase queries, the amount of intermediate data is reduced signi�cantly. The

overheads of reformulation is included in the total execution time and is relatively small

compared to the cost of executing most queries.

The system used 267 database abstraction rules in this experiment. These rules were

prepared by compiling the databases. The compiling process is a semi-automatic method

that requires the external guidance from a programmer to search for the useful rules for

reformulation.

query 1 2 3 4 5 6 7 8 9 10

planning time (sec) 0.5 0.3 0.6 2.1 1.1 0.7 0.7 0.5 0.5 0.8

reformulation time 0.1 0.1 0.0 0.5 0.1 0.0 0.0 0.1 0.1 0.3

rules �red (times) 37 18 11 126 63 8 17 15 19 71

query exec. time w/oRa 0.3 8.2 0.6 12.3 11.3 2.0 251.0 401.8 255.8 258.8

query exec. time w/Rb 0.3 1.5 0.0 11.3 11.1 0.0 0.3 207.5 102.9 195.2

total elapsed time w/oR 0.8 8.5 1.2 14.4 12.4 2.7 251.7 402.3 256.3 259.6

total elapsed time w/R 0.9 1.9 0.6 13.9 12.3 0.7 1.0 208.1 103.5 196.3

intermediate data w/oR - - - 145 41 1 810 956 808 810

intermediate data w/R - - - 145 35 0 28 233 320 607
aw/oR = Without reformulation.
bw/R = With reformulation.

Table 1: Experimental Results

3 Learning Database Abstractions

The e�ectiveness of the query reformulation is determined by the existence of a useful set of

database abstractions. Because the number of rules that can be derived from the database

is combinatorially large, only a subset of the possibly derivable rules can be used in reformu-

lation. Therefore, a methodology to selectively acquire a set of useful database abstractions

is crucial in the query reformulation. There are many algorithms available to derive infer-

ence rules from databases [Cai et al. 91, Piatetsky-Shapiro 91] selectively. These algorithms

usually require the data to be pre-classi�ed. If the system applies these algorithms directly

in our domain, the users must possess knowledge about database structure, usage pattern,

and more, to properly trigger the system to learn.

In general, we want to learn the rules that: (1) will be applied frequently, (2) have low

match cost, and (3) achieve high cost reduction. We can estimate the match cost of a rule by

its syntactic length. It is di�cult to predict the application frequency and the resulting cost

reduction. This requires the information about the semantics of the database, and its usage

pattern. A good learning approach should be able to capture this information to guide its



Figure 4: Database Abstraction Learning Approach: An Overview Diagram

The database abstraction learning is a two-phase process. In the �rst phase, the inductive

concept formation algorithm [Cai et al. 91, Haussler 88, Michalski 83] will generate from the

database an alternative query q0, which is equivalent to the given query, but with lower cost.

In the second phase, the system operationalizes the preliminary database abstraction, q ()

q0, to formulate the rules that can be used to reformulate q into q0. The operationalization

process is to transform and re�ne the preliminary database abstraction so that the resulting

rules will satisfy our operational criteria. There are two operational criteria. The �rst

criterion is that the rule must be expressed in our required syntax, that is, inference rules

with one range proposition on the consequent side. The transformation stage of phase 2 is to

transform the preliminary database abstraction to meet this criterion. The second criterion

is that the antecedent conjunctions of the rule should be as short as possible. The re�nement

stage of phase 2 takes the output rules of the transformation stage as input, and simpli�es

them to meet the second criterion. This process will reduce the match cost and increase the

utility of the learned rules.

Figure 5 illustrates an example scenario of the database abstraction learning. We use

the same database table as the one in Figure 1. The instances in the relevant database

table are partitioned by the example query into positive instances (answer) and negative in-

stances (database�answer, where \�" is the set di�erence). This partition, or classi�cation,



A1   A2   A3
A      1      2
B      1      2
C      0      2

A1   A2   A3
A      1      2
B      1      2

A1   A2   A3
C      0      2

Database

Preliminary Database Abstraction

Inductive Concept Formation

Operationalization

Example Query:

A2 <= 0 and A3 = 2

Alternative Query:
A1 = ’C’

(A2 <= 0) and (A3 = 2) <=> (A1 = ’C’)
(A1 = ’C’) => (A2 <= 0)
(A1 = ’C’) => (A3 = 2)
(A2 <= 0) and (A3=2) => (A1 = ’C’)

Answer = Positive Instance

Database  −  Answer = Negative Instances

Rules to be Learned

Figure 5: Database Abstraction Learning Approach: An Example Scenario

represents the class of queries that are equivalent to the example query. In this example,

the positive set consists of one instance and the negative set consists of the remaining two

instances. The inductive concept formation algorithm then generates an alternative query

under the guidance of the inductive bias. The generated alternative query should be satis�ed

by all answer instances and none of the others. This is necessary and su�cient to guarantee

the equivalence of two queries. In the example scenario, the alternative query (A1 = `C')

is formed. The preliminary database abstraction is a statement that asserts the equivalence

of the alternative query and the example query explicitly. The operationalization process

then takes this statement as input, and derives the rules we need to reformulate the given

query to the alternative one.

The operationalization process consists of two stages. In the �rst stage, we use a logical

inference procedure to transform the preliminary database abstraction into our required syn-

tax. The equivalence in the preliminary database abstraction is converted to two implication

rules:

(1)(A2 � 0) ^ (A3 = 2) =) (A1 = `C')

(2)(A1 = `C') =) (A2 � 0) ^ (A3 = 2)

Rule (2) can be further expanded to satisfy our syntax criterion:

(3)(A1 = `C') =) (A2 � 0)

(4)(A1 = `C') =) (A3 = 2)

After the transformation, we have proposed rules (1), (3), and (4) that satisfy our syntax

criterion. Among them, rules (3) and (4) are short enough to satisfy our second operational

criterion. No further re�nement is necessary for them. These rules are then returned and

learned by the system.

If the proposed rule has more than one antecedent, such as rule (1), then we use the

greedy minimum set cover algorithm [Chivatal 79, Cormen et al. 89] to eliminate unneces-

sary constraints. In this example, we want to reduce the number of antecedents of rule (1).

This problem can be reduced to the problem that given a collection of sets of data instances



that satisfy :(A2 � 0) _ :(A3 = 2), �nd the minimumnumber of sets that cover the set

of data instances that satisfy :(A1 = `C'). Since the resulting minimum sets that cover

:(A1 = `C') is :(A2 � 0), we can eliminate (A3 = 2) (as in shaded box in Figure 5) and

form the rule (A2 � 0) ) (A1 = `C'). These learned rules can be used to reformulate

the given query into a more e�cient one.

Learning Alternative Query(P,N,S)

P is positive data;

N is negative data;

S is the schema of database table;

BEGIN

1. q' = NIL;

2. For each attribute A, find the range of their values R in P,

and construct candidate constraint from R.

let A = fx | 8 A, x = candidate constraint on Ag;

3. For each x in A , compute gain(x) and cost(x);

4. If none of x has a gain > 0 then return FAIL;

5. Select x in A such that x has the highest gain(x)/cost(x);

6. q' = q' [ fxg; A = A - fxg;

N = N - fn|8n, n 2 N ^ n is eliminated by xg;

7. If N = NIL, return q'; else go to 3;

END.

gain(x) = the size of fn|8n, n 2 N ^ n is eliminated by xg;

cost(x) = E-cost * C-cost =

evaluation cost(x) * (P + N - gain(x)), if x is on an indexed attribute

evaluation cost(x) * (P + N) , otherwise.

Figure 6: Inductive Learning Algorithm For Alternative Query

One of the polynomial time inductive learning algorithms that generate internal disjunc-

tive concepts as the syntax of our queries is proposed by [Haussler 88]. This algorithm

reduces the learning problem to the set coverage problem. The inductive bias is speci�ed

as a gain/cost ratio to bias the search for the shortest concepts. We can include more in-

formation such as the access cost of the attributes, to bias the search for both shorter and

more e�cient alternative queries. A well de�ned bias should lead the learner to tailor the

database abstractions to the type of queries that are frequently asked. The algorithm that

learns the alternative query is shown in Figure 6.

Suppose we want to derive an alternative query of Q1 in Figure 3, from the example

database table in Table 2. The additional column \P or N" in the table indicates whether

an instance is positive or negative for Q1. In Step 1, the alternative query is initialized to

empty. The system then extracts the candidate range constraints for each attribute from

the positive instances and computes the gain and the cost for each candidate constraint.



geocode country name country code latitude longitude P or N

atbr France FRN 43.1046 000.3200 N

bnsg France FRN 45.4600 002.1300 N

chbr France FRN 48.5706 007.0449 N

emkv France FRN 44.3100 005.2900 N

gdpp Taiwan TWN 24.2952 121.0338 N

wcsp Taiwan TWN 24.5230 121.1220 N

bccc Taiwan TWN 24.5124 121.1424 N

gtsa Taiwan TWN 24.5200 121.1214 N

lyre Japan JPN 35.5000 138.4000 N

qcmu Japan JPN 35.4620 139.3646 N

grty Italy ITL 41.4840 012.1509 N

jtln Italy ITL 41.5900 012.4400 N

tshe Italy ITL 41.3915 012.2640 N

agcc Germany FRG 50.4100 007.4000 P

atnt Germany FRG 52.1900 008.2000 P

bvdn Germany FRG 54.7445 009.4830 P

bhgl Germany FRG 51.1000 006.4200 P

csdm Germany FRG 50.3200 008.3200 P

fjhd Germany FRG 53.3900 007.2600 P

guye Germany FRG 49.5419 010.5553 P

girl Germany FRG 50.0540 008.3806 P

kmtb Germany FRG 49.1000 010.2200 P

mlna Germany FRG 49.1554 007.2147 P

nhkb Germany FRG 50.0300 008.2000 P

pdpf Germany FRG 48.5100 015.0000 P

ucla Germany FRG 49.3055 009.0520 P

uscw Germany FRG 49.5957 007.4700 P

vayq Germany FRG 47.1500 011.0700 P

wpcn Germany FRG 52.5400 008.5200 P

zwab Germany FRG 49.1519 007.2008 P

Table 2: Example Database Table

Five candidate constraints and their gain/cost ratio are listed in Table 3. The gain of

a constraint is the number of the instances eliminated by (or that does not satisfy) the

constraint. The cost of a constraint is the evaluation cost E-cost times the number of

instances to be evaluated C-cost. The evaluation cost E-cost is the cost of evaluating

whether an instance satis�es the constraint. This cost is proportional to the number of

terms to compare in the given constraint times the cost of each comparison. For strings, the

comparison cost of each term is their length de�ned in the schema, and for real numbers,

2. The other factor C-cost is dependent on whether the constrained attribute is indexed.

For constraints on indexed attributes, C-cost is the number of the instances that satisfy the

constraint. Otherwise, C-cost is the total number of instances, because to evaluate these

constraints, the system must scan every instance in the database table. Therefore, for the

�rst candidate constraint in Table 3, there are two terms to be compared and each has the

comparison cost 2, so its E-cost is 4. Because the constrained attribute latitude is indexed,

its C-cost is 18. The total cost is thus 4*18=72.

The system selects the �rst constraint on the attribute latitude, because it has the

highest gain/cost ratio, and adds it to q0 as a conjunction. The negative instances eliminated

by the selected proposition are removed from the set of the negative instances. The system

iterates this process until all of the negative instances are removed. Now there remains

only one instance with country name France in the set of negative instances. In the next

iteration, the gains and costs are updated for the remaining 4 constraints. The constraint



cost (E*C)
Candidate Constraint gain

E-cost C-cost
gain/cost

(:and (?latitude � 47.15)(?latitude � 54.74)) 12 4 18 0.167

(= ?country code "FRG") 13 3 30 0.144

(:and (?longitude � 6.42)(?longitude � 15.00)) 9 4 21 0.107

(= ?country name "Germany") 13 20 30 0.022

(member ?geocode ("agcc" "atet" "babv" . . . )) 13 68 30 0.006

Table 3: Candidate Constraints and Gain/Cost Ratio

on country code is selected and 2 negative instances are removed. The resulting alternative

query is Q3 in Figure 3. This query is equivalent to and more e�cient than Q1, as explained

in Section 2.

The worst case complexity of this algorithm is O(MP +NMmin(N;M)), where N is the

number of negative instances, P is the number of positive instances, and M is the number

of attributes of the database table. This is a loose upper bound of the algorithm. In the

average case, the complexity should be much better. In this complexity analysis, we assume

that instances in the database need to be scanned linearly in the algorithm. In fact, there is

no need to represent the positive and negative instances explicitly to implement our learning

algorithm. We can retrieve the necessary information from the database through its DBMS

rather than make a copy of the entire database table in the system's memory. We use the

positive instances to extract the candidate atomic propositions, and the negative instances

to count the gain of each atomic propositions. Both can be computed by sending queries to

the DBMS. We can also take advantage of other facilities provided by the state-of-the-art

DBMSs to enhance the e�ciency of learning, such as, the delayed-evaluation for \views"

(temporary databases) [Ullman 88]. The work by [Cai et al. 91] is a good example of a

system that utilizes relational DBMS facilities in inductive learning.

The e�ciency of the inductive learning algorithm can be further improved by pruning

irrelevant attributes. We can use the semantic knowledge of the databases provided by the

SIMS system [Arens and Knoblock 92, Arens et al. 93], on which we built the reformulation

component, to identify which attribute is irrelevant.

4 Maintaining Database Abstractions

Although our learning approach is selective, after learning from a large number of queries, the

number of the database abstractions could become so large that they degrade the reformu-

lation algorithm's e�ciency. This problem is referred to as the utility problem [Minton 88].

The utility problem might be alleviated by adopting fast rule match algorithms [Doorenbos

et al. 92], such as RETE [Forgy 82] and its more e�cient variations. However, if we take

the space cost into account, it is still prohibitive to keep a set of the database abstractions

that is about the same size or larger than the database just for e�cient retrieval.



The utility of a rule is de�ned as follows by [Minton 88]:

Utility = AverageSaving�ApplicationFrequency�AverageMatchCost

We can measure the utility of learned rules as follows. The AverageMatchCost is propor-

tional to the syntactic length of the rule. The application frequency and average saving can

both be computed from statistical information. When the number of the database abstrac-

tions exceeds some threshold, the system will measure the utility of database abstractions

and delete those with low utility.

Another task of maintenance is to update the rules in the presence of updates of the

database. This includes identifying the invalid rules and then modifying them. Given an

invalid rule A ! B, we can compile the data instances that satisfy A to modify B. We

can also keep the update frequency of each rules, and use this statistical information as

a criterion in measuring utility of the rules. In this way, the set of surviving rules will

gradually evolve to capture the semantics of the database. A more interesting approach to

update rules is using an incremental learning algorithm. An inductive learning algorithm

is considered incremental if it forms new hypothetical rules from inserted or modi�ed data

instances without reading the entire database again. This approach is particularly useful for

very large-scale databases.

5 Related Work

Siegel [Siegel 88] proposed the �rst automatic rule derivation approach for the semantic query

optimization. Their approach learns from the failure of the rule match in reformulating the

example query. The rule match is then guided by a pre-de�ned �xed set of heuristics. The

major di�erence between our approach and theirs is that our approach is data-driven, while

theirs is heuristic-driven. We view the example query as a representation of the set of the

data it retrieves, rather than a procedure or plan of retrieval. The semantics of the example

queries is easier to be captured with the data it retrieves. From this point of view, we seek

the missing rules in the databases. In Siegel's work, on the other hand, the example queries

merely provide the templates for the instantiation of the heuristics. The heuristics may not

reect how an example query should be reformulated with regard to the database contents.

Consequently, their approach is conservative and the learning may converge only to what

the heuristics speci�ed.

Compared to other work in knowledge discovery in databases [Piatetsky-Shapiro 91], our

work is to improve the performance of the database retrieval, while most of the discovery task

is for database applications, such as discovering classi�cation trees. An interesting prospect

of our learning problem is to investigate the usage of the learned database abstraction other

than for reformulation. Our learning approach is unsupervised, but it does not simply rely

on the surface values to acquire or cluster knowledge from databases. The example queries

are required to guide the search. Because queries contain the information of users' interests,

they may help in providing semantic and functional properties of the data. Using example



queries as the background knowledge to guide the knowledge discovery in databases appears

to be a promising research direction.

Our learning problem distinguishes itself with other learning paradigms for problem solv-

ing in an important aspect. That is, the problem solving is performed in a reformulate-then-

solve manner, and the learning is to supplement the knowledge required for reformulation.

The reformulation is then used to speed up the problem solving (query execution). This man-

ner of \speed-up" is quite di�erent from the explanation-based approaches, such as, chunk-

ing in SOAR [Laird et al. 86] and Prodigy/EBL [Minton et al. 89]. In both approaches, the

problem is not reformulated or changed, what these systems change is the problem solving

strategy. The reformulation-then-solve approach changes the problem statement instead of

the problem solving strategy. In our approach, we even try to reformulate the problem

(query) to �t the problem solver (query execution unit). ALPINE [Knoblock 90], the ab-

straction learner of Prodigy, is another example of learning for reformulation to improve

performance of problem solving. ALPINE learns to construct the abstraction levels of the

problem search space. When given a problem, ALPINE reformulates the problem into sub-

problems of abstraction levels to reduce the cost. Although our approach also learns the

abstraction knowledge from databases, it does not decompose the query into abstraction

levels.

6 Conclusion

This paper presents an automatic learning approach to discover useful database abstractions

for query reformulation. This approach uses the queries that are actually used in applica-

tions to classify the instances in the database. The system then derives an alternative query

from the database inductively. This alternative query and the given query form the prelim-

inary database abstraction. The system deduces and learns the rules from this preliminary

database abstraction. The signi�cance of this approach is that the query represents the

data it retrieves, and the data represents a class of equivalent queries. This point of view

leads to the learning approach that does not involve heuristics of speci�c database structure

and implementation. Because the knowledge required for learning is available for almost any

database (the data, and database schema), the dependence of the speci�c database structure

and the domain expert's knowledge is minimized. This feature is particularly useful for the

application in heterogeneous multidatabase systems. We believe this will make the query

reformulation a feasible and e�ective approach in real-world database applications.

We have briey shown how query reformulation approach can reduce the cost of multi-

database queries in Section 2. An important issue for future work is to develop an algorithm

to include the multidatabase usage patterns to guide the learning. We plan to interleave the

query planning, execution and reformulation to support learning. Another issue for future

work is to develop algorithms for maintaining the validity of the database abstractions when

the database is modi�ed. We plan to establish dependency links between the database and

the database abstractions so that the invalid rules will be identi�ed quickly. We will also

consider using an incremental algorithm to update rules.
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