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Abstract

A practical heterogeneous, distributed multidatabase

system must answer queries e�ciently. Conventional

query optimization techniques are not adequate here be-

cause these techniques are dependent on the database

structure, and rely on limited information which is not

su�cient in complicated multidatabase queries. This

paper presents an automated approach to reformulating

query plans to improve the e�ciency of multidatabase

queries. This approach uses database abstractions, the

knowledge about the contents of databases, to refor-

mulate a query plan into less expensive but semanti-

cally equivalent one. We present two algorithms. The

�rst algorithm reformulates subqueries to individual

databases, the second algorithm extends the �rst one

and reformulates the entire query plan. Empirical re-

sults show that the reformulations can provide signi�-

cant savings with minimal overhead. The reformulation

approach provides a global reduction in the amount of

the intermediate data as well as local optimizations on

the subqueries. 1
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opinion or policy of DARPA, RL, the U.S. Government, or any

person or agency connected with them.
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1 Introduction

An important and di�cult problem is how to e�ciently

retrieve information from distributed, heterogeneous

multidatabase systems (Sheth and Larson, 1990). Re-

trieving and integrating distributed data often requires

processing and storage of large amounts of intermedi-

ate data, which can be very costly. This cost can be

reduced in some cases by selecting the appropriate sites

for processing and employing query optimization tech-

niques (Apers, Hevner, and Yao, 1983; Jarke and Koch,

1984) to reduce the cost of individual queries. However,

these techniques are often inadequate since they rely on

limited information about the syntactic structure of the

queries and databases. This information alone is not

usually su�cient for reducing the cost for complicated

distributed, heterogeneous multidatabase queries.

This paper addresses this problem of multidatabase

retrieval by bringing to bear a richer set of knowledge

about databases to optimizemultidatabase queries. The

idea is to use semantic knowledge of the contents of

databases to reformulate queries into equivalent yet less

expensive ones. Using the additional semantic knowl-

edge, the potential cost reduction is signi�cantly greater

than can be derived from optimization based on the

syntactical structure of queries alone. Since the knowl-

edge required can be learned from any database, this

approach is very general.

Consider the following hypothetical example. Sup-

pose that there are two databases in a multidatabase

system, one containing data about ports, and another

about ships. A query is given to retrieve the data of

ports that have a depth that can accommodate tankers.

This query may be very expensive because the data

about ports must be retrieved and compared with the

draft of all the tankers. Suppose that the system learned

from the ship database that if the ship type is tanker,

then its draft is at least 10 meters. With this knowl-



edge, the original query can be reformulated so that the

system only retrieves data about ports whose depth is

greater than 10 meters. This additional constraint may

signi�cantly reduce the amount of data retrieved from

the ship database and thus substantially reduce the cost

of executing the query.

In this paper, we present an e�cient algorithm to per-

form this type of semantic reformulation. We implement

the algorithm in the context of the SIMS project (Arens

and Knoblock, 1992; Arens, Chee, Hsu, and Knoblock,

1993). The SIMS project applies a variety of AI tech-

niques and systems to build an integrated intelligent

interface between users and distributed, heterogeneous

multiple data/knowledge-bases systems. Given a multi-

database query, the planner of SIMS generates a par-

tially ordered query plan to retrieve the data. The

reformulation algorithm presented here is used to re-

formulate this initial query plan to reduce the cost of

retrieval.

The query reformulation approach was initially pro-

posed by (King, 1981) and (Hammer and Zdonik, 1980).

Our approach di�ers from theirs and the following re-

lated work (Siegel, 1988; Chakravarthy, Grant and

Minker, 1990) in that we do not rely on heuristics to

guide the search in a hill-climbing manner, which often

results in local optima. Moreover, we consider queries

for data distributed over multiple sources, while they

only consider single database queries.

The remainder of this paper is organized as follows.

The next section describes the query planning in SIMS.

Section 3 reviews the semantic query optimization and

our reformulation algorithm for single database queries.

Section 4 extends the idea to multidatabase queries.

Section 5 shows our experimental results. We compare

our approach with related work in Section 6. Section 7

reviews the contributions of the paper and describes di-

rections for future work.

2 Query Planning

Figure 1 shows an example SIMS semantic query. This

query retrieves the name of the ports in Germany that

have both railroad capabilities at the port and refrig-

erator storage. SIMS accepts queries in the form of a

description of a class of objects about which informa-

tion is desired. This description is composed of state-

ments in the Loom knowledge representation language

(Macgregor, 1990). The user is not presumed to know

how information is distributed over the data- and knowl-

edge bases to which SIMS has access | but he/she is

assumed to be familiar with the application domain,

and to use standard terminology to compose the Loom

query. The interface enables the user to inspect the

domain model as an aid to composing queries. SIMS

proceeds to decompose the user's query into a collec-

tion of more elementary statements that refer to data

stored in available information sources. SIMS then uses

Prodigy (Carbonell, Knoblock, and Minton, 1991) to

create a plan for retrieving the desired information, es-

tablishing the order and content of the various plan

steps/subqueries. Figure 2 shows an example partially

ordered multidatabase query plan generated by SIMS's

query planner.

(retrieve (?name)

(:and (port ?port)

(port.rail ?port "Y")

(port.refrig ?port ?refrig)

(> ?refrig 0)

(port.geocode ?port ?geocode)

(port.name ?port ?name)

(geoloc ?geoloc)

(geoloc.geocode ?geoloc ?geocode)

(geoloc.country name ?geoloc

"Germany")))

Figure 1: Example SIMS Semantic Query

Each node in the plan corresponds to a subquery to an

individual data- or knowledge base. The edges indicate

the data ow direction from one database to another.

Data pertaining to this query is spread over two remote

databases | one containing information about ports

and the other about geographic locations. In the �gure,

the two db-retrieve subqueries are queries to each of

these databases. They will be translated into their cor-

responding database query languages before being sent

to the DBMSs. The loom-retrieve subquery contains

the interaction constraints involving values from the dif-

ferent remote databases. To execute this query plan, the

two db-retrieve subqueries will �rst be executed, and

the retrieved data will be loaded into Loom and trans-

lated into objects of semantic classes. Loom then eval-

uates the constraints speci�ed in the loom-retrieve to

retrieve the resired answer from the sets of intermediate

data.

Each subquery consists of conjunctions of constraints.

In the upper subquery in Figure 2, the �rst clause,

(afsc sea port ?port), binds the variable ?port to

the set of port instances in the database afsc sea port.

The second clause is a range constraint which restricts

the attribute afsc port.rail of ?port to have value

Y. This indicates that the port has railroad capability.

The clause (> ?refrig 0) is another example of range

constraint that constrains the ports to have non-zero

refrigerator storage. Constraints that involves two or

more variables are interaction constraints, such as the

one in the loom-retrieve subquery.

The most expensive part of the query plan is often

moving intermediate data from remote databases to the



Figure 2: Preliminary SIMS Plan for Example Query

local Loom system. Consider the example in Figure 2,

the cost of pairwise comparison in the �nal subquery is

proportional to the square of the amount of data items

retrieved from the remote databases. If we can refor-

mulate these subqueries such that the interaction con-

straints in the �nal subquery are also considered, the

amount of intermediate data will be reduced.

3 Subquery Reformulation

We start with the subquery reformulation algorithmand

then extend it to reformulate the entire query plan in

the next section. The goal of the query reformulation

is to use reformulation to search for the least expensive

query from the space of semantically equivalent queries

to the original one. Two queries are de�ned to be se-

mantically equivalent (Chu and Lee, 1990; Siegel, 1988)

if they return identical answer given the same contents

of the database. The reformulation from one query to

another is by logical inference using database abstrac-

tions, the abstracted knowledge of the contents of rel-

evant databases. The database abstractions describe

the databases in terms of the set of closed formulas of

�rst-order logic. These formulas describe the database

in the sense that they are true with regard to all in-

stances in the database. We de�ne two classes of formu-

las: range information are propositions that assert the

ranges of the values of database attributes; and rules are

of the form of implications with an arbitrary number of

range propositions on the antecedent side and one range

proposition on the consequent side. Figure 3 shows a

small set of the database abstractions. In all formulas

the variables are implicitly universally quanti�ed.

The �rst two rules in Figure 3 state that for all

instances, the value of its attribute country name is

"GERMANY" if and only if the value of its attribute

country code is "FRG". With these two rules, we can

reformulate the subquery SUBQ1 in Figure 4 to the

equivalent subquery SUBQ2 by replacing the constraint

on geo geoloc.country name with the constraint on

geo geoloc.country code. We can inversely reformu-

late SUBQ2 to SUBQ1 with the same rules. Given a sub-

query Q, let C1; : : : ; Ck be the set of range and interac-

tion constraints in Q, the following reformulation oper-

ators return a semantically equivalent query:

� Range Re�nement: A range-information

proposition states that the values of an at-

tribute A are within some range Rd. If a range

constraint of A in Q constrains the values of

A in some range Ri, then we can re�ne this

range constraint by replacing the constraining

range Ri with Ri \Rd.

� Constraint Addition: Given a rule A! B,

if Q implies A then we can add constraint B

to Q.

� Constraint Deletion: Given a rule A ! B,

and Q implies A. If there exists Ci in Q and

B implies Ci, then we can delete Ci from Q.

� Subquery Refutation: Given a rule A! B,

and Q implies A, if there exists Ci in Q and

B implies :Ci, then we can assert that Q will

return NIL.

Replacing constraints is treated as a combination of

addition and deletion. Note that these reformulation

operators do not always lead to more e�cient versions

of the subquery. Knowledge about the access cost of



attributes is required to guide the search. For exam-

ple, suppose the only index is placed on the attribute

geo geoloc.country name, then reformulate SUBQ2 to

SUBQ1 will reduce the cost from O(n) to O(k), where

n is the size of the database and k is the amount of data

retrieved. However, if either geo geoloc.country name

and geo geoloc.country code are not indexed, then

we will prefer the lower cost short string attribute

geo geoloc.country code. In this case, reformu-

lating SUBQ1 to SUBQ2 becomes more reasonable.

Figure 5 shows our subquery reformulation algo-

rithm. We explain the algorithm below by showing

how SUBQ-REFORMULATION reformulates the subquery

SUBQ1, the lower query in the query plan in Figure 2.

Range Information:

1:(geo geoloc.country name 2

("Taiwan" "Italy" "Denmark" "Germany"

"Turkey"))

2:(afsc port.geocode 2

("BSRL" "HNTS" "FGTW" "VXTY" "WPKZ" "XJCS"))

3:(0 � afsc port.refrig storage � 1000)

Rules:

1:(geo geoloc.country name = "GERMANY")

=) (geo geoloc.country code = "FRG")

2:(geo geoloc.country code = "FRG")

=) (geo geoloc.country name = "Germany")

3:(geo geoloc.country code = "FRG")

=) (47.15 � geo geoloc.latitude � 54.74)

4:(afsc port.rail = "Y" )

=) (afsc port.geocode 2

("BSRL" "HNTS" "FGTW"))

5:(6.42 � geo geoloc.longitude � 15.00)

^ (47.15 � geo geoloc.latitude � 54.74)

=) (geo geoloc.country code = "FRG")

Figure 3: Example of Database Abstractions

There are three input arguments in this algorithm.

The �rst argument Subquery is the subquery to be

reformulated. Another argument DB-Knowledge con-

tains the set of range information and rules that de-

scribe the database queried by the input subquery. And

Cost-Model contains the knowledge to decide the exe-

cution cost of constraints. Initially, all the range con-

straints are re�ned by applying the range re�nement

operator. The reason why we want to re�ne the con-

straining ranges is to make the subquery more likely

to match many rules. This is because after range re-

�nement, the constraining ranges are smaller and more

likely to imply the antecedent of a rule. Range re�ne-

ment also reduces comparisons in evaluating constraints

on string type attributes. The only range constraint in

SUBQ1:

(retrieve (?geoloc ?geocode2)

(:and (geo geoloc?geoloc)

(geo geoloc.geocode ?geoloc ?geocode2)

(geo geoloc.country name ?geoloc

"Germany")))

SUBQ2:

(retrieve (?geoloc ?geocode2)

(:and (geo geoloc?geoloc)

(geo geoloc.geocode ?geoloc ?geocode2)

(geo geoloc.country code ?geoloc

"FRG")))

SUBQ3:

(retrieve (?geoloc ?geocode2)

(:and (geo geoloc?geoloc)

(geo geoloc.geocode ?geoloc ?geocode2)

(geo geoloc.country code ?geoloc "FRG")

(geo geoloc.latitude ?geoloc ?latitude)

(>= ?latitude 47.15)

(<= ?latitude 54.74)))

Figure 4: Equivalent Subqueries

SUBQ1 is on geo geoloc.country name, and its con-

strained value GERMANY is within the range of possi-

ble values (see the �rst formula of range information).

Thus, this constraint is unchanged.

The second step is to match all applicable rules from

the set of database abstractions using the reformula-

tion operators de�ned above. If a Subquery Refu-

tation rule is found then the subquery is refuted and

the algorithm halts immediately. When a Constraint

Deletion rule is found, then some constraints in the

subquery are redundant and can be deleted from the

subquery without changing the semantics. We only put

the constraint in the Inferred-Set instead of actually

deleting it from the subquery. This is because, its re-

dundancy is due to the logical reason, not the perfor-

mance consideration. More knowledge and analysis is

required to decide whether it should be actually deleted.

In the case that a Constraint Addition rule is found,

we add the constraint to the subquery and also put

it in the Inferred-Set. The �rst rule in Figure 3

is matched and �red for SUBQ1 and we get an addi-

tional constraint (geo geoloc.country code ?geoloc

"FRG"), which is added to the Inferred-Set. Then

the second and third rules are matched because of the

additional constraint on country code. The constraints

geo geoloc.latitude and geo geoloc.country name

are added to the Inferred-Set.

The third step is to select the constraints in

Inferred-Set to delete from the subquery. The se-

lection is based on the constraint's relative estimated

execution cost which is computed by the type of the con-



SUBQ-REFORMULATION(Subquery, DB-Knowledge, Cost-Model)

1.refine range constraints, if Subquery refuted, return Nil;

2.for all applicable rules A ! B in DB-Knowledge:

if Subquery refuted, return NIL;

else add B to Inferred-Set, add (B,A) to Dependency-List;

3.for all B in Inferred-Set in the order of their cost:

if B is not indexed and 9 (B,A) in Dependency-List

delete B from Subquery, delete (B,A) from Dependency-List;

replace all (C,B) in dependency list with (C,A);

4.return (reformulated Subquery, Inferred-Set)

END.

Figure 5: Subquery Reformulation Algorithm

straints (range constraint, or interaction constraint), the

type of the attribute's values (integer, string, and their

length), and whether they are indexed. The information

required for this estimation is available from the input

cost-model provided by SIMS. The constraints in the

Inferred-Set are sorted into the partial order of their

cost and then deleted in this order until the total cost

of the remaining constraints is less than the original

subquery. To preserve the semantics of the subquery,

we keep a dependency list of the inferred constraints to

avoid deleting all constraints in an implication cycle. In

our example, the attribute geo geoloc.country name

is deleted because its long string type is the most ex-

pensive. The next most expensive constraint is the one

on attribute geo geoloc.country code. However, it

should be preserved because the cause of its deletability

(i.e., the constraint on geo geoloc.country name) was

just deleted. Finally, the constraint on geo geoloc.-

latitude is kept because it is an indexed attribute that

will improve the e�ciency of the subquery. The al-

gorithm returns the reformulated subquery SUBQ3 as

shown in Figure 4, as well as the Inferred-Set, which

will be used for reformulating the succeeding subqueries

in the query plan.

Not all rules are matched directly from the database

abstractions. For interaction constraints, we have ax-

ioms for set inclusion and mathematical relations. For

example, if there is an interaction constraint (> ?Y ?X)

and we have rules or range informationwhich assert that

(> ?X 17), then we can add a new constraint (> ?Y 17)

because (> ?X 17) ^ (> ?Y ?X) ) (> ?Y 17). These

axioms are implemented as inference procedures for ef-

�ciency.

The worst case complexity of SUBQ-REFORMULATION

is O(R2N �max(M; logN )), where M is the maximum

length of the antecedent of the rules, N is the great-

est number of constraints in the partially reformulated

query, that is, the number of original constraints plus

the number of added constraints in Inferred-Set be-

fore �nal selection, and R is the size of DB-Knowledge.

The worst case cost to match a rule is O(MN ). Suppose

the system matches applicable rules linearly in the set

of the database abstractions, all rules must be matched

and this takes RMN . The complexity of Step 2 is

thus O(R2MN ), in the case that only one rule is �red

in every scan of the database abstractions, and every

rule is eventually �red. The complexity of Step 3 is

O(N logN ), the cost of sorting. Deleting constraints in

the Inferred-Set in their order of estimated cost takes

O(N ).

Because the added constraints are range constraints

of an attribute, the number of constraints will not

exceed the number of the attributes of the relevant

database tables.2 Therefore, N is small compared to

R. In the average case, the rule match cost is about

O(N ), since the lengths of rules are usually less than

3. The database abstractions are normally scanned less

than 3 times. Therefore, R dominates the complexity

of the algorithm. With small values of R, this algo-

rithm will not introduce signi�cant overhead to the cost

of query processing. To alleviate the impact of a large

R on the system's performance, we can adopt sophisti-

cated indexing and hashing techniques in rule matching,

or restrain the size of the database abstractions by re-

moving database abstractions with low utility.

4 Query Plan Reformulation

We can reformulate each subquery in the query plan

with the subquery reformulation algorithm and improve

their e�ciency. However, the most expensive aspect of

the multidatabase query is often processing intermedi-

ate data. In the example query plan in Figure 2, the

constraint on the �nal subqueries involves the variables

?geocode and ?geocode2 that are bound in the pre-

ceding subqueries. If we can reformulate these preced-

ing subqueries so that they retrieve only the data in-

2If there are two constraints on the same attribute, we can

always apply the range re�nement operator on them and merge

them together.



QPLAN-REFORMULATION(Plan, DB-Knowledge, Cost-Model)

1.KB  DB-Knowledge;

2.for all subqueries S in the order specified in Plan:

(S',Inferred-Set)  SUBQ-REFORMULATION(S,KB,Cost-Model);

if S' refuted, return Nil;

else update KB with Inferred-Set; update Plan with S';

3.for all subqueries S whose semantics are changed:

SUBQ-REFORMULATION(S, DB-Knowledge, Cost-Model);

4.return reformulated Plan

END.

Figure 6: Query Plan Reformulation Algorithm

stances possibly satisfying the constraint (= ?geocode

?geocode2) in the �nal subquery, the intermediate data

will be reduced. This requires the query plan refor-

mulation algorithm to be able to propagate the con-

straints along the data ow paths in the query plan. The

query plan reformulation algorithm de�ned in Figure 6

achieves this by updating the database abstractions and

rearranging constraints. We explain the algorithm be-

low using the query plan in Figure 2.

The algorithm takes three input arguments. The ar-

gument Plan is the input query plan, DB-Knowledge and

Cost-Model are de�ned as in SUBQ-REFORMULATION. Af-

ter the initialization step, in the second step, the algo-

rithm reformulates each subquery in the partial order

(i.e., the data ow order) speci�ed in the plan. The

two db-retrieve subqueries are reformulated �rst. The

database abstractions are updated with Inferred-Set

which is returned from SUBQ-REFORMULATION to prop-

agate the constraints to later subqueries. For ex-

ample, when reformulating the upper subquery, the

fourth rule is �red for adding the constraint on the

variable ?geocode which is bound to the attribute

afsc port.geocode. Although this long string type

constraint is then selected to be deleted, it reveals

the range of afsc port.geocode in the output data

of the upper subquery. This range information to-

gether with other inferred constraints in Inferred-Set

replaces the original range information to update the

initial database abstractions. In this example, the

second formula of the initial range information is

replaced by (afsc port.geocode 2 ("BSRL" "HNTS"

"FGTW")), the consequent condition of the fourth rule.

The algorithm uses this updated range information to

reformulate the �nal subquery and reduces the possi-

ble values from six to three. In addition, the constraint

(afsc port.rail ?port "Y") in the upper subquery

is propagated along the data ow path to its succeeding

subquery implicitly.

Now that the updated range information for

?geocode is available, the subquery reformulation al-

gorithm can infer from the constraint (= ?geocode

?geocode2) a new constraint (member ?geocode2

("BSRL" "HNTS" "FGTW")) and add it to the �nal sub-

query. However, this constraint should be executed by

the remote DBMS instead of by the local Loom system,

because it does not involve interaction with di�erent

databases. In this case, when updating the query plan

with the reformulated subquery, the algorithm locates

where the constrained variable of each new constraint

is bound, and inserts the new constraint in the corre-

sponding subqueries. In our example, the variable is

bound by (geo geoloc.geocode ?geoloc ?geocode2)

in the lower subquery in Figure 2. The algorithm will

insert the new constraint on ?geocode2 in that sub-

query. In this way, the constraints (afsc port.rail

?port "Y") and (= ?geocode ?geocode2) are propa-

gated back along the data ow path to the lower sub-

query. This process of new constraint insertion is re-

ferred to as constraint rearrangement.

However, the semantics of the rearranged subqueries,

such as the lower subquery in this example, are changed

because of the newly inserted constraints. (Note, that

the semantics of the overall query plan remain the

same.) After all the subqueries in the plan have been

reformulated, Step 3 of the algorithm reformulates these

subqueries again to improve their e�ciency. In our ex-

ample, the reformulation algorithm is applied again to

the lower subquery, but no reformulation is found to be

appropriate. The �nal reformulated query plan is shown

in Figure 7.

This query plan is more e�cient and returns the same

answer as the original one. In our example, the lower

subquery is more e�cient because of the new constraint

on the indexed attribute geo geoloc.latitude (by

SUBQ-REFORMULATION).The intermediate data items are

reduced because of the new constraint on the attribute

geo geoloc.geocode. The logical rationale of this

new constraint is derived from the constraints in the

other two subqueries: (afsc port.rail ?port "Y")

and (= ?geocode ?geocode2), and the fourth rule in

the database abstractions.

The worst case complexity of QPLAN-REFORMULATION



Figure 7: Reformulated SIMS Plan for Example Query

is O(SR2N �max(M; logN )), where S is the number of

subqueries in the query plan, and R2N �max(M; logN )

is the cost of SUBQ-REFORMULATION. In the average case,

S is less than 5, so the dominating factor is still the cost

of the subquery reformulation R2N �max(M; logN ), in

which R is the most important factor. Consequently, if

R is relatively small, or we can match rules e�ciently,

this algorithm is e�cient enough to be neglected in the

total cost of query processing.

5 Experimental Results

The reformulation algorithms are implemented in the

context of the SIMS system, which, for the purpose of

our experiments, is connected with two distributed Ora-

cle databases. Table 1 shows the size of these databases.

The queries used were selected from the set of SQL

queries constructed by other users of the databases.

Table 2 lists the features of these queries. The �rst

three queries are single database queries. The remain-

ing queries access both databases, so they have two

database subqueries and one subquery for evaluating

interaction constraints and performing joins in Loom.

The number of constraints includes the number of range

and interaction constraints. The number of answers

may not equal the number of retrieved instances, be-

cause the answers are results of projection on speci�ed

attributes and all duplicates are removed. Query 3 and

6 are null queries.

The performance statistics are shown in Table 3. All

entries are based on an average of 10 trial executions.

The number of rules �red counts both range informa-

tion and rules used in reformulation. Note that a rule

Database Contents Instances Size(MByte)

Geo Geographical 56708 rows 10.48

locations in 16 tables

Assets Planes,ships 5728 rows 0.51

other assets in 14 tables

Table 1: Database Size

may be �red twice or more in Step 2 and 3 of the

QPLAN-REFORMULATION algorithm. The amount of in-

termediate data indicated for each multidatabase query

is the total number of the data instances retrieved from

both databases and transferred to the SIMS system.

The most noticeable cost reduction is achieved by re-

formulation when the system can determine the answers

of queries from its knowledge. In these queries, the sys-

tem can eliminate the corresponding database access.

For example, the system refutes Query 3 and 6 and

returns the answer NIL immediately. In Query 7, the

system asserts the answer of a database subquery. This

subquery is eliminated, and the query reduces to a sin-

gle database query. Query 8, 9, and 10 are typical mul-

tidatabase queries, the system reformulates them and

eliminates a large amount of intermediate data. Query

execution time is thus reduced by about a factor of 2.

Query 2 is an expensive single database query. The sys-

tem reformulates it by introducing a constraint on an

indexed attribute and saves a considerable amount of

time.

There are cases where the reformulation did not

achieve signi�cant cost reduction. The �rst case is when

the query is already very e�cient. For example, in

Query 1, the query execution time without reformu-



Query (short descriptions) Database Number of Number of Number of
Accessed Subqueries Constraints Answers

1:Airports: runway�8000, concrete surface Geo 1 2 2

2:Locations: location code in state gsa code "TW" Geo 1 2 147

3:Wharves: container cranes and rail track Geo 1 4 0

4:Wharves: container/breakbulk ships Geo,Assets 3 10 6

5:Ports: accommodate ship with code "1240" Geo,Assets 3 4 2

6:Ports: accommodate ship "1207", mob "10C" Geo,Assets 3 4 0

7:Ships: dock in channels of port in Long Beach Geo,Assets 3 3 28

8:Ports & Ships: berths storage > ship capacity Geo,Assets 3 1 9

9:Ports & Ships:ship length, �t berth type "TE" Geo,Assets 3 4 20

10:Ports & Ships:Tunisia ports,frozen cargo unload Geo,Assets 3 5 29

Table 2: Experiment Multidatabase Queries

query 1 2 3 4 5 6 7 8 9 10

planning time (sec) 0.5 0.3 0.6 2.1 1.1 0.7 0.7 0.5 0.5 0.8

reformulation time 0.1 0.1 0.0 0.5 0.1 0.0 0.0 0.1 0.1 0.3

rules �red (times) 37 18 11 126 63 8 17 15 19 71

intermediate data w/o Refa - - - 145 41 1 810 956 808 810

intermediate data w/ Refb - - - 145 35 0 28 233 320 607

query execution time w/o Ref 0.3 8.2 0.6 12.3 11.3 2.0 251.0 401.8 255.8 258.8

query execution time w/ Ref 0.3 1.5 0.0 11.3 11.1 0.0 0.3 207.5 102.9 195.2

total elapsed time w/o Ref 0.8 8.5 1.2 14.4 12.4 2.7 251.7 402.3 256.3 259.6

total elapsed time w/ Ref 0.9 1.9 0.6 13.9 12.3 0.7 1.0 208.1 103.5 196.3
aw/o Ref = Without reformulation.
bw/ Ref = With reformulation.

Table 3: Experimental Results

lation is very short, and reformulation appears to be

unnecessary. Another case is when the system can not

reduce the amount of intermediate data, as in Query 4

and 5. This is due to a lack of su�cient database ab-

stractions, or it may just be impossible to reduce the

cost for some particular queries and databases. How-

ever, as indicated in the experimental results, the refor-

mulation time is so short that even when no signi�cant

cost reduction can be achieved, the overhead will not

degrade the performance of retrieval. To sum up, the

reformulation approach is e�ective and can achieve a

substantial cost reduction.

In this experiment, the system uses a set of database

abstractions consisting of 203 rules about range infor-

mation and 64 implication rules for every query plan.

These database abstractions were prepared by compil-

ing the databases. For range information, the compiling

procedure summarizes the range of each attribute of the

database by extracting the minimumand maximumval-

ues for numerical attributes, and enumerating the pos-

sible values for string type attributes. If the number of

possible values exceeds a threshold, this range informa-

tion is discarded. The implication rules were prepared

by a semi-automatic learning algorithm similar to the

KID3 (Piatetsky-Shapiro, 1991). This algorithm takes

the user input condition A, and learns a set of rules of

the form A! B from the database. The algorithm re-

trieves the data that satisfy the condition A, then com-

piles the data for the conclusions B.

6 Related Work

The semantic query optimization approach has been

studied extensively in previous work (Chakravarthy,

Grant, and Minker, 1990; Siegel, 1988; King, 1981;

Hammer and Zdonik, 1980). These systems demon-

strate the bene�t of using knowledge of database con-

tents to optimize queries. The most signi�cant dif-

ference between our approach and theirs is that they

rely on heuristics, and search for the optimal equiva-

lent query in a hill-climbingmanner, while our approach

adopts a delayed-commitment strategy. Their systems

search for the optimal query in the space of equivalent

queries of the given query. Whenever a rule is �red,

their systems will generate a new equivalent query, un-

til an optimal one is found. This leads to a combi-

natorial explosion of equivalent queries among which



the system needs to select. To overcome this problem,

they use heuristics and hill-climbing to prune the search

space, but as a consequence, the reformulated query is

usually only locally optimal. Sometimes, this process

causes in�nite loops that require more heuristics to re-

solve (Siegel, 1988).

To illustrate the problem of previous work, consider

the following situation. Suppose there are two rules in

the set of database abstractions, A ! B, and B ! C.

Suppose we are given a query Q which implies A, and

the rule A! B is the only applicable rule. Rule B ! C

will be applicable if B is added to Q by �ring A ! B.

Suppose further that Q and C are contradictory, and B

is a costly constraint. For hill-climbing systems, A! B

will never be �red since adding B will increase the cost.

Thus, B ! C will not be applicable. As a result, the

system can not �gure out that the answer of the query is

null, unless it can backtrack. But backtracking requires

the system to maintain a large set of equivalent queries.

This overhead will make the system impractical.

In contrast, our subquery reformulation algorithm

does not generate queries each time a rule is �red. In-

stead, we �re all applicable rules at once and collect

the candidate constraints in a list Inferred-Set and

then select only those that will contribute to the cost

reduction. In the example above, our algorithm can con-

sider both rules and refute the query without maintain-

ing a large set of equivalent queries. This approach is

a delayed-commitment strategy because the system de-

lays the reformulation until it has enough information to

make a decision. Although the algorithm �res all appli-

cable rules, it is still polynomial. The empirical results

show that it is e�cient. Moreover, it is exible because

no additional speci�c heuristics are required. The list

Inferred-Set turns out to be the information needed to

propagate constraints among subqueries. Subsequently,

the subquery reformulation is easily extended to query

plan reformulation.

Compared to conventional syntactical optimization

techniques for distributed database systems, our ap-

proach di�ers in both the knowledge brought to bear

and the way queries are optimized. (Apers, Hevner,

and Yao, 1983; Jarke and Koch, 1984; Ullman, 1988)

describe approaches that use the semi-join operation

to join two database relations in distributed databases.

The semi-join techniques propagate constraints by

computing a semi-join before performing the actual

join. Our approach propagates constraints from knowl-

edge of database abstractions without accessing remote

databases, and thus has less overhead then the semi-

join. The semi-join techniques may reduce intermedi-

ate data when the result of semi-join is signi�cantly

smaller than the entire relevant relations. However,

there are situations when semi-join degrades the per-

formance. The system needs to know the reduction fac-

tors of each semi-join to decide a semi-join schedule that

will save execution cost. To compute reduction factor

requires knowledge of the size of relevant relations and

their joining path. It is usually di�cult to estimate

the size of an intermediate relation when the query is

complicated. Some semi-join approaches assume a unre-

alistically simpli�ed model to reduce the overhead, but

to make semi-join approach e�ective, the system still

need to bring to bear extensive statistical knowledge to

estimate relation sizes (Jarke and Koch, 1984).

Another di�erence between our approach and the con-

ventional distributed query optimization techniques is

that they assume a homogeneous environment. They

can transfer data from one site to another without any

transformation. They can also distribute a relation into

fragments and store them in di�erent sites. Data dis-

tribution strategy and execution order scheduling are

their major concerns. We assume a heterogeneous en-

vironment, so we focus on exible reformulation on the

semantic aspects of queries. In the future, we also intend

to include size and system con�guration information in

our planning and reformulation algorithm to optimize

query plans on the execution order.

7 Conclusion

This paper presented a problem reformulation approach

to reducing the cost of domain-modeled multidatabase

queries. The reformulation is based on logical inferences

from database abstractions. This simple, e�cient algo-

rithm reduces the cost of the query plan by reducing

intermediate data and re�ning each subquery. This is

achieved without database implementation dependent

heuristic control. Empirical results demonstrate that

this algorithm can provide signi�cant reductions in the

cost of executing query plans.

One of the limitations of our implementation is that

the rule match algorithm is linear to the size of the

database abstractions. A very large set of database ab-

stractions could make the reformulation costly. To avoid

this problem, we plan to adopt a more sophisticated rule

match algorithm, such as the RETE algorithm (Forgy,

1982), or its more e�cient variations, to reduce this im-

pact.

One important issue not addressed in this paper is

how to automatically acquire the database abstractions

for reformulation (Siegel, 1988). We are now developing

a learning algorithm that is driven by example queries

(Hsu and Knoblock, 1993). We plan to use inductive

learning (Cai, Cercone, and Han 1991; Haussler, 1988;

Michalski, 1983) to identify the costly aspects of the

example subqueries and propose candidate rules. The

candidate rules will then be re�ned and learned by the



system. After the system has learned a set of database

abstractions, it needs to monitor their utility and va-

lidity to maintain the system's performance. We will

address this issue in the future work.
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