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Abstract

Semantic query optimization can dramatically speed up database query answering by knowledge

intensive reformulation. But the problem of how to learn the required semantic rules has not

been previously solved. This chapter presents a learning approach to solving this problem. In our

approach, the learning is triggered by user queries. Then the system uses an inductive learning

algorithm to generate semantic rules. This inductive learning algorithm can automatically select

useful join paths and attributes to construct rules from a database with many relations. The

learned semantic rules are e�ective for optimization because they will match query patterns and

reect data regularities. Experimental results show that this approach learns su�cient rules for

optimization that produces a substantial cost reduction.

17.1 Introduction

This chapter presents an approach to learning semantic knowledge for semantic query

optimization (SQO). SQO optimizes a query by using semantic rules, such as all Maltese

seaports have railroad access, to reformulate a query into a less expensive but equivalent

query. For example, suppose we have a query to �nd all Maltese seaports with railroad

access and 2,000,000 ft3 of storage space. From the rule given above, we can reformulate

the query so that there is no need to check the railroad access of seaports, which may

save some execution time. Many SQO algorithms have been developed (Hammer and

Zdonik 1980; King 1981; Shekhar et al. 1988; Shenoy and Ozsoyoglu 1989). Average

savings from 20 to 40 percent using hand-coded knowledge are reported in the literature.
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A learning approach to automatic acquisition of semantic knowledge is crucial to SQO.

Most of the previous work in SQO assumes that semantic knowledge is given. King (1981)

proposed using semantic integrity constraints given by database programmers to address

the knowledge acquisition problem. An example of semantic integrity constraints is that

Only female patients can be pregnant. However, integrity constraints do not reect prop-

erties of data that a�ect the query execution cost, such as, relation sizes and distributions

of attribute values. Moreover, integrity constraints rarely match query patterns. It is dif-

�cult to encode semantic knowledge that both reects database properties and matches

query patterns. The approach presented in this chapter uses example queries to trigger

the learning so as to match query patterns, and induces e�ective semantic rules that

reect regularities of data.

Unlike most rule mining systems (Agrawal et al. 1993; Mannila et el. 1994), which are

designed to derive rules from a single database table, our inductive learning algorithm

can learn semantic rules from a database with many relations. Consider a database with

three relations: person, car, and company. An interesting rule about persons might

involve the companies they work for, or the cars they drive, or even the manufacturers of

their cars. Our inductive learning algorithm can select relevant join paths and attributes

automatically instead of requiring users to do this di�cult and tedious task. With

semantic rules describing regularities of joined relations, the SQO optimizer will be more

e�ective because it is able to delete a redundant join or introduce new joins in a query.

The remainder of this chapter is organized as follows. The next section illustrates the

problem of semantic query optimization for databases. Section 17.3 presents an overview

of the learning approach. Section 17.4 describes our inductive learning algorithm for

databases with many relations. Section 17.5 shows the experimental results of using

learned knowledge in optimization. Section 17.6 surveys related work. Section 17.7

reviews the contributions and describes some future work.

17.2 Semantic Query Optimization

Semantic query optimization is applicable to di�erent types of databases. Nevertheless,

we chose the relational model to describe our approach because it is widely used in

practice. The approach can be easily extended to other data models. In this chapter, a

database consists of a set of relations. A relation is then a set of instances. Each instance

is a vector of attribute values. The number of attributes is �xed for all instances in a

relation. The values of attributes can be either a number or a string, but with a �xed

type. Figure 17.1 shows the schema of an example database with two relations and their

attributes. In this database, the relation geoloc stores data about geographic locations,

and the attribute glc cd is a geographic location code.
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Schema:

geoloc(name,glc cd,country,latitude,longitude),

seaport(name,glc cd,storage,silo,crane,rail).

Semantic Rules:

R1: geoloc( , ,"Malta",?latitude, ) ) ?latitude � 35.89.

R2: geoloc( ,?glc cd,"Malta", , ) ) seaport( ,?glc cd, , , , ).

R3: seaport( ,?glc cd,?storage, , , ) ^ geoloc( ,?glc cd,"Malta", , )

) ?storage > 2000000.

Figure 17.1
Schema of a geographic database and semantic Rules

Although the basic SQO approach (King 1981) applies only to conjunctive queries, it

can be extended to optimize complex queries with disjunctions, group-by or aggregate op-

erators. The idea is that a complex query can be decomposed into conjunctive subqueries.

The system can then apply SQO to optimize each subquery and propagate constraints

among them for global optimization. We have developed such an SQO algorithm to opti-

mize heterogeneous multidatabase query plans (Hsu and Knoblock 1993a). Rules learned

for optimizing conjunctive queries can be used for optimizing complex queries. In this

chapter, we will focus on the problem of learning and SQO for conjunctive queries.

The queries considered here are conjunctive Datalog queries, which corresponds to the

select-from-where subset of SQL. A query begins with a predicate answer. There can be

one or more arguments to answer. For example,
Q1: answer(?name):-

geoloc(?name,?glc cd,"Malta", , ),

seaport( ,?glc cd,?storage, , , ),

?storage > 1500000.

retrieves all geographical location names in Malta. There are two types of literals. The

�rst type corresponds to a relation stored in a database. The second type consists of

built-in predicates, such as > and member.

Semantic rules for query optimization are expressed in terms of Horn clauses. Semantic

rules must be consistent with the data. To clearly distinguish a rule from a query, we

show queries using the Prolog syntax and semantic rules in a standard logic notation. A

set of example rules are also shown in Figure 17.1.

Rule R1 states that the latitude of a Maltese geographic location is greater than or equal

to 35.89. R2 states that all Maltese geographic locations in the database are seaports. R3

states that all Maltese seaports have storage capacity greater than 2,000,000 ft3. Based

on these rules, we can infer �ve equivalent queries of Q1. Three of them are shown in

Figure 17.2. Q21 is deduced from Q1 and R3. This is an example of constraint deletion
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Q21: answer(?name):-

geoloc(?name,?glc cd,"Malta", , ),

seaport( ,?glc cd, , , , ).

Q22: answer(?name):-

geoloc(?name, ,"Malta", , ).

Q23: answer(?name):-

geoloc(?name, ,"Malta",?latitude, ),

?latitude � 35.89.

Figure 17.2
Equivalent queries

reformulation. From R2, we can delete one more literals on seaport and infer that Q22 is

also equivalent to Q1. In addition to deleting constraints, we can also add constraints to a

query based on the semantic rules. For example, we can add a constraint on ?latitude

to Q22 from R1, and the resulting query Q23 is still equivalent to Q1. Adding a new

constraint could be useful when the new constraint is on an indexed attribute. Sometimes

the system can infer that a query is unsatis�able because it contradicts a rule (or a chain

of rules). It is also possible for the system to infer the answer directly from the rules.

In both cases, there is no need to access the database to answer the query, and we can

achieve nearly 100 percent savings.

Now that the system can reformulate a query into equivalent queries based on the

semantic rules, the next problem is how to select the equivalent query with the lowest

cost. The exact execution cost of a query depends on the physical implementation and the

contents of the databases. However, we can usually estimate an approximate cost from

the database schema and relation sizes. In our example, assume that the relation geoloc

is very large and is sorted only on glc cd, and assume that the relation seaport is small.

Executing the shortest query Q22 requires scanning the entire set of geoloc relations and

is thus even more expensive than executing the query Q1. The cost of evaluating Q21 will

be less than that of Q1 and other equivalent queries because a redundant constraint on

?storage is deleted, and the system can still use the sorted attribute glc cd to locate

the answers e�ciently. Therefore, the system will select Q21.

The di�erence between conventional query optimization (Jarke and Koch 1984; Ull-

man 1988) and SQO is that the latter uses semantic knowledge to extend the search

space. Conventional syntactic query optimization searches for low-cost queries logically

equivalent to input queries. Optimization by reordering literals/constraints in a query

belongs in this category. SQO, in addition, searches for low-cost queries equivalent to

an input queries given some semantic knowledge. Therefore, its search space is much

larger and the potential savings that can be achieved are also much larger than those

from syntactic optimization alone.
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Figure 17.3
Structure of the database system with SQO optimizer and learner

17.3 General Learning Framework

This section presents a general learning framework for the learning problem of SQO.

Figure 17.3 illustrates the organization of a database system with an SQO optimizer

and a learning system. The optimizer uses semantic rules in a rule bank to optimize

input queries, and then sends optimized queries to the DBMS to retrieve data. When

the DBMS encounters an expensive input query, it triggers the learning system to learn

a set of rules from the data, and then saves them in the rule bank. These rules will be

used to optimize future queries. The system will gradually learn a set of e�ective rules

for optimization.

Figure 17.4 illustrates a simpli�ed scenario of our learning framework. This learning

framework consists of two components, an inductive learning component, and an oper-

ationalization component. A query is given to trigger the learning. The system applies

an inductive learning algorithm to induce an alternative query equivalent to the input

query with a lower cost. The operationalization component then takes the input query

and the learned alternative query to derive a set of semantic rules. Previously, Yu and

Sun (1989) have shown that semantic rules for SQO can be derived from two equivalent

queries. However, they did not show how to automatically generate equivalent queries.

Our approach can automatically induce a low-cost alternative query of an expensive in-

put query. The derived rules will thus match query patterns and be e�ective for SQO in

reformulating expensive queries into low-cost equivalent queries.

In Figure 17.4, instances (or tuples) in the database are labeled as positive (+) if they

satisfy the input query and negative (-) otherwise. The learned alternative query must

cover all positive instances but no negative instances so that it retrieves the same data

as the input query and is equivalent to the input query. Given a set of data instances

classi�ed as positive or negative, the problem of inducing a description that covers all
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Equivalent Queries
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+

Example query:

((Α2 ≤ 0) ∧ (Α3 = 2))  ⇔  (Α1 = Ζ)

(Α2 ≤ 0) ∧ (Α3 = 2) Alternative query:

(Α1 = Ζ)   ⇒   (Α2 ≤ 0)
(Α1 = Ζ)   ⇒   (Α3 = 2)
(Α2 ≤ 0)  ∧   (Α3=2)   ⇒ (Α1 = Ζ)

Α1 = Ζ

A1   A2   A3
A      1      2
B      1      2
Z      0      2

Inductive Description Formation

Figure 17.4
A simpli�ed learning scenario

positive data instances but no negatives is known as supervised inductive learning in

machine learning (Shavlik and Dietterich 1990). Since a query is a description of the

data to be retrieved, inductive learning algorithms that learn descriptions expressed in

the query language can be used in our framework.

Most supervised inductive learning algorithms are designed for accurate classi�cation

of unseen data instances. In our framework, however, the algorithm is also required to

induce a low-cost description, that is, a low-cost alternative query that can be evaluated

by the DBMS e�ciently. Previously, we have developed an inductive learning algorithm

that learns low-cost queries from single-table databases (Hsu and Knoblock 1993a). Sec-

tion 17.4 describes in detail a more advanced algorithm that learns conjunctive Datalog

queries from relational databases. This algorithm can be extended to databases with

more advanced data models, such as object-oriented and deductive databases.

The operationalization component derives semantic rules from two equivalent queries.

It consists of two stages. In the �rst stage, the system transforms the equivalence of

two equivalent queries into the required syntax (Horn clauses) so that the optimizer can

use semantic rules e�ciently. For the example in Figure 17.4, the equivalence of the two

queries is transformed into two implication rules:

(1)(A2 � 0) ^ (A3 = 2) =) (A1 = `Z')

(2)(A1 = `Z') =) (A2 � 0) ^ (A3 = 2)

Rule (2) can be further expanded to satisfy the Horn-clause syntax requirement:

(3)(A1 = `Z') =) (A2 � 0)

(4)(A1 = `Z') =) (A3 = 2)

After the transformation, we have proposed rules (1), (3), and (4) that satisfy our syntax
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requirement. In the second stage, the system tries to compress the antecedents of rules

to reduce their match costs. In our example, rules (3) and (4) contain only one literal

as antecedent, so no further compression is necessary. If the proposed rule has many

antecedent literals, then the system can use the greedy minimum set cover algorithm

(Coremen et al. 1989) to eliminate unnecessary constraints. The problem of minimum

set cover is to �nd a subset from a given collection of sets such that the union of the sets

in the subset is equal to the union of all sets. Negating both sides of (1) yields:

(5):(A1 = `Z') =) :(A2 � 0) _ :(A3 = 2)

The problem of compressing rule (1) is thus reduced to the following: given a collection

of sets of data that satisfy :(A2 � 0) _ :(A3 = 2), �nd the minimumnumber of sets

that cover the set of data satisfying :(A1 = `Z'). Suppose the resulting minimum set

that covers :(A1 = `Z') is :(A2 � 0), we can eliminate :(A3 = 2) from rule (5) and

negate both sides again to form the rule:

(A2 � 0) =) (A1 = `Z')

17.4 Learning Alternative Queries

The previous section has described a general learning framework and how the operational-

ization component derives rules from the equivalence of input and alternative queries.

This section describes an inductive learning approach to learning low-cost alternative

queries. The scenario shown in Figure 17.4 is a simpli�ed example where the database

consists of only one table. However, real-world databases usually have many relations,

and users can specify joins to associate di�erent relations in a query. The inductive

learning approach described below can learn low-cost conjunctive Datalog queries from

real-world databases with many relations.

Before we discuss the approach, we need to clarify two forms of constraints implicitly

speci�ed in a Datalog query. Consider the geographic database schema in Figure 17.1.

Some example constraints for this database are shown in Figure 17.5. Among these

constraints, C0 and C1 are internal disjunctions, which are constraints on the values of

a single attribute. An instance of seaport satis�es C0 if its ?storage value is less than

150,000. An instance of geoloc satis�es C1 if its ?cty value is "Tunisia" or "Italy" or

"Libya". The other form of constraint is a join constraint, which speci�es a constraint

on values of two or more attributes from di�erent relations. A pair of instances of geoloc

and seaport satisfy a join constraint C2 if they share common values on the attribute

glc cd (geographic location code).

Our inductive learning algorithm is extended from the greedy algorithm that learns

internal disjunctions from a single-table database proposed by Haussler (1988). Of the

many inductive learning algorithms, Haussler's was chosen because its hypothesis de-

scription language is the most similar to database query languages. His algorithm starts
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C0:seaport(?name, ,?storage, , , ),

?storage <= 150000.

C1:geoloc(?name1, ,?cty, , ),

member(?cty,["Tunisia","Italy","Libya"]).

C2:geoloc(?name1,?glc cd, , , ),

seaport(?name2,?glc cd, , , , ).

Figure 17.5

Two forms of constraints used in queries

from an empty hypothesis of the concept description to be learned. The algorithm pro-

ceeds by constructing a set of candidate constraints that are consistent with all positive

instances, and then using a gain/cost ratio as the heuristic function to select and add

candidates to the hypothesis. This process of candidate construction and selection is

repeated until no negative instances satis�es the hypothesis.

The top level algorithm of our inductive learning is shown in Figure 17.6. We extended

Haussler's algorithm to allow join constraints in the description of hypotheses, i.e., al-

ternative queries to be learned. To achieve this, we extended the candidate construction

step to allow join constraints to be considered, and we extended the heuristic function

to evaluate both internal disjunctions and join constraints.

The input of the algorithm is a user query Q and the database relations. We use Q22

in Figure 17.2 and the database fragment shown in Figure 17.7 as an example to explain

the algorithm. The primary relation of a query is the relation that must be accessed

to answer the input query. For example, the primary relation of Q22 is geoloc because

the output variable, ?name, of the query is bound to an attribute of geoloc. If output

variables are bound to attributes from di�erent relations, then the primary relation is a

relation derived by joining those relations.

Initially, the system determines the primary relation of an input query and labels the

instances in the relation as positive or negative. An instance is positive if it satis�es the

input query; otherwise, it is negative. In our example, the primary relation is geoloc and

its instances are labeled according to Q22 as shown in Figure 17.7. The next subsection

will describe how to construct and evaluate candidate constraints, which can be either an

internal disjunction or a join constraint. Then subsection 17.4.2 will describe a preference

heuristic to restrict the number of candidate constraints in each iteration.

17.4.1 Constructing and Evaluating Candidate Constraints

For each attribute of the primary relation, the system can construct an internal dis-

junction as a candidate constraint by generalizing attribute values of positive instances.

The constructed constraint is consistent with positive instances because it is satis�ed by

all positive instances. In our example database, for attribute country, the system can
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INPUT Q = input query; DB = database relations;
BEGIN
LET r = primary relation of Q; LET AQ= alternative query (initially empty);
LET C = set of candidate constraints (initially empty);
Construct candidate constraints on r and add them to C;
REPEAT
Evaluate gain/cost of candidate constraints in C;
LET c = candidate constraint with the highest gain/cost in C;
IF gain(c) > 0 THEN

Merge c to AQ, and C = C - c;
IF AQ , Q THEN RETURN AQ;
IF c is a join constraint on a new relation r' THEN

Construct candidate constraints on r' and add them to C;
ENDIF;

ENDIF;
UNTIL gain(c) = 0;
RETURN fail, because no AQ is found to be equivalent to Q;

END.

Figure 17.6
Inductive algorithm for learning alternative queries

geoloc("Safaqis", 8001, Tunisia, . . .) seaport("Marsaxlokk" 8003 . . .)
geoloc("Valletta", 8002, Malta, . . .)+ seaport("Grand Harbor" 8002 . . .)
geoloc("Marsaxlokk", 8003, Malta, . . .)+ seaport("Marsa" 8005 . . .)
geoloc("San Pawl", 8004, Malta, . . .)+ seaport("St Pauls Bay" 8004 . . .)
geoloc("Marsalforn", 8005, Malta, . . .)+ seaport("Catania" 8016 . . .)
geoloc("Abano", 8006, Italy, . . .) seaport("Palermo" 8012 . . .)
geoloc("Torino", 8007, Italy, . . .) seaport("Traparri" 8015 . . .)
geoloc("Venezia", 8008, Italy, . . .) seaport("AbuKamash" 8017 . . .)

.

.

.
.
.
.

Figure 17.7
A database fragment

generalize from the positive instances a candidate constraint:
geoloc(?name, ,?cty, , ), ?cty = "Malta",

because the country value of all positive instances is Malta.

Similarly, the system considers a join constraint as a candidate constraint if it is con-

sistent with all positive instances. This can be veri�ed by checking whether all positive

instances satisfy the join constraint. Suppose the system is verifying whether join con-

straint C2 in Figure 17.5 is consistent with the positive instances. Since for all positive

instances, there is a corresponding instance in seaport with a common glc cd value,

the join constraint C2 is consistent and is considered as a candidate constraint.

Once we have constructed a set of candidate internal disjunctive constraints and join

constraints, we need to measure which one is the most promising and add it to the

hypothesis. In Haussler's algorithm, the evaluation function is a gain/cost ratio, where

gain is de�ned as the number of negative instances excluded and cost is de�ned as the

syntactic length of a constraint. Note that the negative instances excluded in previous

iterations will not be counted as gain for the constraints being evaluated. The gain/cost
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Table 17.1
Cost estimates of constraints in a query

Internal disjunctions, on NON-indexed attribute jD1j

Internal disjunctions, on indexed attribute I

Join, over two NON-indexed attributes jD1j � jD2j

Join, over two indexed attributes
jD1j�jD2j
max(I1;I2)

heuristic is based on the generalized problem of minimum set cover where each set is

assigned a constant cost. Haussler used this heuristic to bias the learning for short

hypotheses. In our problem, we want the system to learn a query expression with the

lowest evaluation cost. We de�ne the gain part of the heuristic as the number of excluded

negative instances in the primary relation, and de�ne the cost of the function as the

estimated evaluation cost of the candidate constraint.

The motivation of this formula is also from the generalized minimum set covering

problem. The gain/cost heuristic has been proved to generate a set cover within a small

ratio bound (ln jnj+ 1) of the optimal set covering cost (Coremen et al. 1989), where n

is the number of input sets. However, in this problem, the cost of a set is a constant and

the total cost of the entire set cover is the sum of the cost of each set. This is not always

the case for database query execution, where the cost of each constraint is dependent on

the execution ordering. To estimate the actual cost of a constraint is very expensive. We

therefore use an approximation here.

The evaluation cost of individual constraints can be estimated using standard query

size estimation techniques (Ullman 1988). A set of simple estimates is shown in Ta-

ble 17.1. For an internal disjunction on a non-indexed attribute of a relation D, a query

evaluator has to scan the entire relation to �nd all satisfying instances. Thus, its eval-

uation cost is proportional to jDj, the size of D. If the internal disjunction is on an

indexed attribute, then its cost is proportional to the number of instances satisfying the

constraint, denoted as I.

For join constraints, let D1 and D2 denote the relations that are joined, and I1, I2
denote the number of the distinct attribute values used for join. Then the evaluation cost

for the join over D1 and D2 is proportional to jD1j � jD2j when the join is over attributes

that are not indexed, because the query evaluator must compute a cross product to locate

pairs of satisfying instances. If the join is over indexed attributes, the evaluation cost

is proportional to the number of instance pairs returned from the join,
jD1j�jD2j

max(I1;I2)
. This

estimate assumes that distinct attribute values distribute uniformly in instances of joined

relations. If possible, the system may sample the database for more accurate estimation.

For the example at hand, two candidate constraints are the most promising:



Using Inductive Learning To Generate Rules for Semantic Query Optimization 211

C3:geoloc(?name, ,"Malta", , ).

C4:geoloc(?name,?glc cd, , , ),

seaport( ,?glc cd, , , , ).

Suppose |geoloc| is 30,000, and |seaport| is 800. The cardinality of glc cd for geoloc

is 30,000 again, and for seaport is 800. Suppose both relations have indices on glc cd.

Then the evaluation cost of C3 is 30,000, and C4 is 30; 000� 800=30; 000 = 800. The gain

of C3 is 30; 000� 4 = 29; 996, and the gain of C4 is 30; 000� 800 = 29; 200, because only

4 instances satisfy C3 (See Figure 17.7) while 800 instances satisfy C4. (There are 800

seaports, and all have a corresponding geoloc instance.) So the gain/cost ratio of C3 is

29; 996=30; 000 = 0:99, and the gain/cost ratio of C4 is 29; 200=800 = 36:50. The system

will select C4 and add it to the hypothesis.

17.4.2 Searching the Space of Candidate Constraints

When a join constraint is selected, a new relation and its attributes are introduced into

the search space of candidate constraints. The system can consider adding constraints

on attributes of the newly introduced relation to the partially constructed hypothesis. In

our example, a new relation seaport is introduced to describe the positive instances in

geoloc. The search space is now expanded into two levels, as illustrated in Figure 17.8.

The expanded constraints include a set of internal disjunctions on attributes of seaport,

as well as join constraints from seaport to another relation. If a new join constraint

has the maximumgain/cost ratio and is selected later, the search space will be expanded

further. Figure 17.8 shows the situation when a new relation, say channel, is selected, the

search space will be expanded one level deeper. At this moment, candidate constraints

will include all unselected internal disjunctions on attributes of geoloc, seaport, and

channel, as well as all possible joins with new relations from geoloc, seaport and

channel. Exhaustively evaluating the gain/cost of all candidate constraints is impractical

when learning from a large and complex database.

We adopt a search method that favors candidate constraints on attributes of newly

introduced relations. That is, when a join constraint is selected, the system will estimate

only those candidate constraints in the newly expanded level, until the system constructs

a hypothesis that excludes all negative instances (i.e., reaches the goal) or no more

consistent constraints in the level with positive gain are found. In the later case, the

system will backtrack to search the remaining constraints on previous levels. This search

control bias takes advantage of underlying domain knowledge in the schema design of

databases. A join constraint is unlikely to be selected on average, because an internal

disjunction is usually much less expensive than a join. Once a join constraint (and thus a

new relation) is selected, this is strong evidence that all useful internal disjunctions in the

current level have been selected, and it is more likely that useful candidate constraints
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channel

geoloc

name = "Valletta" V "Marsaxlokk" V...

glc_cd = 8002 V 8003 V ...

country = "Malta"

latitude = ...

longitude = ...

join on glc_cd with seaports

join on glc_cd with channel

join on name  with ?seaports

seaports

name = "Grand Harbor" V "Marsa" V "St Pauls Bay"...

rail = Yes

 storage > 2000000 

join on name and port_name with channel

join on glc_cd with geoloc

Figure 17.8
Candidate constraints to be selected

are on attributes of newly joined relations. This bias works well in our experiments. But

certainly there are cases when the heuristic prunes out useful candidate constraints.

The complexity of the algorithm is briey analyzed as follows. When a new relation r

is introduced as a primary relation or by selection of a join, the number of relation scans

is bounded by (1+ J(r))+ (A(r)+ J(r)), where J(r) is the number of legal join paths to

r and A(r) is the number of attributes of r. Constructing candidate constraints requires

scanning the relations 1+ J(r) times, because constructing all internal disjunctions on r

needs one scan over r and constructing join constraints needs an additional scan over each

joined relation. Each iteration of gain/cost evaluation and selection needs to scan r once.

In the worst case, if all candidate constraints are selected to construct the alternative

query, it will require scanning the relations A(r) + J(r) times. Since usually a query

involves a small number of relations and expansions in learning are rare, the number of

relation scans is linear with respect to the number of attributes in most cases.

Returning to the example, since C4 was selected, the system will expand the search

space by constructing consistent internal disjunctions and join constraints on seaport.

Assuming that the system cannot �nd any candidate on seaport with positive gain.

It will backtrack to consider candidates on geoloc again and select the constraint on

country (see Figure 17.8). Now, all negative instances are excluded. The system thus

learns the query:
Q3: answer(?name):-

geoloc(?name,?glc cd,"Malta", , ),

seaport( ,?glc cd, , , , ).

The operationalization component will then take the equivalence of the input query

Q22 and the learned query Q3 as input:
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Table 17.2
Database features

Databases Contents Relations Instances Size(MB)

Geo Geographical locations 16 56708 10.48

Assets Air and sea assets 14 5728 0.51

Fmlib Force module library 8 3528 1.05

geoloc(?name, ,"Malta", , )

, geoloc(?name,?glc cd,"Malta", , ) ^

seaport( ,?glc cd, , , , ).

and will deduce a new rule that can be used to reformulate Q22 to Q3:
geoloc( ,?glc cd,"Malta", , )

) seaport( ,?glc cd, , , , ).

This is the rule R2 we have seen in Section 17.2. Since the size of geoloc is considerably

larger than that of seaport, next time when a query asks about geographic locations in

Malta, the system can reformulate the query to access the seaport relation instead and

speed up the query answering process.

17.5 Experimental Results

Our experiments are performed in the SIMS information mediator (Arens et al. 1993;

Knoblock et al. 1994). SIMS allows users to access di�erent kinds of remote databases

and knowledge bases as if they were using a single system. For the purpose of our

experiments, SIMS is connected with three remotely distributed Oracle databases via the

Internet. Figure 17.2 shows the domain of the contents and the sizes of these databases.

Together with the databases are 28 sample queries written by the users of the databases.

However, among these queries, only 7 are multidatabase queries, and 4 of them return

NIL because the data in Assets and Fmlib databases are incomplete. To test the e�ect of

data transmission cost reduction, we wrote 6 additionalmultidatabase queries. Therefore,

we have a total of 34 sample queries for the experiments.

We classi�ed 28 sample queries into 8 categories according to the relations and con-

straints used in the queries. We then chose 8 queries randomly from each category as

input to the learning system and generated 32 semantic rules. To reduce the learning

cost, a multidatabase query will be decomposed into single-database subqueries by the

SIMS query planner (Arens et al. 1993; Knoblock et al. 1994) before being fed into the

learning system. The learned rules were used to optimize the remaining 26 queries. In

addition to rules, the system also used 163 attribute range facts (e.g., the range of the

age attribute of employee is from 17 to 70) compiled from the databases.
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Table 17.3
Performance statistics

All NIL Queries � 60s. > 60s.

# of queries 26 4 17 5

Time(sec), w/out reformulation 51.79 41.51 7.97 209.03

Time(sec), with reformulation 20.80 2.37 6.66 83.57

Overall % time saved 59.84% 94.28% 16.38% 60.00%

Average % time saved 29.36% 79.62% 12.56% 46.28%

Average overhead(sec) 0.08 0.07 0.07 0.11

Times range facts applied 3.84 5.25 2.82 6.2

Times rules applied 1.15 0.75 1.35 0.80

Table 17.3 shows the performance statistics. In the �rst column, we show the average

performance of all tested queries. We divide the queries into 3 groups. The number of

queries in each group is shown in the �rst row. The �rst group contains those unsatis�able

queries refuted by the learned knowledge. In these cases, the reformulation takes full

advantage of the learned knowledge and the system does not need to access the databases

at all, so we separate them from the other cases. The second group contains those low-

cost queries that take less than one minute to evaluate without reformulation. The last

group contains the high-cost multidatabase queries that we wrote to test the reduction

of data transmission cost by reformulation.

In Table 17.3, the second row lists the average elapsed time of query execution with-

out reformulation. The third row shows the average elapsed time of reformulation and

execution. The overall percentage time saved is the ratio of the total time saved due

to the reformulation over the total execution time without reformulation. The next row

shows the average percentage saving of designated sets of queries. That is, the sum of

percentage time saved of each query divided by the number of queries. The savings is

59.84 percent overall and 29.36 percent on average. The reformulation yields signi�cant

cost reduction for high-cost queries, but not so high for the low-cost queries. This is not

unexpected, because the queries in this group are already very cheap and the cost cannot

be reduced much further. The average overhead listed in the table shows the time in

seconds spent on reformulation. The overhead is very small compared to the total query

processing time.

On average, the system applies range facts 3.84 times and semantic rules 1.15 times

for reformulation. Note that the same range fact or rule may be applied more than once

during the reformulation procedure. In fact, the system reformulates many of the queries

using the range facts only. To distinguish the e�ect of learned rules in reformulation,
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Table 17.4
Performance statistics for queries optimized using learned semantic rules

All NIL Queries � 60s. > 60s.

# of queries 11 1 9 1

Time(sec), w/out reformulation 21.25 67.90 8.86 86.09

Time(sec), with reformulation 12.01 4.15 6.99 65.01

Overall % time saved 43.48% 93.88% 21.09% 24.49%

Average % time saved 23.67% 93.88% 15.78% 24.49%

Average overhead(sec) 0.09 0.03 0.09 0.21

Times range facts applied 4.00 2.00 3.44 11.0

Times rules applied 2.72 3.00 2.55 4.00

we separate the queries for which the system applies at least one rule in reformulation.

Range facts are still necessary for reformulating these queries because the system uses

them in the rule matching for numerically typed attributes. (Hsu and Knoblock 1993b)

describes in detail the usage and acquisition of range facts. The performance statistics

on those queries are shown in Table 17.4. There are 11 out of 26 testing queries in this

set. The overall saving of this class is 43.48 percent, comparable to the SQO systems

using hand-coded rules (King 1981; Shekhar et al. 1988; Shenoy and Ozsoyoglu 1989).

17.6 Related Work

Previously, systems for learning background knowledge for semantic query optimization

were proposed by Siegel (1988) and by Shekhar et al. (1993). Siegel's system uses pre-

de�ned heuristics and an example query to drive the learning. This approach is limited

because the heuristics are unlikely to be comprehensive enough to detect missing rules

for various queries and databases. Shekhar et al.'s system uses a data-driven approach

which assumes that a set of relevant attributes is given. Focusing on these relevant at-

tributes, their system explores the contents of the database and generates a set of rules

in the hope that all useful rules are learned. Siegel's system goes to one extreme by

neglecting the importance of guiding the learning according to the contents of databases,

while Shekhar's system goes to another extreme by neglecting dynamic query patterns.

Our approach is more exible because it addresses both aspects by using example queries

to trigger the learning and using inductive learning over the contents of databases.

The problem of Inductive Logic Programming (ILP) (Muggleton and Feng 1990; Quin-

lan 1990; Lavra�c and D�zeroski 1994) is closely related to our problem of learning al-

ternative queries in that both problems learn de�nitions from databases with multiple
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relations. Our inductive learning approach uses a top-down algorithm similar to FOIL

(Quinlan 1990) to build an alternative query. The di�erences between our approach

and FOIL are that they learn descriptions in a di�erent language. FOIL learns Horn-

clause de�nitions where each clause covers a subset of positive instances but no negative

instances. Our approach learns conjunctive queries which must cover all positive in-

stances but no negative instances. Another di�erence is their search heuristics. FOIL

uses an information-theoretic heuristic while our approach uses a set-covering heuristic

for learning a low-cost speci�cation.

Approaches to mining association rules (propositional conjunctive rules) from a single

table database are described by Agrawal et al. (1993) and Mannila et al. (1994). Their

approach generates a set of data patterns from a table, and then converts those pat-

terns into association rules. The data patterns are generated after the system scans the

database a few times. In each pass, the system revises a set of candidate patterns, by

proposing new patterns and eliminating existing patterns, as it reads in a data tuple.

A \support" counter for each pattern that counts the number of tuples showing a given

pattern is used to measure the interestingness of patterns. A tuple scanning approach

is not appropriate when joins are allowed to express a rule because the system must

consider data patterns in many relations at the same time. Also, in their approaches, the

\support" counters for measuring interestingness of rules can be e�ciently updated and

estimated during the tuple scanning process, while the e�ectiveness of semantic rules for

SQO is di�cult to measure and estimate in that manner.

17.7 Conclusions and Future Work

This chapter demonstrates that the knowledge required for semantic query optimization

can be learned inductively under the guidance of input queries. We have described a

general learning framework in which inductive learning is triggered by queries, and an

inductive learning algorithm for learning from many relations. Experimental results

show that query optimization using learned semantic knowledge produces substantial

cost reductions for a real-world multidatabase system.

A limitation to our approach is that there is no mechanism to deal with changes

to databases. After a database is changed, some learned semantic rules may become

inconsistent with a new database state and not useful for optimization. Our planned

approach to this issue is to estimate the robustness of candidate rules and learn those

rules with high robustness con�dence. When the database is changed, a maintenance

system will be used to update the con�dence and delete those rules with low con�dence.

Meanwhile, as new queries arrive, the system keeps triggering learning for new rules

for new database states. This way, the system can autonomously maintain a set of
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e�ective and consistent rules for optimization. We are currently developing an estimation

approach to implement this idea.
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