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Abstract

Semantic query optimization can dramati-

cally speed up database query answering by

knowledge intensive reformulation. But the

problem of how to learn required semantic

rules has not previously been solved. This

paper describes an approach using an induc-

tive learning algorithm to solve the prob-

lem. In our approach, learning is triggered

by user queries and then the system in-

duces semantic rules from the information in

databases. The inductive learning algorithm

used in this approach can select an appropri-

ate set of relevant attributes from a poten-

tially huge number of attributes in real-world

databases. Experimental results demonstrate

that this approach can learn su�cient back-

ground knowledge to reformulate queries and

provide a 57 percent average performance im-

provement.

1 INTRODUCTION

Speeding up a system's performance is one of the

major goals of machine learning. Explanation-based

learning is typically used for speedup learning, while

applications of inductive learning are usually limited

to data classi�ers. In this paper, we present an ap-

proach in which inductively learned knowledge is used

for semantic query optimization to speed up query an-

swering for data/knowledge-based systems.

The principle of semantic query optimization (King

1981) is to use semantic rules, such as all Tunisian

seaports have railroad access, to reformulate a query

into a less expensive but equivalent query, so as to re-

duce the query evaluation cost. For example, suppose

we have a query to �nd all Tunisian seaports with rail-

road access and 2,000,000 ft3 of storage space. From

the rule given above, we can reformulate the query

so that there is no need to check the railroad ac-

cess of seaports, which may save some execution time.

Many algorithms for semantic query optimization have

been developed (Hsu & Knoblock 1993; King 1981;

Shekhar, Srivastava, & Dutta 1988; Shenoy & Oz-

soyoglu 1989). Average speedup ratios from 20 to 40

percent using hand-coded knowledge are reported in

the literature. This approach to query optimization

has gained increasing attention recently because it is

applicable to almost all existing data/knowledge-base

systems. This feature makes it particularly suitable

for intelligent information servers connected to vari-

ous types of remote information sources.

A critical issue of semantic query optimization is how

to encode useful background knowledge for reformu-

lation. Most of the previous work in semantic query

optimization in the database community assume that

the knowledge is given. (King 1981) proposed using

semantic integrity constraints for reformulation to ad-

dress the knowledge acquisition problem. Examples

of semantic integrity constraints are The salary of an

employee is always less than his manager's, and Only

female patients can be pregnant. However, the in-

tegrity rules do not re
ect properties of the contents

of databases, such as related size of conceptual units,

cardinality and distribution of attribute values. These

properties determine the execution cost of a query.

Moreover, integrity constraints rarely match query us-

age patterns. It is di�cult to manually encode seman-

tic rules that both re
ect cost factors and match query

usage patterns. The approach presented in this paper

uses example queries to trigger the learning in order

to match query usage patterns and uses an inductive

learning algorithm to derive rules that re
ect the ac-

tual contents of databases.

An important feature of our learning approach is

that the inductive algorithm learns from complex

real-world information sources. In these information

sources, data objects are clustered into conceptual

units. For example, the conceptual unit of a rela-

tional databases is a relation, or simply a table. For

object-based databases, it is a class. In description-

logic knowledge bases (Brachman & Schmolze 1985),

data instances are clustered into concepts. Each con-



ceptual unit has attributes that describe the relevant

features. Most inductive learning systems, such as

ID3, assume that relevant attributes are given. Con-

sider a database with three relations: car, person,

and company. We might want to characterize a

class of persons by the company they work for, or

by the cars they drive, or by the manufacturers of

their cars. In these cases, we need attributes from

di�erent relations to describe a desired class of ob-

jects. Previous studies (Almuallim & Dietterich 1991;

Russell 1989) have shown that the choice of instance

language bias (i.e., selecting an appropriate set of at-

tributes) is critical for the performance of an inductive

learning system. To address this problem, we pro-

pose an inductive learning algorithm that can select

attributes from di�erent relations automatically.

The remainder of this paper is organized as follows.

The next section illustrates the problem of semantic

query optimization for data/knowledge bases. Sec-

tion 3 presents an overview of the learning approach.

Section 4 describes our inductive learning algorithm

for structural data/knowledge bases. Section 5 shows

the experimental results of using learned knowledge in

reformulation. Section 6 surveys related work. Sec-

tion 7 reviews the contributions of the paper and de-

scribes some future work.

2 SEMANTIC QUERY

OPTIMIZATION

Semantic query optimization is applicable to various

types of database and knowledge base. Nevertheless,

we chose the relational model to describe our approach

because it is widely used in practice. The approach can

be easily extended to other data models. In this paper,

a database consists of a set of primitive relations. A

relation is then a set of instances. Each instance is a

vector of attribute values. The number of attributes

is �xed for all instances in a relation. The values of

attributes can be either a number or a symbol, but

with a �xed type. Below is an example database with

two relations and their attributes:

geoloc(name,glc cd,country,latitude,longitude),

seaport(name,glc cd,storage,silo,crane,rail).

where the relation geoloc stores data about geo-

graphic locations, and the attribute glc cd is a ge-

ographic location code.

The queries we are considering here are Horn-clause

queries. A query always begins with the predicate

answer and has the desired information as argument

variables. For example,

Q1: answer(?name):-

geoloc(?name,?glc cd,"Malta", , ),

seaport( ,?glc cd,?storage, , , ),

?storage > 1500000.

retrieves all geographical location names in Malta.

There are two types of literals. The �rst type cor-

responds to a relation stored in a database. The sec-

ond type consists of built-in predicates, such as > and

member. Sometimes they are referred to as extensional

and intentional relations, respectively (see (Ullman

1988)). We do not consider negative literals and re-

cursion in this paper.

Semantic rules for query optimization are also ex-

pressed in terms of Horn-clause rules. Semantic rules

must be consistent with the contents of a database.

To clearly distinguish a rule from a query, we show

queries using the Prolog syntax and semantic rules in

a standard logic notation. A set of example rules are

shown as follows:

R1: geoloc( , ,"Malta",?latitude, )

) ?latitude � 35.89.

R2: geoloc( ,?glc cd,"Malta", , )

) seaport( ,?glc cd, , , , ).

R3: seaport( ,?glc cd,?storage, , , ) ^
geoloc( ,?glc cd,"Malta", , )

) ?storage > 2000000.

Rule R1 states that the latitude of a Maltese geo-

graphic location is greater than or equal to 35.89.

R2 states that all Maltese geographic locations in the

database are seaports. R3 states that all Maltese sea-

ports have storage capacity greater than 2,000,000

ft3. Based on these rules, we can infer �ve equiva-

lent queries of Q1. Three of them are:

Q21: answer(?name):-

geoloc(?name,?glc cd,"Malta", , ),

seaport( ,?glc cd, , , , ).

Q22: answer(?name):-

geoloc(?name, ,"Malta", , ).

Q23: answer(?name):-

geoloc(?name, ,"Malta",?latitude, ),

?latitude � 35.89.

Q21 is deduced from Q1 and R3. This is an example

of constraint deletion reformulation. From R2, we can

delete one more literal on seaport and infer that Q22

is also equivalent to Q1. In addition to deleting con-

straints, we can also add constraints to a query based

on rules. For example, we can add a constraint on

?latitude to Q22 from R1, and the resulting query

Q23 is still equivalent to Q1. Sometimes, the system

can infer that a query is unsatis�able because it con-

tradicts a rule (or a chain of rules). It is also possi-

ble for the system to infer the answer directly from

the rules. In both cases, there is no need to access

the database to answer the query, and we can achieve

nearly 100 percent savings.

Now that the system can reformulate a query into

equivalent queries based on the semantic rules, the



next problem is how to select the equivalent query with

the lowest cost. The shortest equivalent query is not

always the least expensive. The exact execution cost of

a query depends on the physical implementation and

the contents of the data/knowledge bases. However,

we can usually estimate an approximate cost from the

database schema and relation sizes. In our example,

assume that the relation geoloc is very large and is

sorted only on glc cd, and assume that the relation

seaport is small. Executing the shortest query Q22 re-

quires scanning the entire set of geoloc relations and

is thus even more expensive than executing the query

Q1. The cost to evaluate Q21 will be less expensive

than Q1 and other equivalent queries because a redun-

dant constraint on ?storage is deleted, and the system

can still use the sorted attribute glc cd to locate the

answers e�ciently. Therefore, the system will select

Q21.

Although the number of equivalent queries grows com-

binatorially with the number of applicable rules, se-

mantic query optimization can be computed without

explicitly searching this huge space. We have devel-

oped an e�cient reformulation algorithm that is poly-

nomial in terms of the number of applicable rules.

We also extended this algorithm to reformulate multi-

database query access plans and showed that the refor-

mulations produce substantial performance improve-

ments (Hsu & Knoblock 1993).

We conclude this section with the following observa-

tions on semantic query optimization.

1. Semantic query optimization can reduce query ex-

ecution cost substantially.

2. Semantic query optimization is not a tautolog-

ical transformation from the given query; it

requires nontrivial, domain-speci�c background

knowledge. Learning useful background knowl-

edge is critical.

3. Since the execution cost of a query is dependent

on the properties of the contents of information

sources being queried, the utility of a semantic

rule is also dependent on these properties.

4. The overhead of reformulation is determined by

the number of applicable rules. Therefore, the

utility problem (Minton 1988) is likely to arise

and the learning must be selective.

3 OVERVIEW OF THE LEARNING

APPROACH

This section presents an overview of our learning ap-

proach to address the knowledge acquisition problem

of semantic query optimization. The key idea of our

learning approach is that we view a query as a logical

description (conjunction of constraints) of the answer,

which is a set of instances satisfying the query. With

an appropriate bias, an inductive learner can derive

an equivalent query that is less expensive to evalu-

ate than the original. Based on this idea, the learn-

ing is triggered by an example query that is expensive

to evaluate. The system then inductively constructs

a less expensive equivalent query from the data in

the databases. Once this equivalent query is learned,

the system compares the input query and constructed

query, and infers a set of semantic rules for future use.

Figure 1 illustrates a simple scenario of this learn-

ing approach. An example query is given to a small

database table with 3 instances. Evaluating this query

will return an instance, which is marked with a ``+''

sign. Conceptually, instances in this table are labeled

by the query as positive (answers) or negative (non-

answers). We can use the inductive learning algorithm

to generate an equivalent alternative query with ap-

propriate biases so that the generated query is less ex-

pensive to evaluate. The generated alternative query

should be satis�ed by all answer instances and none

of the others. This guarantees the equivalence of the

two queries with regard to the current status of the

data/knowledge base. Suppose that in this simple

database, a short query is always less expensive to ex-

ecute. The system will bias the learning in favor of

the shortest description and inductively learn an al-

ternative query (A1 = `Z'). The inductive learning

algorithm will be discussed in the next section.

The equivalence of the alternative query and the ex-

ample query provides a training example of reformu-

lation. In other words, this training example shows

which equivalent query an input query should be refor-

mulated into. The operationalization component will

deduce a set of rules from the training example. This

process consists of two stages. In the �rst stage, the

system uses a logical inference procedure to transform

the training example into the required syntax (Horn

clauses). This syntax is designed so that the query

reformulation can be computed e�ciently. The equiv-

alence between the two queries is converted to two

implication rules:

(1)(A2 � 0) ^ (A3 = 2) =) (A1 = `Z0
)

(2)(A1 = `Z0
) =) (A2 � 0) ^ (A3 = 2)

Rule (2) can be further expanded to satisfy our syntax

criterion:

(3)(A1 = `Z0
) =) (A2 � 0)

(4)(A1 = `Z0
) =) (A3 = 2)

After the transformation, we have proposed rules (1),

(3), and (4) that satisfy our syntax criterion. In the

second stage, the system tries to compress the an-

tecedents of rules to reduce their match costs. In

our example, rules (3) and (4) contain only one literal

as antecedent, so no further compression is necessary.

These rules are then returned immediately and learned

by the system.



Database

Inductive Concept Formation

Operationalization

Answer = Positive Instance

Rules to be Learned
Training Example

  NonAnswer = Negative Instances

+

Example query:

((Α2 ≤ 0) ∧ (Α3 = 2))  ⇔  (Α1 = Ζ)

(Α2 ≤ 0) ∧ (Α3 = 2)

Alternative query:

(Α1 = Ζ)   ⇒   (Α2 ≤ 0)
(Α1 = Ζ)   ⇒   (Α3 = 2)
(Α2 ≤ 0)  ∧   (Α3=2)   ⇒ (Α1 = Ζ)

Α1 = Ζ

A1   A2   A3
A      1      2
B      1      2
Z      0      2

A1   A2   A3
A      1      2
B      1      2
Z      0      2

Figure 1: An Simpli�ed Example Learning Scenario

If the proposed rule has more than one antecedent lit-

eral, such as rule (1), then the system can use the

greedy minimum set cover algorithm (Cormen, Leis-

erson, & Rivest 1989) to eliminate unnecessary con-

straints. The problem of minimum set cover is to �nd

a subset from a given collection of sets such that the

union of the sets in the subset is equal to the union of

all sets. We rewrite rule (1) as

(5):(A1 = `Z 0
) =) :(A2 � 0) _ :(A3 = 2):

The problem of compressing rule (1) is thus reduced

to the following: given a collection of sets of data in-

stances that satisfy :(A2 � 0) _ :(A3 = 2), �nd

the minimumnumber of sets that cover the set of data

instances that satisfy :(A1 = `Z'). Since the result-

ing minimum set that covers :(A1 = `Z') is :(A2
� 0), we can eliminate :(A3 = 2) from rule (5) and

negate both sides to form the rule

(A2 � 0) =) (A1 = `Z0
):

4 LEARNING ALTERNATIVE

QUERIES

The scenario shown in Figure 1 is a simpli�ed example

where the database consists of only one table. How-

ever, real-world databases and knowledge bases usu-

ally decompose their application domain into multiple

conceptual units. One could try to combine every con-

ceptual unit that could be relevant into a large table,

then apply the learning system for tabular databases

directly. However, learning from a large table is too

expensive computationally. Such an approach will not

work unless a small number of relevant attributes are

correctly identi�ed before learning.

In this section, we discuss inductive learning for Horn-

clause queries from a database with multiple relations.

Our learning problem is to �nd an alternative query

to characterize a class of instances de�ned in a rela-

tion. In standard machine learning terms, this subset

of instances are labeled as positive examples, and the

others are negative examples.

Before we discuss the algorithm, we need to clarify two

forms of constraints implicitly expressed in a query.

One form is an internal disjunction, a set of disjunc-

tions on the values of an attribute. For example, an

instance of geoloc satis�es:

C1:geoloc(?name, ,?cty, , ),

member(?cty,["Tunisia","Italy","Libya"]).

i� its ?cty value is "Tunisia", '"Italy", or "Libya".

The other form is a join constraint, which combines

instances from two relations. For example, a pair of

instances of geoloc and seaport satisfy a join con-

straint:

C2:geoloc(?name1,?glc cd, , , ),

seaport(?name2,?glc cd, , , , ).

i� they share common values on the attribute glc cd

(geographic location code).

Our inductive learning algorithm is extended from the

greedy algorithm that learns internal disjunctions pro-

posed by (Haussler 1988). Of the many inductive

learning algorithms, Haussler's was chosen because its

hypothesis description language is the most similar to

ours. His algorithm starts from an empty hypothesis

of the target concept description to be learned. The

algorithm proceeds by constructing a set of candidate

constraints that are consistent with all positive exam-

ples, and then using a gain/cost ratio as the heuristic

function to select and add candidates to the hypothe-

sis. This process of candidate construction and selec-

tion is repeated until no negative instance satis�es the

hypothesis.



We extended Haussler's algorithm to allow join con-

straints in the target description. To achieve this,

we extended the candidate construction step to allow

join constraints to be considered, and we extended the

heuristic function to evaluate both internal disjunc-

tions and join constraints. Also, we adopted an ap-

proach to searching the space of candidate constraints

that restricts the size of the space.

4.1 CONSTRUCTING AND EVALUATING
CANDIDATE CONSTRAINTS

In this subsection, we describe how to construct a

candidate constraint, which can be either an internal

disjunction or a join constraint. Then we describe a

method for evaluating both internal disjunctions and

join constraints. Given a relation partitioned into pos-

itive and negative instances, we can construct an in-

ternal disjunctive constraint for each attribute by gen-

eralizing attribute values of positive instances. The

constructed constraint is consistent with positive in-

stances because it is satis�ed by all positive instances.

Similarly, we can construct a join constraint consistent

with positive instances by testing whether all positive

instances satisfy the join constraint. The constructed

constraints are candidates to be selected by the system

to form an alternative query.

For example, suppose we have a database that contains

the instances as shown in Figure 2. In this database,

instances labeled with ``+'' are positive instances.

Suppose the system is testing whether join constraint

C2 is consistent with the positive instances. Since for

all positive instances, there is a corresponding instance

in seaport with a common glc cd value, the join con-

straint C2 is consistent and is considered as a candidate

constraint.

Once we have constructed a set of candidate internal

disjunctive constraints and join constraints, we need to

measure which one is the most promising and add it to

the hypothesis. In Haussler's algorithm, the measur-

ing function is a gain/cost ratio, where gain is de�ned

as the number of negative instances excluded and cost

is de�ned as the syntactic length of a constraint. This

heuristic is based on the generalized problem of min-

imum set cover where each set is assigned a constant

cost. Haussler used this heuristic to bias the learning

for short hypotheses. In our problem, we want the sys-

tem to learn a query expression with the least cost. In

real databases, sometimes additional constraints can

reduce query evaluation cost. So we keep the gain part

of the heuristic, while de�ning the cost of the function

as the estimated evaluation cost of the constraint by a

database system.

The motivation of this formula is also from the gener-

alized minimum set covering problem. The gain/cost

heuristic has been proved to generate a set cover within

a small ratio bound (ln jnj+1) of the optimal set cov-

ering cost (Chvatal 1979), where n is the number of

input sets. However, in this problem, the cost of a set

is a constant and the total cost of the entire set covers

is the sum of the cost of each set. This is not always

the case for database query execution, where the cost

of each constraint is dependent on the execution or-

dering. To estimate the actual cost of a constraint is

very expensive. We therefore use an approximation

heuristic here.

The evaluation cost of individual constraints can be es-

timated using standard database query optimization

techniques (Ullman 1988) as follows. Let D1 denote

the constraining relation, and jD1j denote the size of
a relation, then the evaluation cost for an internal dis-

junctive constraint is proportional to

jD1j

because for an internal disjunction on an attribute that

is not indexed, a query evaluator has to scan the entire

database to �nd all satisfying instances. If the internal

disjunction is on an indexed attribute, then the cost

should be proportional to the number of instances sat-

isfying the constraint. In both cases, the system can

always sample the database query evaluator to obtain

accurate execution costs.

For join constraints, let D2 denote the new relations

introduced by a join constraint, and I1, I2 denote the
cardinality of join attributes of two relations, that is,

the number of distinct values of attributes over which

D1 and D2 join. Then the evaluation cost for the join

over D1 and D2 is proportional to

jD1j � jD2j

when the join is over attributes that are not indexed,

because the query evaluator must compute a cross

product to locate pairs of satisfying instances. If the

join is over indexed attributes, the evaluation cost is

proportional to the number of instance pairs returned

from the join, that is,

jD1j � jD2j

max(I1; I2)
:

This estimate assumes that distinct attribute values

distribute uniformly in instances of joined relations.

Again, if possible, the system can sample the database

for more accurate execution costs. For the above ex-

ample problem, we have two candidate constraints

that are the most promising:

C3:geoloc(?name, ,"Malta", , ).

C4:geoloc(?name,?glc cd, , , ),

seaport( ,?glc cd, , , , ).

Suppose |geoloc| is 300, and |seaport| is 8. Car-

dinality of glc cd for geoloc is 300 again, and for

seaport is 8. Suppose both relations have indices on

glc cd. Then the evaluation cost of C3 is 300, and C4

is 300 � 8=300 = 8. The gain of C3 is 300� 4 = 296,



geoloc("Safaqis", 8001, Tunisia, . . .) seaport("Marsaxlokk" 8003 . . .)

geoloc("Valletta", 8002, Malta, . . .)+ seaport("Grand Harbor" 8002 . . .)

geoloc("Marsaxlokk", 8003, Malta, . . .)+ seaport("Marsa" 8005 . . .)

geoloc("San Pawl", 8004, Malta, . . .)+ seaport("St Pauls Bay" 8004 . . .)

geoloc("Marsalforn", 8005, Malta, . . .)+ seaport("Catania" 8016 . . .)

geoloc("Abano", 8006, Italy, . . .) seaport("Palermo" 8012 . . .)

geoloc("Torino", 8007, Italy, . . .) seaport("Traparri" 8015 . . .)

geoloc("Venezia", 8008, Italy, . . .) seaport("AbuKamash" 8017 . . .)

.

.

.
.
.
.

Figure 2: The Database Fragment

and the gain of C4 is 300� 8 = 292, because only 4 in-

stances satisfy C3 while 8 instances satisfy C4. (There

are 8 seaports, and all have a corresponding geoloc in-

stance.) So the gain/cost ratio of C3 is 296=300 = 0:98,
and the gain/cost ratio of C4 is 292=8 = 36:50. The

system will select C4 and add it to the hypothesis.

4.2 SEARCHING THE SPACE OF
CANDIDATE CONSTRAINTS

When a join constraint is selected; a new relation and

its attributes are introduced to the search space of can-

didate constraints. The system can consider adding

constraints on attributes of the newly introduced re-

lation to the partially constructed hypothesis. In our

example, a new relation seaport is introduced to de-

scribe the positive instances in geoloc. The search

space is now expanded into two layers, as illustrated

in Figure 3. The expanded constraints include a set of

internal disjunctions on attributes of seaport, as well

as join constraints from seaport to another relation.

If a new join constraint has the maximum gain/cost

ratio and is selected later, the search space will be ex-

panded further. Figure 3 shows the situation when

a new relation, say channel, is selected, the search

space will be expanded one layer deeper. At this mo-

ment, candidate constraints will include all unselected

internal disjunctions on attributes of geoloc, seaport,

and channel, as well as all possible joins with new re-

lations from geoloc, seaport and channel. Exhaus-

tively evaluating the gain/cost of all candidate con-

straints is impractical when learning from a large and

complex database.

We adopt a search method that favors candidate con-

straints on attributes of newly introduced relations.

That is, when a join constraint is selected, the sys-

tem will estimate only those candidate constraints in

the newly expanded layer, until the system constructs

a hypothesis that excludes all negative instances (i.e.,

reaches the goal) or no more consistent constraints in

the layer with positive gain are found. In the later

case, the system will backtrack to search the remain-

ing constraints on previous layers. This search control

bias takes advantage of underlying domain knowledge

in the schema design of databases. A join constraint is

unlikely to be selected on average, because an internal

disjunction is usually much less expensive than a join.

Once a join constraint (and thus a new relation) is se-

lected, this is strong evidence that all useful internal

disjunctions in the current layer have been selected,

and it is more likely that useful candidate constraints

are on attributes of newly joined relations. This bias

works well in our experiments. But certainly there

are cases when this search heuristic prunes out useful

candidate constraints. Another way to bias the search

is by including prior knowledge for learning. In fact,

it is quite natural to include prior knowledge in our

algorithm, and we will discuss this later.

Returning to the example, since C4 was selected, the

system will expand the search space by constructing

consistent internal disjunctions and join constraints on

seaport. Assuming that the system cannot �nd any

candidate on seaport with positive gain, it will back-

track to consider constraints on geoloc again. Next,

the constraint on country is selected (see Figure 3)

and all negative instances are excluded. The system

thus learns the query:

Q3: answer(?name):-

geoloc(?name,?glc cd,"Malta", , ),

seaport( ,?glc cd, , , , ).

The operationalization component will then take Q1

and this learned query Q3 as a training example for

reformulation,

geoloc(?name, ,"Malta", , )

, geoloc(?name,?glc cd,"Malta", , ) ^
seaport( ,?glc cd, , , , ).

and deduce a new rule to reformulate Q1 to Q3:

geoloc( ,?glc cd,"Malta", , )

) seaport( ,?glc cd, , , , ).

This is the rule R2 we have seen in Section 2. Since

the size of geoloc is considerably larger than that

of seaport, next time when a query asks about geo-

graphic locations in Malta, the system can reformulate

the query to access the seaport relation instead and

speed up the query answering process.

The algorithm can be further enhanced by including

prior knowledge to reduce the search space. The idea

is to use prior knowledge, such as determinations pro-



channel

geoloc

name = "Valletta" V "Marsaxlokk" V...

glc_cd = 8002 V 8003 V ...

country = "Malta"

latitude = ...

longitude = ...

join on glc_cd with seaports

join on glc_cd with channel

join on name  with ?seaports

seaports

name = "Grand Harbor" V "Marsa" V "St Pauls Bay"...

rail = Yes

 storage > 2000000 

join on name and port_name with channel

join on glc_cd with geoloc

Figure 3: Candidate Constraints to be Selected

posed by (Russell 1989), to sort candidate constraints

by their comparative relevance, and then test their

gain/cost ratio in this sorted order. For example,

assuming that from its prior knowledge the system

knows that the constraints on attributes latitude

and longitude of geoloc are unlikely to be relevant,

then the system can ignore them and evaluate candi-

date constraints on the other attributes �rst. If the

prior knowledge is correct, the system will construct a

consistent hypothesis with irrelevant constraints being

pruned from the search space. However, if the system

cannot �nd a constraint that has a positive gain, then

the prior knowledge may be wrong, and the system

can backtrack to consider \irrelevant" constraints and

try to construct a hypothesis from them. In this way,

the system can tolerate incorrect and incomplete prior

knowledge. This usage of prior knowledge follows the

general spirit of FOCL (Pazzani & Kibler 1992).

5 Experimental Results

Our experiments are performed on the SIMS

knowledge-based information server (Arens et al.

1993; Hsu & Knoblock 1993). SIMS allows users to

access di�erent kinds of remote databases and knowl-

edge bases as if they were using a single system. For

the purpose of our experiments, SIMS is connected

with three remotely distributed Oracle databases via

the Internet. Table 1 shows the domain of the contents

and the sizes of these databases. We had 34 sample

queries written by users of the databases for the ex-

periments. We classi�ed these queries into 8 categories

according to the relations and constraints used in the

queries. We then chose 8 queries randomly from each

category as input to the learning system and generated

32 rules. These rules were used to reformulate the re-

maining 26 queries. In addition to learned rules, the

system also used 163 attribute range facts (e.g., the

range of the storage attribute of seaport is between

0 and 100,000) compiled from the databases. Range

facts are useful for numerically typed attributes in the

rule matching.

Table 1: Database Features

Size
DBs Contents Relations Instances

(MB)

Geo Geographical 16 56708 10.48
locations

Assets Air and sea 14 5728 0.51
assets

Fmlib Force module 8 3528 1.05
library

The performance statistics for query reformulation are

shown in Table 2. In the �rst column, we show the av-

erage performance of all tested queries. We divide the

queries into 3 groups. The number of queries in each

group is shown in the �rst row. The �rst group con-

tains those unsatis�able queries refuted by the learned

knowledge. In these cases, the reformulation takes full

advantage of the learned knowledge and the system

does not need to access the databases at all, so we

separate them from the other cases. The second group

contains those low-cost queries that take less than one

minute to evaluate without reformulation. The last

group contains the high-cost queries.

The second row lists the average elapsed time of query

execution without reformulation. The third row shows

the average elapsed time of reformulation and execu-

tion. Elapsed time is the total query processing time,

from receiving a query to displaying all answers. To re-

duce inaccuracy due to the random latency time in net-

work transmission, all elapsed time data are obtained

by executing each query 10 times and then computing

the average. The reformulation yields signi�cant cost



reduction for high-cost queries. The overall average

gain is 57.10 percent, which is better than systems us-

ing hand-coded rules for semantic optimization (Hsu

& Knoblock 1993; Shekhar, Srivastava, & Dutta 1988;

Shenoy & Ozsoyoglu 1989). The gains are not so high

for the low-cost group. This is not unexpected, be-

cause the queries in this group are already very cheap

and the cost cannot be reduced much further. The

average overheads listed in the table show the time in

seconds used in reformulation. This overhead is very

small compared to the total query processing time. On

average, the system �res rules 5 times for reformula-

tion. Note that the same rule may be �red more than

once during the reformulation procedure (see (Hsu &

Knoblock 1993) for more detailed descriptions).

Table 2: Performance Statistics

Answer

All inferred � 60s. > 60s.

# of queries 26 4 17 5

No reformulation 54.27 44.58 10.11 212.21

Reformulation 23.28 5.45 8.79 86.78

Time saved 30.99 39.14 1.31 125.46

% Gain of total

elapsed time
57.1% 87.8% 12.9% 59.1%

Average overhead 0.08 0.07 0.07 0.11

Times rule �red 5.00 6.00 4.18 7.00

6 RELATED WORK

Previously, two systems that learn background knowl-

edge for semantic query optimization were proposed

by (Siegel 1988) and by (Shekhar et al. 1993). Siegel's

system uses prede�ned heuristics to drive learning

by an example query. This approach is limited be-

cause the heuristics are unlikely to be comprehensive

enough to detect missing rules for various queries and

databases. Shekhar's system is a data-driven approach

which assumes that a set of relevant attributes is given.

Focusing on these relevant attributes, their system ex-

plores the contents of the database and generates a set

of rules in the hope that all useful rules are learned.

Siegel's system goes to one extreme by neglecting the

importance of guiding the learning according to the

contents of databases, while Shekhar's system goes to

another extreme by neglecting dynamic query usage

patterns. Our approach is more 
exible because it ad-

dresses both aspects by using example queries to trig-

ger the learning and using inductive learning over the

contents of databases for semantic rules.

The problem of inductive learning from a database

with multiple relations shares many issues with re-

search work in inductive logic programming (ILP)

(Muggleton et al. 1994), especially the issue of when

to introduce new relations. The main di�erence be-

tween our approach and ILP is that we also consider

the cost of the learned concept description. Our sys-

tem currently learns only single-clause, non-recursive

queries, while ILP approaches can learn multi-clause

and recursive rules. However, due to the complexity

of the problem, most of the existing ILP approaches

do not scale up well to learn from large, real-world

data/knowledge-bases containing more than ten rela-

tions with thousands of instances. Our approach can

learn from large databases because it also uses the

knowledge underlying the database design.

Tan's cost-sensitive learning (Tan 1993) is an induc-

tive learning algorithm that also takes the cost of the

learned description into account. His algorithm tries

to learn minimum-cost decision trees from examples

in a robot object-recognition domain. The algorithm

selects a minimum number of attributes to construct

a decision tree for recognition. The attributes are se-

lected in the order of their evaluation cost. When con-

structing a decision tree, it uses a heuristic attribute

selection function I2=C, where I is the information

gain de�ned as in ID3, and C is the cost to evalu-

ate a given attribute. This function is similar to our

function gain=evaluation cost. While there is no the-

oretic analysis about the general performance of the

heuristic I2=C for decision-tree learning, our function

is derived from approximation heuristics for minimum

set cover problems. (Nunez 1991) de�ned another sim-

ilar heuristic (2
I�1)=C for cost-sensitive decision-tree

learning. His paper provides an information-theoretic

motivation of the heuristic.

(Cai, Cercone, & Han 1991) present an attribute-

oriented learning approach designed to learn from re-

lational databases. The approach learns conjunctive

rules by generalizing instances of a single relation. The

generalization operations include replacing attribute

values with the least common ancestors in a value hi-

erarchy, removing inconsistent attributes, and remov-

ing duplicate instances. In contrast to our inductive

learning algorithm, this attribute-oriented approach

requires users to select relevant attributes before learn-

ing can be performed.

The operationalization component in our learning ap-

proach can be enhanced with an EBL-like explainer to

�lter out low utility rules and generalize rules. A simi-

lar \induction-�rst then EBL" approach can be found

in (Shen 1992). Shen's system uses general heuris-

tics to guide the inductive learning for regularities ex-

pressed in a rule template P (x; y)^R(y; z)) Q(x; z).
Our system has a de�nite goal, so we use example

queries to guide the learning and do not restrict the

format of learned rules to a speci�c template.

7 Conclusions and Future Work

This paper demonstrates that the knowledge required

for semantic query optimization can be learned induc-



tively under the guidance of example queries. We have

described a general approach in which inductive learn-

ing is triggered by example queries, and an algorithm

to learn from a database with multiple relations. Ex-

perimental results show that query reformulation us-

ing learned background knowledge produces substan-

tial cost reductions for a real-world intelligent infor-

mation server.

In future work, we plan to experiment with di�erent

ways of selecting example queries for training, and to

develop an e�ective approach to using prior knowledge

for constraining searches in the inductive learning algo-

rithm. We also plan to enhance the operationalization

component so that the system can be more selective

and thus avoid the utility problem.

A limitation to our approach is that there is no mech-

anism to deal with changes to data/knowledge bases.

There are three possible alternatives to address this

problem. First, the system can simply remove the in-

valid rules due to the update and let the system learn

from future queries after the update. Second, the sys-

tem can predict the expected utility of each rule, and

choose to update or re-learn a subset of invalid rules.

Third, the system can update or re-learn all rules after

the update. We plan to experiment with all of these

alternatives and propose an approach to let the system

decide which update alternative is the most appropri-

ate for an expected model of database change.
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