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Abstract

Many applications of knowledge discovery require
the knowledge to be consistent with data. Exam-
ples include discovering rules for query optimiza-
tion, database integration, decision support, etc.
However, databases usually change over time and
make machine-discovered knowledge inconsistent
with data. Useful knowledge should be robust

against database changes so that it is unlikely
to become inconsistent after database changes.
This paper de�nes this notion of robustness, de-
scribes how to estimate the robustness of Horn-
clause rules in closed-world databases, and de-
scribes how the robustness estimation can be ap-
plied in rule discovery systems.

Introduction

Databases are evolving entities. Knowledge discov-
ered from one database state may become invalid or
inconsistent with a new database state. Many ap-
plications require discovered knowledge to be consis-
tent with the data. Examples are the problem of
learning for database query optimization, database in-
tegration, knowledge discovery for decision support,
etc. However, most discovery approaches assume static
databases, while in practice, many databases are dy-
namic, that is, they change frequently. It is impor-
tant that discovered knowledge is robust against data
changes in the sense that the knowledge remains valid
or consistent after databases are modi�ed.
This notion of robustness can be de�ned as the

probability that the database is in a state consistent
with discovered knowledge. This probability is dif-
ferent from predictive accuracy, which is widely used
in learning classi�cation knowledge, because predic-
tive accuracy measures the probability that knowledge
is consistent with randomly selected unseen data in-
stead of with an entire database state. This di�erence
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Schema:

geoloc(name,glc code,country,latitude,longitude),

seaport(name,glc code,storage,rail,road,anch o�shore),

wharf(id,glc code,depth,length,crane),

ship(name,class,status,eet,year),

ship class(class name,type,draft,length,container cap).

Rules:

R1: ;The latitude of a Maltese geographic location is greater

;than or equal to 35.89.

?latitude � 35.89 (
geoloc( , ,?country,?latitude, ) ^ ?country = \Malta".

R2: ;All Maltese geographic locations are seaports.

seaport( ,?glc cd, , , , ) (
geoloc( ,?glc cd,?country, , ) ^ ?country = \Malta".

R3: ;All ships built in 1981 belong to either \MSC" eet or

;\MSC Lease" eet.

member(?R133,[\MSC",\MSC LEASE"]) (
ship( , , ,?R133,?R132) ^ ?R132 = 1981.

R4: ;If the storage space of a seaport is greater than 200,000 tons,

;then its geographical location code is one of the four codes.

member(?R213,[\APFD",\ADLS",\WMY2",\NPTU"])(
seaport( ,?R213,?R212, , , ) ^ ?R212 < 200000.

Table 1: Schema and rules of an example database

is signi�cant in databases that are interpreted using
the closed-world assumption. For a Horn-clause rule
C  A, predictive accuracy is usually de�ned as the
conditional probabilityPr(CjA) given a randomly cho-
sen data instance (Cohen 1993; 1995; Cussens 1993;
Furnkranz & Widmer 1994; Lavra�c & D�zeroski 1994).
In other words, it concerns the probability that the rule
is valid with regard to a newly inserted data. However,
databases also change by updates and deletions, and in
a closed-world database, they may a�ect the validity
of a rule, too. Consider the rule R2 in Table 1 and the
database fragment in Table 2. R2 will become inconsis-
tent if we delete the seaport instance labeled with a \*"
in Table 1, because the value 8004 for variable ?glc cd

that satis�es the antecedent of R2 will no longer satisfy
the consequent of R2. To satisfy the consequent of R2
requires that there is a seaport instance with its glc cd

value 8004, according to the closed-world assumption.

Closed-world databases are widely used partly be-
cause of the limitation of the representation systems,
but mostly because of the characteristics of applica-
tion domains. Instead of being a piece of static state



geoloc("Safaqis", 8001, Tunisia, . . .)

geoloc("Valletta", 8002, Malta, . . .)+

geoloc("Marsaxlokk", 8003, Malta, . . .)+

geoloc("San Pawl", 8004, Malta, . . .)+

geoloc("Marsalforn", 8005, Malta, . . .)+

geoloc("Abano", 8006, Italy, . . .)

geoloc("Torino", 8007, Italy, . . .)

geoloc("Venezia", 8008, Italy, . . .)

.

.

.

seaport("Marsaxlokk", 8003, . . .)

seaport("Grand Harbor", 8002, . . .)

seaport("Marsa", 8005, . . .)

seaport("St Pauls Bay", 8004, . . .)*

seaport("Catania", 8016, . . .)

seaport("Palermo", 8012, . . .)

seaport("Traparri", 8015, . . .)

seaport("AbuKamash", 8017, . . .)

.

.

.

Table 2: Example database fragment

of past experience, an instance of closed-world data
usually represents a dynamic state in the world, such
as an instance of employee information in a person-
nel database. Therefore, closed-world data tend to be
dynamic, and it is important for knowledge discovery
systems to handle dynamic and closed-world data.
This paper de�nes this notion of robustness, and

describes how robustness can be estimated and ap-
plied in knowledge discovery systems. The key idea
of our estimation approach is that it estimates the
probabilities of data changes, rather than the num-
ber of possible database states, which is intractably
large for estimation. The approach decomposes data
changing transactions and estimates their probabilities
using the Laplace law of succession. This law is simple
and can bring to bear information such as database
schemas and transaction logs for higher accuracy. The
paper also describes a rule pruning approach based on
the robustness estimation. This pruning approach can
be applied on top of any rule discovery or induction
systems to generate robust rules. Our experiments
demonstrate the feasibility of our robustness estima-
tion and rule pruning approaches. The estimation ap-
proach can also be used by a rule maintenance system
to guide the updates for more robust rules so that the
rules can be used with a minimal maintenance e�ort.
This paper is organized as follows. We establish the

terminology on databases and rules in the next sec-
tion. Then we de�ne robustness and describe how to
estimate the robustness of a rule. We present our rule
pruning system next. Finally, we conclude with a sum-
mary of contributions and potential applications of the
robustness estimation.

Terminology

This section introduces the terminology that will be
used throughout this paper. In this paper, we consider
relational databases, which consist of a set of relations.
A relation is a set of instances (or tuples) of attribute-
value vectors. The number of attributes is �xed for all
instances in a relation. The values of attributes can

be either a number or a string, but with a �xed type.
Table 1 shows the schema of an example database with
�ve relations and their attributes.
Table 1 also shows some Horn-clause rules describ-

ing the data. We adopt standard Prolog terminol-
ogy and semantics as de�ned in (Lloyd 1987) in our
discussion of rules. In addition, we refer to literals
on database relations as database literals (e.g., sea-
port( ,?glc cd,?storage, , , )) and literals on built-in
relations as built-in literals (e.g., ?latitude � 35.89).
We distinguish two classes of rules. Rules with built-
in literals as their consequents (e.g., R1) are called
range rules. The other class of rules contains rules
with database literals as their consequents (e.g., R2).
Those rules are relational rules. These two classes of
rules are treated di�erently in robustness estimation.
A database state at a given time t is the collection

of the instances present in the database at time t. We
use the closed-world assumption (CWA) to interpret
the semantics of a database state. That is, informa-
tion not explicitly present in the database is taken to
be false. A rule is said to be consistent with a database
state if all variable instantiations that satisfy the an-
tecedents of the rule also satisfy the consequent of the
rule. For example, R2 in Table 1 is consistent with
the database fragment shown in Table 2, since for all
geoloc tuples that satisfy the body of R2 (labeled with
a \+" in Table 1), there is a corresponding instance in
seaport with a corresponding glc cd value.
A database can be changed by transactions. A trans-

action can be considered as a mapping from a database
state to a new database state. There are three kinds
of primitive transactions | inserting a new tuple into
a relation, deleting an existing tuple from a relation,
and updating an existing tuple in a relation.

Estimating Robustness of Rules
This section �rst de�nes formally our notion of robust-
ness and then describes an approach to estimating ro-
bustness. Following those subsections is an empirical
demonstration of the estimation approach.

Robustness

Intuitively, a rule is robust against database changes
if it is unlikely to become inconsistent after database
changes. This can be expressed as the probability that
a database is in a state consistent with a rule.

De�nition 1 (Robustness for all states) Given a
rule r, let D denote the event that a database is in a
state that is consistent with r. The robustness of r is
Robust1(r) = Pr(D).

This probability can be estimated by the ratio be-
tween the number of all possible database states and
the number of database states consistent with a rule.
That is,

Robust1(r) =
# of database states consistent with r

# of all possible database states



There are two problems with this estimate. The �rst
problem is that it treats all database states as if they
are equally probable. That is obviously not the case
in real-world databases. The other problem is that
the number of possible database states is intractably
large, even for a small database. Alternatively, we can
de�ne robustness from the observation that a rule be-
comes inconsistent when a transaction results in a new
state inconsistent with the rule. Therefore, the prob-
ability of certain transactions largely determines the
likelihood of database states, and the robustness of a
rule is simply the probability that such a transaction
is not performed. In other words, a rule is robust if the
transactions that will invalidate the rule are unlikely
to be performed. This idea is formalized as follows.

De�nition 2 (Robustness for accessible states)
Given a rule r and a database in a database state de-
noted as d. New database states are accessible from d
by performing transactions. Let t denote the transac-
tions on d that result in new database states inconsis-
tent with r. The robustness of r in accessible states
from the current state d is de�ned as Robust(rjd) =
Pr(:tjd) = 1� Pr(tjd).

This de�nition of robustness is analogous in spirit
to the notion of accessibility and the possible worlds
semantics in modal logic (Ramsay 1988). If the only
way to change database states is by transactions, and
all transactions are equally probable to be performed,
then the two de�nitions of robustness are equivalent.
However, this is usually not the case in real-world
databases since the robustness of a rule could be dif-
ferent in di�erent database states. For example, sup-
pose there are two database states d1 and d2 of a
given database. To reach a state inconsistent with
r, we need to delete ten tuples in d1 and only one
tuple in d2. In this case, it is reasonable to have
Robust(rjd1) > Robust(rjd2) because it is less likely
that all ten tuples are deleted. De�nition 1 implies
that robustness is a constant while De�nition 2 cap-
tures the dynamic aspect of robustness.

Estimating Robustness

We �rst review a useful estimate for the probability of
the outcomes of a repeatable random experiment. It
will be used to estimate the probability of transactions
and the robustness of rules.

Laplace Law of Succession Given a repeatable ex-
periment with an outcome of one of any k classes. Sup-
pose we have conducted this experiment n times, r of
which have resulted in some outcome C, in which we
are interested. The probability that the outcome of the

next experiment will be C can be estimated as
r + 1

n+ k
.

A detailed description and a proof of the Laplace law
can be found in (Howson & Urbach 1988). The Laplace

R1: ?latitude � 35.89 (
geoloc( , ,?country,?latitude, ) ^

?country = \Malta".

T1: One of the existing tuples of geoloc with its ?country =

\Malta" is updated such that its ?latitude < 35.89.

T2: A new tuple of geoloc with its ?country = \Malta" and

?latitude < 35.89 is inserted to the database.

T3: One of the existing tuples of geoloc with its ?latitude < 35.89

and its ?country 6= \Malta" is updated such that its ?country

= \Malta".

Table 3: Transactions that invalidate R1

law applies to any repeatable experiments (e.g., toss-
ing a coin). The advantage of the Laplace estimate is
that it takes both known relative frequency and prior
probability into account. This feature allows us to in-
clude information given by a DBMS, such as database
schema, transaction logs, expected size of relations, ex-
pected distribution and range of attribute values, as
prior probabilities in our robustness estimation.

Our problem at hand is to estimate the robustness
of a rule based on the probability of transactions that
may invalidate the rule. This problem can be de-
composed into the problem of deriving a set of in-
validating transactions and estimating the probabil-
ity of those transactions. We illustrate our estima-
tion approach with an example. Consider R1 in Ta-
ble 3, which also lists three mutually exclusive trans-
actions that will invalidate R1. These transactions
cover all possible transactions that will invalidate R1.
Since T1, T2, and T3 are mutually exclusive, we have
Pr(T1_T2_T3) = Pr(T1)+Pr(T2)+Pr(T3). The prob-
ability of these transactions, and thus the robustness
of R1, can be estimated from the probabilities of T1,
T2, and T3.

We require that transactions be mutually exclusive
so that no transaction covers another because for any
two transactions ta and tb, if ta covers tb, then Pr(ta _
tb) = Pr(ta) and it is redundant to consider tb. For
example, a transaction that deletes all geoloc tuples
and then inserts tuples invalidating R1 does not need
to be considered, because it is covered by T2 in Table 3.
Also, to estimate robustness e�ciently, each mu-

tually exclusive transactions must be minimal in the
sense that no redundant conditions are speci�ed. For
example, a transaction similar to T1 that updates a
tuple of geoloc with its ?country = "Malta" such
that its latitude < 35.89 and its longitude >
130.00 will invalidate R1. However, the extra condition
\longitude > 130.00" is not relevant to R1. With-
out this condition, the transaction will still result in a
database state inconsistent with R1. Thus that trans-
action is not minimal for our robustness estimation and
does not need to be considered.
We now demonstrate how Pr(T1) can be estimated

only with the database schema information, and how
we can use the Laplace law of succession when trans-
action logs and other prior knowledge are available.
Since the probability of T1 is too complex to be esti-



x5:
what new
attribute value?

x4:
on which
attribute?

x3:
on which
tuples?

x1:
type of
transaction?

x2:
on which
relation?

Figure 1: Bayesian network model of transactions

mated directly, we have to decompose the transaction
into more primitive statements and estimate their lo-
cal probabilities �rst. The decomposition is based on a
Bayesian network model of database transactions illus-
trated in Figure 1. Nodes in the network represent the
random variables involved in the transaction. An arc
from node xi to node xj indicates that xj is dependent
on xi. For example, x2 is dependent on x1 because the
probability that a relation is selected for a transaction
is dependent on whether the transaction is an update,
deletion or insertion. That is, some relations tend to
have new tuples inserted, and some are more likely to
be updated. x4 is dependent on x2 because in each re-
lation, some attributes are more likely to be updated.
Consider our example database (see Table 1), the ship
relation is more likely to be updated than other re-
lations. Among its attributes, status and fleet are
more likely to be changed than other attributes. Nodes
x3 and x4 are independent because, in general, which
tuple is likely to be selected is independent of the like-
lihood of which attribute will be changed.
The probability of a transaction can be estimated

as the joint probability of all variables Pr(x1 ^ � � � ^
x5). When the variables are instantiated for T1, their
semantics are as follows:

� x1: a tuple is updated.
� x2: a tuple of geoloc is updated.
� x3: a tuple of geoloc with its ?country =

"Malta" is updated.
� x4: a tuple of geoloc whose ?latitude is up-
dated.

� x5: a tuple of geolocwhose ?latitude is updated
to a new value less than 35.89.

From the Bayesian network and the chain rule of
probability, we can evaluate the joint probability by a
conjunction of conditional probabilities:

Pr(T1) = Pr(x1 ^ x2 ^ x3 ^ x4 ^ x5)

= Pr(x1) � Pr(x2jx1) � Pr(x3jx2 ^ x1) �

Pr(x4jx2 ^ x1) � Pr(x5jx4 ^ x2 ^ x1)

We can then apply the Laplace law to estimate each
local conditional probability. This allows us to esti-
mate the global probability of T1 e�ciently. We will
show how information available from a database can
be used in estimation. When no information is avail-
able, we apply the principle of indi�erence and treat all
possibilities as equally probable. We now describe our
approach to estimating these conditional probabilities.

� A tuple is updated:

Pr(x1) =
tu + 1

t + 3

where tu is the number of previous updates and t is
the total number of previous transactions. Because
there are three types of primitive transactions (inser-
tion, deletion, and update), when no information is
available, we will assume that updating a tuple is one
of three possibilities (with tu = t = 0). When a trans-
action log is available, we can use the Laplace law to
estimate this probability.
� A tuple of geoloc is updated, given that a tuple is

updated:

Pr(x2jx1) =
tu;geoloc + 1

tu +R

where R is the number of relations in the database (this
information is available in the schema), and tu;geoloc
is the number of updates made to tuples of relation
geoloc. Similar to the estimation of Pr(x1), when no
information is available, the probability that the up-
date is made on a tuple of any particular relation is
one over the number of relations in the database.
� A tuple of geoloc with its ?country = "Malta"

is updated, given that a tuple of geoloc is updated:

Pr(x3jx2 ^ x1) =
tu;a3 + 1

tu;geoloc + G=Ia3

where G is the size of relation geoloc, Ia3 is the
number of tuples in geoloc that satisfy ?country

="Malta", and tu;a3 is the number of updates made on
the tuples in geoloc that satisfy ?country ="Malta".
The number of tuples that satisfy a literal can be re-
trieved from the database. If this is too expensive for
large databases, we can use the estimation approaches
used for conventional query optimization (Piatetsky-
Shapiro 1984; Ullman 1988) to estimate this number.
� The value of latitude is updated, given that a tu-

ple of geoloc with its ?country ="Malta" is updated:

Pr(x4jx2 ^ x1) =
tu;geoloc;latitude + 1

tu;geoloc + A

where A is the number of attributes of geoloc,
tu;geoloc;latitude is the number of updates made on the
latitude attribute of the geoloc relation. Note that
x4 and x3 are independent and the condition that
?country ="Malta" can be ignored. Here we have
an example of when domain-speci�c knowledge can be
used in estimation. We can infer that latitude is less
likely to be updated than other attributes of geoloc
from our knowledge that it will be updated only if the
database has stored incorrect data.
� The value of latitude is updated to a value less

than 35.89, given that a tuple of geoloc with its
?country ="Malta" is updated:

Pr(x5jx4 ^ x2 ^ x1)

=

�
0:5 no information available
0:398 with range information



�(?x)(= A(. . . ; ?x; . . .) ^ L1 ^ � � � ^ Ln:
Transaction templates:

T1: Update ?x of a tuple of A covered by the rule

so that the new ?x does not satisfy �(?x);

T2: Insert a new tuple to a relation involved in

the antecedents so that the tuple satis�es all the

antecedents but not �(?x)

T3: Update one tuple of a relation involved in

the antecedents not covered by the rule so that

the resulting tuple satis�es all the antecedents

but not �(?x)

Table 4: Templates of invalidating transactions for
range rules

Without any information, we assume that the attribute
will be updated to any value with uniform probability.
The information about the distribution of attribute
values is useful in estimating how the attribute will
be updated. In this case, we know that the latitude is
between 0 to 90, and the chance that a new value of
latitude is less than 35.89 should be 35:89=90 = 0:398.
This information can be derived from the data or pro-
vided by the users.
Assuming that the size of the relation geoloc is 616,

ten of them with ?country ="Malta", without trans-
action log information, and from the example schema
(see Table 1), we have �ve relations and �ve attributes
for the geoloc relation. Therefore,

Pr(T1) =
1

3
�
1

5
�
10

616
�
1

5
�
1

2
= 0:000108

Similarly, we can estimate Pr(T2) and Pr(T3). Sup-
pose that Pr(T2) = 0:000265 and Pr(T3) = 0:00002,
then the robustness of the rule can be estimated as
1� (0:000108+ 0:000265+ 0:00002) = 0:999606.
The estimation accuracy of our approach may de-

pend on available information, but even given only
database schemas, our approach can still come up
with reasonable estimates. This feature is important
because not every real-world database system keeps
transaction log �les, and those that do exist may be
at di�erent levels of granularity. It is also di�cult to
collect domain knowledge and encode it in a database
system. Nevertheless, the system must be capable of
exploiting as much available information as possible.

Templates for Estimating Robustness

Deriving transactions that invalidate an arbitrary logic
statement is not a trivial problem. Fortunately, most
knowledge discovery systems have strong restrictions
on the syntax of discovered knowledge. Hence, we can
manually generalize the invalidating transactions into
a small sets of transaction templates, as well as tem-
plates of probability estimates for robustness estima-
tion. The templates allow the system to automatically
estimate the robustness of knowledge in the procedures
of knowledge discovery or maintenance. This subsec-
tion briey describes the derivation of those templates.
Recall that we have de�ned two classes of rules based

on the type of their consequents. If the consequent

Relation geoloc seaport wharf
Size 616 16 18
Updates 0 1 1
Insertions 25 6 1
Deletions 0 2 1

Relation ship ship class Total
Size 142 25
Updates 10 1 13
Insertions 22 12 66
Deletions 10 6 19

Table 5: Relation size and transaction log data

of a rule is a built-in literal, then the rule is a range
rules (e.g., R1), otherwise, it is a relational rule with a
database literal as its consequent, (e.g., R2). In Table 3
there are three transactions that will invalidate R1. T1
covers transactions that update on the attribute value
used in the consequent, T2 covers those that insert a
new tuple inconsistent with the rule, and T3 covers up-
dates on the attribute values used in the antecedents.
The invalidating transactions for all range rules are
covered by these three general classes of transactions.
We generalize them into a set of three transaction tem-
plates illustrated in Table 4. For a relational rule such
as R2, the invalidating transactions are divided into
another four general classes di�erent from those for
range rules. The complete templates are presented in
detail in (Hsu & Knoblock 1996a). These two sets of
templates are su�cient for any Horn-clause rules on
relational data.

From the transaction templates, we can derive the
templates of the equations to compute robustness es-
timation for each class of rules. The parameters of
these equations can be evaluated by accessing database
schema or transaction log. Some parameters can be
evaluated and saved in advance (e.g., the size of a re-
lation) to improve e�ciency. For rules with many an-
tecedents, a general class of transactions may be eval-
uated into a large number of mutually exclusive trans-
actions whose probabilities need to be estimated sep-
arately. In those cases, our estimation templates will
be instantiated into a small number of approximate es-
timates. As a result, the complexity of applying our
templates for robustness estimation is always propor-
tional to the length of rules (Hsu & Knoblock 1996a).

Empirical Demonstration

We estimated the robustness of the sample rules on the
database as shown in Table 1. This database stores
information on a transportation logistic planning do-
main with twenty relations. Here, we extract a subset
of the data with �ve relations for our experiment. The
database schema contains information about relations
and attributes in this database, as well as ranges of
some attribute values. For instance, the range of year
of ship is from 1900 to 2000. In addition, we also have
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Figure 2: Estimated robustness of sample rules

a log �le of data updates, insertions and deletions over
this database. The log �le contains 98 transactions.
The size of relations and the distribution of the trans-
actions on di�erent relations are shown in Table 5.

Among the sample rules in Table 1, R1 seems to
be the most robust because it is about the range of
latitude which is rarely changed. R2 is not as robust
because it is likely that the data about a geographical
location in Malta that is not a seaport may be inserted.
R3 and R4 are not as robust as R1, either. For R3, the
eet that a ship belongs does not have any necessary
implication to the year the ship was built, while R4 is
speci�c because seaports with small storage may not
be limited to those four geographical locations.

Figure 2 shows the estimation results. We have two
sets of results. The �rst set shown in black columns
is the results using only database schema information
in estimation. The second set shown in grey columns
is the results using both the database schema and
the transaction log information. The estimated re-
sults match the expected comparative robustness of
the sample rules. The absolute robustness value of each
rules, though, looks high (more than 0.93). This is be-
cause the probabilities of invalidating transactions are
low since they are estimated with regard to all possible
transactions. We can normalize the absolute values so
that they are uniformly distributed between 0 and 1.

The results show that transaction log information
is useful in estimation. The robustness of R2 is esti-
mated lower than other rules without the log informa-
tion because the system estimated that it is not likely
for a country with all its geographical locations as sea-
ports. (See Table 1 for the contents of the rules.) When
the log information is considered, the system increases
its estimation because the log information shows that
transactions on data about Malta are very unlikely.
For R3, the log information shows that the eet of ships
may change and thus the system estimated its robust-
ness signi�cantly lower than when no log information
is considered. A similar scenario appears in the case of
R4. Lastly, R1 has a high estimated robustness as ex-
pected regardless whether the log information is used.

Applying Robustness in Rule Discovery

This section discusses how to use the robustness esti-
mates to guide the knowledge discovery.

Background and Problem Speci�cation

Although robustness is a desirable property of discov-
ered knowledge, using robustness alone is not enough
to guide the knowledge discovery system. The tautolo-
gies such as

False ) seaport( ,?glc cd, , , , ), and

seaport( ,?glc cd, , , , ) ) True

have a robustness estimate equal to one, but they
are not interesting. Therefore, we should use robust-
ness together with other measures of interestingness to
guide the discovery. One of the measures of interest-
ingness is applicability, which is important no matter
what our application domains are. This section will
focus on the problem of discovering rules from closed-
world relational data that are both highly applicable
and robust. In particular, we will use length to mea-
sure the applicability of rules. Generally speaking, a
rule is more applicable if it is shorter, that is, if the
number of its antecedent literals is smaller, because it
is less speci�c.
Many systems are now able to generate a set of

Horn-clause rules from relational data. These systems
include inductive logic programming systems (Lavra�c
& D�zeroski 1994; Raedt & Bruynooghe 1993), and
systems that discover rules for semantic query opti-
mization (Hsu & Knoblock 1994). Instead of gen-
erating desired rules in one run, we propose to use
these existing algorithms to generate rules, and then
use a rule pruning algorithm to prune a rule so that
it is highly robust and applicable (short). The ra-
tionale is that rule construction algorithms tend to
generate overly-speci�c rules, but taking the length
and robustness of rules into account in rule construc-
tion could be too expensive. This is because the
search space of rule construction is already huge and
evaluating robustness is not trivial. Previous work
in classi�cation rule induction (Cohen 1993; 1995;
Furnkranz & Widmer 1994) shows that dividing a
learning process into a two-stage rule construction and
pruning can yield better results in terms of classi�-
cation accuracy as well as the e�ciency of learning.
These results may not apply directly to our rule discov-
ery problem, nevertheless, a two-stage system is clearly
simpler and more e�cient. Another advantage is that
the pruning algorithm can be applied on top of existing
rule generation systems.
The speci�cation of our rule pruning problem is as

follows: take a machine-discovered rule as input, which
is consistent with a database but potentially overly-
speci�c, and remove antecedent literals of the rule so
that it remains consistent but is short and robust.

The Pruning Algorithm

The basic idea of our algorithm is to search for a
subset of antecedent literals to remove until any fur-



R5: ?length � 1200 (
wharf( ,?code,?depth,?length,?crane) ^

seaport(?name,?code, , , , ) ^
geoloc(?name, ,?country, , ) ^
?country = \Malta" ^
?depth � 50 ^
?crane > 0.

r7: ?length � 1200(
wharf( ,?code,?depth,?length,?crane) ^
seaport(?name,?code, , , , ) ^

geoloc(?name, ,?country, , ) ^
?crane > 0.

r10:?length � 1200 (
wharf( ,?code,?depth,?length,?crane) ^

seaport(?name,?code, , , , ) ^
geoloc(?name, ,?country, , ).

Table 6: Example rule to be pruned and results

ther removal will make the rule inconsistent with the
database, or make the rule's robustness very low. We
can apply the estimation approach described in the
previous section to estimate the robustness of a par-
tially pruned rule and guide the pruning search.
The main di�erence of our pruning problem from

previous work is that there is more than one property
of rules that the system is trying to optimize, and these
properties | robustness and length | may interact
with each other. In some cases, a long rule may be
more robust, because a long rule is more speci�c and
covers fewer instances in the database. These instances
are less likely to be selected for modi�cation, compared
to the case of a short rule, which covers more instances.
We address this issue by a beam search algorithm. Let
n denote the beam size, our algorithm expands the
search by pruning a literal in each search step, pre-
serves the top n robust rules, and repeats the search
until any further pruning yields inconsistent rules. The
system keeps all generated rules and then selects those
with a good combination of length and robustness. The
selection criterion may depend on how often the appli-
cation database changes.

Empirical Demonstration of Rule Pruning

We conducted a detailed empirical study on R5 in Ta-
ble 6 using the same database as in the previous sec-
tions. Since the search space for this rule is not too
large, we ran an exhaustive search for all pruned rules
and estimated their robustness. The entire process
took less than a second (0.96 seconds). In this ex-
periment, we did not use the log information in the
robustness estimation.
The results of the experiment are listed in Table 7.

To save the space, we list the pruned rules with their
abbreviated antecedents. Each term represents a lit-
eral in the conjunctive antecedents. For example, \W"
represents the literal wharf( ,?code,. . .). \Cr" and
\Ct" represent the literals on ?crane and ?country,
respectively. Inconsistent rules and rules with dangling
literals are identi�ed and discarded. A set of literals
are considered dangling if the variables occurring in

Rule Antecedents Robustness Remarks

R5 W S G Cr D Ct 0.9784990

r1 W S G D Ct 0.9814620

r2 W S G Cr Ct 0.9784990

r3 W S G Cr D 0.9784991

r4 W S Cr D Inconsistent

r5 W S G Ct 0.9814620

r6 W S G D 0.9814620

r7 W S G Cr 0.9896200

r8 W D C Inconsistent

r9 W S Cr Inconsistent

r10 W S G 0.9814620

r11 W S D Inconsistent

r12 W G Cr Dangling

r13 W G D Dangling

r14 W Cr Inconsistent

r15 W S Inconsistent

r16 W G Dangling

r17 W D Inconsistent

r18 W Inconsistent

Table 7: Result of rule pruning on a sample rule

those literals do not occur in other literals in a rule.
Dangling literals are not desirable because they may
mislead the search and complicate the robustness esti-
mation.
The relationship between length and robustness of

the pruned rules is illustrated in Figure 3. The best
rule will be the one located in the upper right corner
of the graph, with short length and high robustness.
On the top of the graph is the shortest rule r10, whose
complete speci�cation is shown in Table 6. Although
this is the shortest rule, it is not so desirable because it
is somewhat too general. The rule states that wharves
in seaports will have a length greater than 1200 feet.
However, we expect that there will be data on wharves
shorter than 1200 feet. Instead, with the robustness
estimation, the system can select the most robust rule
r7, also shown in Table 6. This rule is not as short
but still short enough to be widely applicable. More-
over, this rule makes more sense in that if a wharf is
equipped with cranes, it is built to load/unload heavy
cargo carried by a large ship, and therefore its length
must be greater than some certain value. Finally, this
pruned rule is more robust and shorter than the orig-
inal rule. This example shows the utility of the rule
pruning with the robustness estimation.

Conclusions

Robustness is an appropriate and practical measure
for knowledge discovered from closed-world databases
that change frequently over time. An e�cient estima-
tion approach for robustness enables e�ective knowl-
edge discovery and maintenance. This paper has de-
�ned robustness as the complement of the probabil-
ity of rule-invalidating transactions and described an
approach to estimating robustness. Based on this es-
timation approach, we also developed a rule pruning
approach to prune a machine-discovered rule into a
highly robust and applicable rule.
Robustness estimation can be applied to many AI
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Figure 3: Pruned rules and their estimated robustness

and database applications for information gathering
and retrieval from heterogeneous, distributed environ-
ment on the Internet. We are currently applying
our approach to the problem of learning for seman-
tic query optimization (Hsu & Knoblock 1994; 1996b;
Siegel 1988; Shekhar et al. 1993). Semantic query op-
timization (SQO) (King 1981; Hsu & Knoblock 1993;
Sun & Yu 1994) optimizes a query by using semantic
rules, such as all Maltese seaports have railroad access,
to reformulate a query into a less expensive but equiv-
alent query. For example, suppose we have a query
to �nd all Maltese seaports with railroad access and
2,000,000 ft3 of storage space. From the rule given
above, we can reformulate the query so that there is
no need to check the railroad access of seaports, which
may reduce execution time. In our previous work, we
have developed an SQO optimizer for queries to multi-
databases (Hsu & Knoblock 1993; 1996c) and a learn-
ing approach for the optimizer (Hsu & Knoblock 1994;
1996b). The optimizer achieves signi�cant savings us-
ing learned rules. Though these rules yield good op-
timization performance, many of them may become
invalid after the database changes. To deal with this
problem, we use our rule pruning approach to prune
learned rules so that they are robust and highly appli-
cable for query optimization.
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