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ABSTRACT
Extracting useful entities and attribute values from illicit
domains such as human trafficking is a challenging prob-
lem with the potential for widespread social impact. Such
domains employ atypical language models, have ‘long tails’
and suffer from the problem of concept drift. In this pa-
per, we propose a lightweight, feature-agnostic Information
Extraction (IE) paradigm specifically designed for such do-
mains. Our approach uses raw, unlabeled text from an ini-
tial corpus, and a few (12-120) seed annotations per domain-
specific attribute, to learn robust IE models for unobserved
pages and websites. Empirically, we demonstrate that our
approach can outperform feature-centric Conditional Ran-
dom Field baselines by over 18% F-Measure on five anno-
tated sets of real-world human trafficking datasets in both
low-supervision and high-supervision settings. We also show
that our approach is demonstrably robust to concept drift,
and can be efficiently bootstrapped even in a serial comput-
ing environment.
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1. INTRODUCTION
Building knowledge graphs (KG) over Web corpora is an

important problem that has galvanized effort from multiple
communities over two decades [12], [29]. Automated knowl-
edge graph construction from Web resources involves several
different phases. The first phase involves domain discovery,
which constitutes identification of sources, followed by crawl-
ing and scraping of those sources [7]. A contemporaneous
ontology engineering phase is the identification and design
of key classes and properties in the domain of interest (the
domain ontology) [33].

Once a set of (typically unstructured) data sources has
been identified, an Information Extraction (IE) system needs
to extract structured data from each page in the corpus [11],
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[14], [21], [15]. In IE systems based on statistical learning,
sequence labeling models like Conditional Random Fields
(CRFs) can be trained and used for tagging the scraped text
from each data source with terms from the domain ontology
[24], [15]. With enough data and computational power, deep
neural networks can also be used for a range of collective
natural language tasks, including chunking and extraction
of named entities and relationships [10].

While IE has been well-studied both for cross-domain
Web sources (e.g. Wikipedia) and for traditional domains
like biomedicine [32], [20], it is less well-studied (Section
2) for dynamic domains that undergo frequent changes in
content and structure. Such domains include news feeds,
social media, advertising, and online marketplaces, but also
illicit domains like human trafficking. Automatically con-
structing knowledge graphs containing important informa-
tion like ages (of human trafficking victims), locations, prices
of services and posting dates over such domains could have
widespread social impact, since law enforcement and federal
agencies could query such graphs to glean rapid insights [28].

Illicit domains pose some formidable challenges for tradi-
tional IE systems, including deliberate information obfusca-
tion, non-random misspellings of common words, high occur-
rences of out-of-vocabulary and uncommon words, frequent
(and non-random) use of Unicode characters, sparse content
and heterogeneous website structure, to only name a few
[28], [1], [13]. While some of these characteristics are shared
by more traditional domains like chat logs and Twitter, both
information obfuscation and extreme content heterogeneity
are unique to illicit domains. While this paper only consid-
ers the human trafficking domain, similar kinds of problems
are prevalent in other illicit domains that have a sizable Web
(including Dark Web) footprint, including terrorist activity,
and sales of illegal weapons and counterfeit goods [9].

As real-world illustrative examples, consider the text frag-
ments ‘Hey gentleman im neWYOrk and i’m looking for
generous...’ and ‘AVAILABLE NOW! ?? - (4 two 4) six
5 two - 0 9 three 1 - 21’. In the first instance, the correct
extraction for a Name attribute is neWYOrk, while in the
second instance, the correct extraction for an Age attribute
is 21. It is not obvious what features should be engineered
in a statistical learning-based IE system to achieve robust
performance on such text.

To compound the problem, wrapper induction systems
from the Web IE literature cannot always be applied in such
domains, as many important attributes can only be found in
text descriptions, rather than template-based Web extrac-
tors that wrappers traditionally rely on [21]. Constructing
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an IE system that is robust to these problems is an impor-
tant first step in delivering structured knowledge bases to
investigators and domain experts.

In this paper, we study the problem of robust informa-
tion extraction in dynamic, illicit domains with unstructured
content that does not necessarily correspond to a typical
natural language model, and that can vary tremendously
between different Web domains, a problem denoted more
generally as concept drift [31]. Illicit domains like human
trafficking also tend to exhibit a ‘long tail’; hence, a compre-
hensive solution should not rely on information extractors
being tailored to pages from a small set of Web domains.

There are two main technical challenges that such domains
present to IE systems. First, as the brief examples above
illustrate, feature engineering in such domains is difficult,
mainly due to the atypical (and varying) representation of
information. Second, investigators and domain experts re-
quire a lightweight system that can be quickly bootstrapped.
Such a system must be able to generalize from few (≈10-150)
manual annotations, but be incremental from an engineer-
ing perspective, especially since a given illicit Web page can
quickly (i.e. within hours) become obsolete in the real world,
and the search for leads and information is always ongoing.
In effect, the system should be designed for streaming data.

We propose an information extraction approach that is
able to address the challenges above, especially the variance
between Web pages and the small training set per attribute,
by combining two sequential techniques in a novel paradigm.
The overall approach is illustrated in Figure 1. First, a
high-recall recognizer, which could range from an exhaustive
Linked Data source like GeoNames (e.g. for extracting lo-
cations) to a simple regular expression (e.g. for extracting
ages), is applied to each page in the corpus to derive a set of
candidate annotations for an attribute per page. In the sec-
ond step, we train and apply a supervised feature-agnostic
classification algorithm, based on learning word representa-
tions from random projections, to classify each candidate as
correct/incorrect for its attribute.

Contributions We summarize our main contributions as
follows: (1) We present a lightweight feature-agnostic infor-
mation extraction system for a highly heterogeneous, illicit
domain like human trafficking. Our approach is simple to
implement, does not require extensive parameter tuning, in-
frastructure setup and is incremental with respect to the
data, which makes it suitable for deployment in streaming-
corpus settings. (2) We show that the approach shows good
generalization even when only a small corpus is available af-
ter the initial domain-discovery phase, and is robust to the
problem of concept drift encountered in large Web corpora.
(3) We test our approach extensively on a real-world human
trafficking corpus containing hundreds of thousands of Web
pages and millions of unique words, many of which are rare
and highly domain-specific. Evaluations show that our ap-
proach outperforms traditional Named Entity Recognition
baselines that require manual feature engineering. Specific
empirical highlights are provided below.

Empirical highlights Comparisons against CRF base-
lines based on the latest Stanford Named Entity Resolution
system (including pre-trained models as well as new mod-
els that we trained on human trafficking data) show that, on
average, across five ground-truth datasets, our approach out-
performs the next best system on the recall metric by about
6%, and on the F1-measure metric by almost 20% in low-

supervision settings (30% training data), and almost 20%
on both metrics in high-supervision settings (70% training
data). Concerning efficiency, in a serial environment, we are
able to derive word representations on a 43 million word cor-
pus in under an hour. Degradation in average F1-Measure
score achieved by the system is less than 2% even when the
underlying raw corpus expands by a factor of 18, showing
that the approach is reasonably robust to concept drift.

Structure of the paper Section 2 describes some re-
lated work on Information Extraction. Section 3 provides
details of key modules in our approach. Section 4 describes
experimental evaluations, and Section 5 concludes the work.

2. RELATED WORK
Information Extraction (IE) is a well-studied research area

both in the Natural Language Processing community and
in the World Wide Web, with the reader referred to the
survey by Chang et al. for an accessible coverage of Web
IE approaches [8]. In the NLP literature, IE problems have
predominantly been studied as Named Entity Recognition
and Relationship Extraction [15], [16]. The scope of Web IE
has been broad in recent years, extending from wrappers to
Open Information Extraction (OpenIE) [21], [3].

In the Semantic Web, domain-specific extraction of enti-
ties and properties is a fundamental aspect in constructing
instance-rich knowledge bases (from unstructured corpora)
that contribute to the Semantic Web vision and to ecosys-
tems like Linked Open Data [4], [19]. A good example of
such a system is Lodifier [2]. This work is along the same
lines, in that we are interested in user-specified attributes
and wish to construct a knowledge base (KB) with those
attribute values using raw Web corpora. However, we are
not aware of any IE work in the Semantic Web that has
used word representations to accomplish this task, or that
has otherwise outperformed state-of-the-art systems without
manual feature engineering.

The work presented in this paper is structurally similar
to the geolocation prediction system (from Twitter) by Han
et al. and also ADRMine, an adverse drug reaction (ADR)
extraction system from social media [18], [26]. Unlike these
works, our system is not optimized for specific attributes
like locations and drug reactions, but generalizes to a range
of attributes. Also, as mentioned earlier, illicit domains in-
volve challenges not characteristic of social media, notably
information obfuscation.

In recent years, state-of-the-art results have been achieved
in a variety of NLP tasks using word representation methods
like neural embeddings [25]. Unlike the problem covered in
this paper, those papers typically assume an existing KB
(e.g. Freebase), and attempt to infer additional facts in the
KB using word representations. In contrast, we study the
problem of constructing and populating a KB per domain-
specific attribute from scratch with only a small set of initial
annotations from crawled Web corpora.

The problem studied in this paper also has certain resem-
blances to OpenIE [3]. One assumption in OpenIE systems
is that a given fact (codified, for example, as an RDF triple)
is observed in multiple pages and contexts, which allows the
system to learn new ‘extraction patterns’ and rank facts by
confidence. In illicit domains, a ‘fact’ may only be observed
once; furthermore, the arcane and high-variance language
models employed in the domain makes direct application
of any extraction pattern-based approach problematic. To



Figure 1: A high-level overview of the proposed information extraction approach

the best of our knowledge, the specific problem of devis-
ing feature-agnostic, low-supervision IE approaches for illicit
Web domains has not been studied in prior work.

3. APPROACH
Figure 1 illustrates the architecture of our approach. The

input is a Web corpus containing relevant pages from the
domain of interest, and high-recall recognizers (described in
Section 3.3) typically adapted from freely available Web re-
sources like Github and GeoNames. In keeping with the
goals of this work, we do not assume that this initial corpus
is static. That is, following an initial short set-up phase,
more pages are expected to be added to the corpus in a
streaming fashion. Given a set of pre-defined attributes (e.g.
City, Name, Age) and around 10-100 manually verified an-
notations for each attribute, the goal is to learn an IE model
that accurately extracts attribute values from each page in
the corpus without relying on expert feature engineering.
Importantly, while the pages are single-domain (e.g. human
trafficking) they are multi-Web domain, meaning that the
system must not only handle pages from new websites as
they are added to the corpus, but also concept drift in the
new pages compared to the initial corpus.

3.1 Preprocessing
The first module in Figure 1 is an automated pre-processing

algorithm that takes as input a streaming set of HTML
pages. In real-world illicit domains, the key information
of interest to investigators (e.g. names and ages) typically
occurs either in the text or the title of the page, not the
template of the website. Even when the information occa-
sionally occurs in a template, it must be appropriately dis-
ambiguated to be useful1. Wrapper-based IE systems [21]
are often inapplicable as a result. As a first step in build-
ing a more suitable IE model, we scrape the text from each
HTML website by using a publicly available text extrac-

1For example, ‘Virginia’ in South Africa vs. ‘Virginia’ in
the US.

tor called the Readability Text Extractor2 (RTE). Although
multiple tools3 are available for text extraction from HTML
[17], our early trials showed that RTE is particularly suitable
for noisy Web domains, owing to its tuneability, robustness
and support for developers. We tune RTE to achieve high
recall, thus ensuring that the relevant text in the page is
captured in the scraped text with high probability. Note
that, because of the varied structure of websites, such a set-
ting also introduces noise in the scraped text (e.g. wayward
HTML tags). Furthermore, unlike natural language docu-
ments, scraped text can contain many irrelevant numbers,
Unicode and punctuation characters, and may not be reg-
ular. Because of the presence of numerous tab and new-
line markers, there is no obvious natural language sentence
structure in the scraped text4. In the most general case, we
found that RTE returned a set of strings, with each string
corresponding to a set of sentences.

To serialize the scraped text as a list of tokens, we use
the word and sentence tokenizers from the NLTK package
on each RTE string output [5]. We apply the sentence tok-
enizer first, and to each sentence returned (which often does
not correspond to an actual sentence due to rampant use
of extraneous punctuation characters) by the sentence tok-
enizer, we apply the standard NLTK word tokenizer. The
final output of this process is a list of tokens. In the rest
of this section, this list of tokens is assumed as representing
the HTML page from which the requisite attribute values
need to be extracted.

3.2 Deriving Word Representations
In principle, given some annotated data, a sequence label-

ing model like a Conditional Random Field (CRF) can be
trained and applied on each block of scraped text to extract

2https://www.readability.com/developers/api
3An informal comparison may be accessed at https://www.
diffbot.com/benefits/comparison/
4We also found sentence ambiguity in the actual text dis-
played on the browser-rendered website (in a few human
trafficking sample pages), due to the language models em-
ployed in these pages.



values for each attribute [24], [15]. In practice, as we empir-
ically demonstrate in Section 4, CRFs prove to be problem-
atic for illicit domains. First, the size of the training data
available for each CRF is relatively small, and because of
the nature of illicit domains, methods like distant supervi-
sion or crowdsourcing cannot be used in an obvious timely
manner to elicit annotations from users. A second problem
with CRFs, and other traditional machine learning models,
is the careful feature engineering that is required for good
performance. With small amounts of training data, good
features are essential for generalization. In the case of illicit
domains, it is not always clear what features are appropriate
for a given attribute. Even common features like capitaliza-
tion can be misleading, as there are many capitalized words
in the text that are not of interest (and vice versa).

To alleviate feature engineering and manual annotation
effort, we leverage the entire raw corpus in our model learn-
ing phase, rather than just the pages that have been anno-
tated. Specifically, we use an unsupervised algorithm to rep-
resent each word in the corpus in a low-dimensional vector
space. Several algorithms exist in the literature for deriv-
ing such representations, including neural embedding algo-
rithms such as Word2vec [25] and the algorithm by Bollegala
et al. [6], as well as simpler alternatives [27].

Given the dynamic nature of streaming illicit-domain data,
and the numerous word representation learning algorithms
in the literature, we adapted the random indexing (RI) al-
gorithm for deriving contextual word representations [27].
Random indexing methods mathematically rely on the Johnson-
Lindenstrauss Lemma, which states that if points in a vector
space are of sufficiently high dimension, then they may be
projected into a suitable lower-dimensional space in a way
which approximately preserves the distances between the
points.

The original random indexing algorithm was designed for
incremental dimensionality reduction and text mining appli-
cations. We adapt this algorithm for learning word repre-
sentations in illicit domains. Before describing these adap-
tations, we define some key concepts below.

Definition 1. Given parameters d ∈ Z+ and r ∈ [0, 1], a
context vector is defined as a d−dimensional vector, of which
exactly bdrc elements are randomly set to +1, exactly bdrc
elements are randomly set to −1 and the remaining d−2bdrc
elements are set to 0.

We denote the parameters d and r in the definition above
as the dimension and sparsity ratio parameters respectively.

Intuitively, a context vector is defined for every atomic
unit in the corpus. Let us denote the universe of atomic
units as U , assumed to be a partially observed countably
infinite set. In the current scenario, every unigram (a single
‘token’) in the dataset is considered an atomic unit. Ex-
tending the definition to also include higher-order ngrams
is straightforward, but was found to be unnecessary in our
early empirical investigations. The universe is only partially
observed because of the incompleteness (i.e. streaming, dy-
namic nature) of the initial corpus.

The actual vector space representation of an atomic unit
is derived by defining an appropriate context for the unit.
Formally, a context is an abstract notion that is used for
assigning distributional semantics to the atomic unit. The
distributional semantics hypothesis (also called Firth’s ax-

Figure 2: An example illustrating the naive Random
Indexing algorithm with unigram atomic units and
a (2, 2)-context window as context

iom) states that the semantics of an atomic unit (e.g. a
word) is defined by the contexts in which it occurs [22].

In this paper, we only consider short contexts appropriate
for noisy streaming data. In this vein, we define the notion
of a (u, v)-context window below:

Definition 2. Given a list t of atomic units and an integer
position 0 < i ≤ |t|, a (u, v)-context window is defined by
the set S− t[i], where S is the set of atomic units inclusively
spanning positions max(i− u, 1) and min(i+ v, |t|)

Using just these two definitions, a naive version of the RI
algorithm is illustrated in Figure 2 for the sentence ‘the cow
jumped over the moon’, assuming a (2, 2)-context window
and unigrams as atomic units. For each new word encoun-
tered by the algorithm, a context vector (Definition 1) is ran-
domly generated, and the representation vector for the word
is initialized to the 0 vector. Once generated, the context
vector for the word remains fixed, but the representation
vector is updated with each occurrence of the word.

The update happens as follows. Given the context of the
word (ranging from a set of 2-4 words), an aggregation is
first performed on the corresponding context vectors. In
Figure 2, for example, the aggregation is an unweighted sum.
Using the aggregated vector (denoted by the symbol ~a), we
update the representation vector using the equation below,
with ~wi being the representation vector derived after the ith

occurrence of word w:

~wi+1 = ~wi + ~a (1)

In principle, using this simple algorithm, we could learn
a vector space representation for every atomic unit. One
issue with a naive embedding of every atomic unit into a
vector space is the presence of rare atomic units. These are
especially prevalent in illicit domains, not just in the form
of rare words, but also as sequences of Unicode characters,
sequences of HTML tags, and numeric units (e.g. phone
numbers), each of which only occurs a few times (often, only
once) in the corpus.

To address this issue, we define below the notion of a
compound unit that is based on a pre-specified condition.

Definition 3. Given a universe U of atomic units and a
binary condition R : U → {True, False}, the compound
unit CR is defined as the largest subset of U such that R
evaluates to True on every member of CR.



Table 1: The compound units implemented in the
current prototype

high-idf-units Units occurring in fewer than fraction
θ (by default, 1%) of initial corpus

pure-num-units Numerical units
alpha-num-units Alpha-numeric units that contain at

least one alphabet and one number
pure-punct-units Units with only punctuation symbols
alpha-punct-
units

Units that contain at least one alpha-
bet and one punctuation character

nonascii-
unicode-units

Units that only contain non-ASCII
characters

Example: For ‘rare’ words, we could define the compound
unit high-idf-units to contain all atomic units that are below
some document frequency threshold (e.g. 1%) in the corpus.

In our implemented prototype, we defined six mutually ex-
clusive5 compound units, described and enumerated in Ta-
ble 1. We modify the naive RI algorithm by only learning
a single vector for each compound unit. Intuitively, each
atomic unit w in a compound unit C is replaced by a special
dummy symbol wC ; hence, after algorithm execution, each
atomic unit in C is represented by the single vector ~wC .

3.3 Applying High-Recall Recognizers
For a given attribute (e.g. City) and a given corpus, we

define a recognizer as a function that, if known, can be used
to exactly determine the instances of the attribute occurring
in the corpus. Formally,

Definition 4. A recognizer RA for attribute A is a func-
tion that takes a list t of tokens and positions i and j >= i as
inputs, and returns True if the tokens contiguously spanning
t[i] : t[j] are instances of A, and False otherwise.

It is important to note that, per the definition above, a rec-
ognizer cannot annotate latent instances that are not di-
rectly observed in the list of tokens.

Since the ‘ideal’ recognizer is not known, the broad goal
of IE is to devise models that approximate it (for a given
attribute) with high accuracy. Accuracy is typically mea-
sured in terms of precision and recall metrics. We formulate
a two-pronged approach whereby, rather than develop a sin-
gle recognizer that has both high precision and recall (and
requires considerable expertise to design), we first obtain a
list of candidate annotations that have high recall in expec-
tation, and then use supervised classification in a second
step to improve precision of the candidate annotations.

More formally, let RA be denoted as an η-recall recog-
nizer if the expected recall of RA is at least η. Due to the
explosive growth in data, many resources on the Web can
be used for bootstrapping recognizers that are ‘high-recall’
in that η is in the range of 90-100%. The high-recall rec-
ognizers currently used in the prototype described in this
paper (detailed further in Section 4.2) rely on knowledge
bases (e.g. GeoNames) from Linked Open Data [4], dictio-
naries from the Web and broad heuristics, such as regular
expression extractors, found in public Github repositories.
In our experience, we found that even students with basic
knowledge of GitHub and Linked Open Data sources are

5That is, an intersection of any two compound units will
always be the empty set.

Figure 3: An illustration of supervised contextual
classification on an example annotation (‘Phoenix’)

able to construct such recognizers. One important reason
why constructing such recognizers is relatively hassle-free is
because they are typically monotonic i.e. new heuristics and
annotation sources can be freely integrated, since we do not
worry about precision at this step.

We note that in some cases, domain knowledge alone is
enough to guarantee 100% recall for well-designed recogniz-
ers for certain attributes. In HT, this is true for location
attributes like city and state, since advertisements tend to
state locations without obfuscation, and we use GeoNames,
an exhaustive knowledge base of locations, as our recognizer.
Manual inspection of the ground-truth data showed that the
recall of utilized recognizers for attributes like Name and
Age are also high (in many cases, 100%). Thus, although
100% recall cannot be guaranteed for any recognizer, it is
still reasonable to assume that η is high.

A much more difficult problem is engineering a recognizer
to simultaneously achieve high recall and high precision.
Even for recognizers based on curated knowledge bases like
GeoNames, many non-locations get annotated as locations.
For example, the word ‘nice’ is a city in France, but is also
a commonly occurring adjective. Other common words like
‘for’, ‘hot’, ‘com’, ‘kim’ and ‘bella’ also occur in GeoNames
as cities and would be annotated. Using a standard Named
Entity Recognition system does not always work because of
the language modeling problem (e.g. missing capitalization)
in illicit domains. In the next section, we show how the con-
text surrounding the annotated word can be used to classify
the annotation as correct or incorrect. We note that, be-
cause the recognizers are high-recall, a successful classifier
would yield both high precision and recall.

3.4 Supervised Contextual Classifier
To address the precision problem, we train a classifier us-

ing contextual features. Rather than rely on a domain ex-
pert to provide a set of hand-crafted features, we derive a
feature vector per candidate annotation using the notion of a
context window (Definition 2) and the word representation
vectors derived in Section 3.2. This process of supervised
contextual classification is illustrated in Figure 3.

Specifically, for each annotation (which could comprise
multiple contiguous tokens e.g. ‘Salt Lake City’ in the list
of tokens representing the website) annotated by a recog-
nizer, we consider the tokens in the (u, v)-context window
around the annotation. We aggregate the vectors of those
tokens into a single vector by performing an unweighted sum,
followed by l2-normalization. We use this aggregate vector
as the contextual feature vector for that annotation. Note
that, unlike the representation learning phase, where the



Table 2: Four human trafficking corpora for which
word representations are (independently) learned

Name Num. websites Total word
count

Unique word
count

D-10K 10,000 2,351,036 1,030,469
D-50K 50,000 11,758,647 5,141,375
D-100K 100,000 23,536,935 10,277,732
D-ALL 184,132 43,342,278 18,940,260

Table 3: Five ground-truth datasets on which the
classifier (Section 3.4) and baselines are evaluated

Name Pos.
ann.

Neg.
ann.

Recognizer Used

GT-Text-City 353 15,783 GeoNames-Cities
GT-Text-State 100 16,036 GeoNames-States
GT-Title-City 37 513 GeoNames-Cities
GT-Text-Name 162 14,337 Dictionary-Names
GT-Text-Age 116 14,306 RegEx-Ages

surrounding context vectors were aggregated into an exist-
ing representation vector, the contextual feature vector is
obtained by summing the actual representation vectors.

For each attribute, a supervised machine learning classi-
fier (e.g. random forest) is trained using between 12-120
labeled annotations, and for new data, the remaining an-
notations can be classified using the trained classifier. Al-
though the number of dimensions in the feature vectors is
quite low compared to tf-idf vectors (hundreds vs. millions),
a second round of dimensionality reduction can be applied
by using (either supervised or unsupervised) feature selec-
tion for further empirical benefits (Section 4).

4. EVALUATIONS

4.1 Datasets and Ground-truths
We train the word representations on four real-world hu-

man trafficking datasets of increasing size, the details of
which are provided in Table 2. Since we assume a ‘stream-
ing’ setting in this paper, each larger dataset in Table 2 is a
strict superset of the smaller datasets. The largest dataset
is itself a subset of the overall human trafficking corpus that
was scraped as part of research conducted in the DARPA
MEMEX program6.

Since ground-truth extractions for the corpus are unknown,
we randomly sampled websites from the overall corpus7, ap-
plied four high-recall recognizers described in Section 4.2,
and for each annotated set, manually verified whether the
extractions were correct or incorrect for the corresponding
attribute. The details of this sampled ground-truth are cap-
tured in Table 3. Each annotation set is named using the
format GT-{RawField}-{AnnotationAttribute}, where Raw-
Field can be either the HTML title or the scraped text
(Section 3.1). and AnnotationAttribute is the attribute of
interest for annotation purposes.

6http://www.darpa.mil/program/memex
7Hence, it is possible that there are websites in the ground-
truth that are not part of the corpora in Table 2.

Table 4: Stanford NER features that were used for
re-training the model on our annotation sets

useClassFeature=true useNext=true
useWord=true useSequences=true
useNGrams=true usePrevSequences=true
noMidNGrams=true maxLeft=1
useDisjunctive=true useTypeSeqs=true
maxNGramLeng=6 useTypeSeqs2=true
usePrev=true useTypeySequences=true
wordShape=chris2useLC

4.2 System
The overall system requires developing two components

for each attribute: a high-recall recognizer and a classifier for
pruning annotations. We developed four high-recall recog-
nizers, namely GeoNames-Cities, GeoNames-States, RegEx-
Ages and Dictionary-Names. The first two of these relies
on the freely available GeoNames8 dataset [30]; we use the
entire dataset for our experiments, which involves modeling
each GeoNames dictionary as a trie, owing to its large mem-
ory footprint. For extracting ages, we rely on simple regular
expressions and heuristics that were empirically verified to
capture a broad set of age representations9. For the name
attribute, we gather freely available Name dictionaries on
the Web, in multiple countries and languages, and use the
dictionaries10 in a case-insensitive recognition algorithm to
locate names in the raw field (i.e. text or title).

4.3 Baselines
We use different variants of the Stanford Named Entity

Recognition system (NER) as our baselines [15]. For the
first set of baselines, we use two pre-trained models trained
on different English language corpora11. Specifically, we use
the 3-Class and 4-Class pre-trained models12. We use the
LOCATION class label for determining city and state anno-
tations, and the PERSON label for name annotations. Un-
fortunately, there is no specific label corresponding to age
annotations in the pre-trained models; hence, we do not use
the pre-trained models as age annotation baselines.

It is also possible to re-train the underlying NER system
on a new dataset. For the second set of baselines, therefore,
we re-train the NER models by randomly sampling 30% and
70% of each annotation set in Table 3 respectively, with the
remaining annotations used for testing. The features and
values that were employed in the re-trained models are enu-
merated in Table 4. Further documentation on these feature
settings may be found on the NERFeatureFactory page13.

8http://www.geonames.org/
9The age extractors we used are also available in the Github
repository accessed at https://github.com/usc-isi-i2/
dig-age-extractor

10For replication, the full set of dictionaries used
may be accessed at https://github.com/usc-isi-i2/
dig-dictionaries/tree/master/person-names

11Details are available at http://nlp.stanford.edu/
software/CRF-NER.shtml#Models

12In all Stanford NER pre-trained models, the distributional
similarity option was enabled, which is known to boost F1-
Measure scores.

13Documentation accessed at http://nlp.stanford.
edu/nlp/javadoc/javanlp/edu/stanford/nlp/ie/
NERFeatureFactory.html



All training and testing experiments were done in ten in-
dependent trials14. We use default parameter settings, and
report average results for each experimental run. Experi-
mentation using other configurations, features and values is
left for future studies.

4.4 Setup and Parameters
Parameter tuning System parameters were set as fol-

lows. The number of dimensions in Definition 1 was set
at 200, and the sparsity ratio was set at 0.01. These pa-
rameters are similar to those suggested in previous word
representation papers; they were also found to yield intu-
itive results on semantic similarity experiments (described
further in Section 4.6). To avoid the problem of rare words,
numbers, punctuation and tags, we used the six compound
unit classes earlier described in Table 1. In all experiments
where defining a context was required, we used symmetric
(2, 2)-context windows; using bigger windows was not found
to offer much benefit. We trained a random forest model
with default hyperparameters (10 trees, with Gini Impu-
rity as the split criterion) as the supervised classifier, used
supervised k-best feature selection with k set to 20 (Section
3.4), and with the Analysis of Variance (ANOVA) F-statistic
between class label and feature used as the feature scoring
function.

Because of the class skew in Table 3 (i.e. the ‘positive’
class is typically much smaller than the ‘negative’ class) we
oversampled the positive class for balanced training of the
supervised contextual classifier.

Metrics The metrics used for evaluating IE effectiveness
are Precision, Recall and F1-measure.

Implementation In the interests of demonstrating a rea-
sonably lightweight system, all experiments in this paper
were run on a serial iMac with a 4 GHz Intel core i7 processor
and 32 GB RAM. All code (except the Stanford NER code)
was written in the Python programming language, and has
been made available on a public Github repository15 with
documentation and examples. We used Python’s Scikit-
learn library (v0.18) for the machine learning components
of the prototype.

4.5 Results
Performance against baselines Table 5 illustrates sys-

tem performance on Precision, Recall and F1-Measure met-
rics against the re-trained and pre-trained baseline models,
where the re-trained model and our approach were trained
on 30% of the annotations in Table 3. We used the word rep-
resentations derived from the D-ALL corpus. On average,
the proposed system performs the best on F1-Measure and
recall metrics. The re-trained NER is the most precise sys-
tem, but at the cost of much less recall (<30%). The good
performance of the pre-trained baseline on the City attribute
demonstrates the importance of having a large training cor-
pus, even if the corpus is not directly from the test domain.
On the other hand, the complete failure of the pre-trained
baseline on the Name attribute illustrates the dangers of us-
ing out-of-domain training data. As noted earlier, language
models in illicit domains can significantly differ from natural

14When evaluating the pre-trained models, the training set
is ignored and only the testing set is classified.

15https://github.com/mayankkejriwal/
fast-word-embeddings

Figure 4: Empirical run-time of the adapted random
indexing algorithm on the corpora in Table 2

language models; in fact, names in human trafficking web-
sites are often represented in a variety of misleading ways.

Recognizing that 30% training data may constitute a sam-
ple size too small to make reliable judgments, we also tab-
ulate the results in Table 6 when the training percentage
is set at 70. Performance improves for both the re-trained
baseline and our system. Performance declines for the pre-
trained baseline, but this may be because of the sparseness
of positive annotations in the smaller test set.

We also note that performance is relatively well-balanced
for our system; on all datasets and all metrics, the system
achieves scores greater than 50%. This suggests that our ap-
proach has a degree of robustness that the CRFs are unable
to achieve; we believe that this is a direct consequence of
using contextual word representation-based feature vectors.

Runtimes We recorded the runtimes for learning word
representations using the random indexing algorithm de-
scribed earlier on the four datasets in Table 2, and plot the
runtimes in Figure 4 as a function of the total number of
words in each corpus. In agreement with the expected the-
oretical time-complexity of random indexing, the empirical
run-time is linear in the number of words, for fixed parame-
ter settings. More importantly, the absolute times show that
the algorithm is extremely lightweight: on the D-ALL cor-
pus, we are able to learn representations in under an hour.

We note that these results do not employ any obvious
parallelization or the multi-core capabilities of the machine.
The linear scaling properties of the algorithm show that it
can be used even for very large Web corpora. In future,
we will investigate an implementation of the algorithm in a
distributed setting.

Robustness to corpus size and quality One issue with
using large corpora to derive word representations is concept
drift. The D-ALL corpora, for example, contains tens of
different Web domains, even though they all pertain to hu-
man trafficking. An interesting empirical issue is whether a
smaller corpus (e.g. D-10K or D-50K) contains enough data
for the derived word representations to converge to reason-
able values. Not only would this alleviate initial training
times, but it would also partially compensate for concept
drift, since it would be expected to contain fewer unique
Web domains.

Tables 7 and 8 show that such generalization is possible.
The best F1-Measure performance, in fact, is achieved for
D-10K, although the average F1-Measures vary by a margin



Table 5: Comparative results of three systems on precision (P), recall (R) and F1-Measure (F) when training
percentage is 30. For the pre-trained baselines, we only report the best results across all applicable models

Ground-truth Dataset Our System (P/R/F) Re-trained Baseline (P/R/F) Pre-trained Baseline (P/R/F)
GT-Text-City 0.5207/0.5050/0.5116 0.9855/0.1965/0.3225 0.7206/0.7406/0.7299
GT-Text-State 0.7852/0.6887/0.7310 0.64/0.0598/0.1032 0.2602/0.8831/0.3993
GT-Title-City 0.5374/0.5524/0.5406 0.8633/0.1651/0.2685 0.8524/0.7341/0.7852
GT-Text-Name 0.7201/0.5850/0.6388 1/0.2103/0.3351 0/0/0
GT-Text-Age 0.8993/0.9156/0.9068 0.9102/0.7859/0.8412 N/A

Average 0.6925/0.6493/0.6658 0.8798/0.2835/0.3741 0.4583/0.5895/0.4786

Table 6: Comparative results of three systems when training percentage is 70
Ground-truth Dataset Our System (P/R/F) Re-trained Baseline (P/R/F) Pre-trained Baseline (P/R/F)
GT-Text-City 0.5633/0.6081/0.5841 0.9434/0.3637/0.5000 0.6893/0.7401/0.7128
GT-Text-State 0.7916/0.7269/0.7502 0.7833/0.2128/0.2971 0.1661/0.7830/0.2655
GT-Title-City 0.6403/0.6667/0.6437 0.9417/0.3333/0.4790 0.9133/0.6384/0.7289
GT-Text-Name 0.7174/0.6818/0.6960 1/0.3747/0.5140 0/0/0
GT-Text-Age 0.9252/0.9273/0.9251 0.9254/0.8454/0.8804 N/A

Average 0.7276/0.7222/0.7198 0.9188/0.4260/0.5341 0.4422/0.5404/0.4268

Table 7: A comparison of F1-Measure scores of our
system (30% training data), with word representa-
tions trained on different corpora

Ground-truth D-10K D-50K D-100K D-ALL
GT-Text-City 0.4980 0.5058 0.4909 0.5116
GT-Text-State 0.7362 0.7385 0.7526 0.7310
GT-Title-City 0.6148 0.5638 0.5061 0.5406
GT-Text-Name 0.6756 0.6881 0.6920 0.6388
GT-Text-Age 0.9387 0.9364 0.9171 0.9068

Average 0.6927 0.6865 0.6717 0.6658

Table 8: A comparison of F1-Measure scores of our
system (70% training data), with word representa-
tions trained on different corpora

Ground-truth D-10K D-50K D-100K D-ALL
GT-Text-City 0.5925 0.5781 0.5716 0.5841
GT-Text-State 0.7357 0.7641 0.7246 0.7502
GT-Title-City 0.6424 0.6428 0.6364 0.6437
GT-Text-Name 0.7665 0.7091 0.7333 0.6960
GT-Text-Age 0.9311 0.9634 0.9347 0.9251

Average 0.7336 0.7315 0.7201 0.7198

of less than 2% on all cases. We cite this as further evidence
of the robustness of the overall approach.

Effects of feature selection Finally, we evaluate the
effects of feature selection in Figure 5 on the GT-Text-Name
dataset, with training percentage set16 at 30. The results
show that, although performance is reasonably stable for a
wide range of k, some feature selection is necessary for better
generalization.

4.6 Discussion
Table 9 contains some examples (in bold) of cities that got

correctly extracted, with the bold term being assigned the
highest score by the contextual classifier that was trained for

16Results on the other datasets were qualitatively similar; we
omit full reproductions herein.

Figure 5: Effects of additional feature selection on
the GT-Text-Name dataset (30% training data)

Table 9: Some representative examples of correct
city extractions using the proposed method

. . . 1332 SOUTH 119TH STREET, OMAHA NE
68144 . . .
. . . Location: Bossier City/Shreveport . . .
. . . to service the areas of Salt Lake City Og-
den,Farmington,Centerville,Bountiful . . .
. . . 4th August 2015 in rochester ny, new york . . .
. . . willing to Travel ( Cali, Miami, New York, Mem-
phis . . .
. . . More girls from Salt Lake City, UT . . .

cities. The examples provide good evidence for the kinds of
variation (i.e. concept drift) that are often observed in real-
world human trafficking data over multiple Web domains.
Some domains, for example, were found to have the same
kind of structured format as the second row of Table 9 (i.e.
Location: followed by the actual locations), but many other
domains were far more heterogeneous.

The results in this section also illustrate the merits of un-
supervised feature engineering and contextual supervision.
In principle, there is no reason why the word representa-
tion learning module in Figure 1 cannot be replaced by a
more adaptive algorithm like Word2vec [25]. We note again



Figure 6: Visualizing city contextual classifier in-
puts (with colors indicating ground-truth labels) us-
ing the t-SNE tool

Table 10: Examples of semantic similarity using ran-
dom indexing vectors from D-10K and D-ALL
Seed-token D-10K D-ALL
tall figure, attractive fit, cute
florida california, ohio california, texas
green blue, brown blue, brown
attractive fit, figure elegant, fit
open-minded playful, sweet passionate, playful

that, before applying such algorithms, it is important to
deal with the heterogeneity problem that arises from having
many different Web domains present in the corpus. While
earlier results in this section (Tables 7 and 8) showed that
random indexing is reasonably stable as more websites are
added to the corpus, we also verify this robustness quali-
tatively using a few domain-specific examples in Table 10.
We ran the qualitative experiment as follows: for each seed
token (e.g. ‘tall’), we searched for the two nearest neigh-
bors in the semantic space induced by random indexing by
applying cosine similarity, using two different word repre-
sentation datasets (D-10K and D-ALL). As the results in
Table 10 show, the induced distributional semantics are sta-
ble; even when the nearest neighbors are different (e.g. for
‘tall’), their semantics still tend to be similar.

Another important point implied by both the qualitative
and quantitative results on D-10K is that random indexing
is able to generalize quickly even on small amounts of data.
To the best of our knowledge, it is currently an open ques-
tion (theoretically and empirically), at the time of writing,
whether state-of-the-art neural embedding-based word rep-
resentation learners can (1) generalize on small quantities
of data, especially in a single epoch (‘streaming data’) (2)
adequately compensate for concept drift with the same de-
gree of robustness, and in the same lightweight manner, as
the random indexing method that we adapted and evalu-
ated in this paper. A broader empirical study on this issue
is warranted.

Concerning contextual supervision, we qualitatively visu-
alize the inputs to the contextual city classifier using the
t-SNE tool [23]. We use the ground-truth labels to deter-
mine the color of each point in the projected 2d space. The
plot in Figure 6 shows that there is a reasonable separation

of labels; interestingly there are also ‘sub-clusters’ among
the positively labeled points. Each sub-cluster provides evi-
dence for a similar context; the number of sub-clusters even
in this small sample of points again illustrates the hetero-
geneity in the underlying data.

A last issue that we mention is the generalization of the
method to more unconventional attributes than the ones
evaluated herein. In ongoing work, we have experimented
with more domain-specific attributes such as ethnicity (of
escorts), and have achieved similar performance. In general,
the presented method is applicable whenever the context
around the extraction is a suitable clue for disambiguation.

5. CONCLUSION
In this paper, we presented a lightweight, feature-agnostic

Information Extraction approach that is suitable for illicit
Web domains. Our approach relies on unsupervised deriva-
tion of word representations from an initial corpus, and the
training of a supervised contextual classifier using external
high-recall recognizers and a handful of manually verified
annotations. Experimental evaluations show that our ap-
proach can outperform feature-centric CRF-based approaches
for a range of generic attributes. Key modules of our pro-
totype are publicly available (see footnote 15) and can be
efficiently bootstrapped in a serial computing environment.
Some of these modules are already being used in real-world
settings. For example, they were recently released as tools
for graduate-level participants in the End Human Trafficking
hackathon organized by the office of the District Attorney
of New York17. At the time of writing, the system is being
actively maintained and updated.
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