
 

FEATURE ARTICLE: KNOWLEDGE DISCOVERY 

Investigative Knowledge 
Discovery for Combating 
Illicit Activities 

Developing scalable, semi-automatic approaches to 

derive insights from a domain-specific Web corpus is 

a longstanding research problem in the knowledge 

discovery community. The problem is particularly 

challenging in illicit fields, such as human trafficking, 

in which traditional assumptions concerning 

information representation are frequently violated. In 

this article, we describe an end-to-end investigative 

knowledge discovery system for illicit Web domains. We built and evaluated a 

prototype, involving separate components for information extraction, semantic 

modeling, and query execution on a real-world human trafficking Web corpus containing 

1.3 million pages, with promising results. 

Knowledge discovery from raw corpora is a broad research area that involves diverse tasks such 
as ontology engineering,1 information extraction,2 information retrieval,3 and visualization.4 In 
this article, we assume that a set of domain experts (typically, law enforcement agencies) is inter-
ested in knowledge discovery of an investigative nature in an illicit web domain such as human 
trafficking (HT). 

Many of these problems are already known to be difficult in traditional fields like news and so-
cial media. Illicit fields, being untraditional and relatively understudied, are challenging in sev-
eral different ways. First, such fields tend to be surprisingly diverse, with the distribution of page 
count across web domains (e.g. backpage.com in human trafficking) exhibiting a mesokurtic 
trend. That is, the tail of an illicit field is long, as opposed to a distribution in which analyzing 
just one or two web domains is sufficient. A direct implication is that quality and coverage of 
system modules can vary widely across a domain-specific corpus. For example, it can be hard to 
acquire training data that generalizes easily across all web domains. 

Second, HT webpages often employ information obfuscation for key attributes like phone num-
ber to deter automatic searches by law enforcement. Information obfuscation includes obscure 
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language models; excessive use of punctuation and special characters; presence of extraneous, 
hard-to-filter data (e.g. embedded advertisements or artefacts) in Web pages; irrelevant pages; 
lack of representative examples for (supervised) extractors; data skew; and heterogeneity. Many 
webpages exhibit more than one problem. A sampling of some pages in the human trafficking 
corpus available to us revealed that some form of obfuscation was almost always employed. 

Due to their nontraditional content, direct adaptation of existing techniques from traditional 
fields is problematic. Even simple NLP tools like stemmers and tokenizers must be adapted be-
fore they can be deployed on illicit web corpora. Consider, for example, the representative text 
fragment 'AVAILABLE NOW! ?? - (1 two 3) four 5 six - 7 8 nine 0 - 21'. Both the phone number 
(123-456-7890) and age (21) can be difficult to extract for named entity recognition (NER) tools 
trained on traditional text corpora. 

 
Figure 1. Important technical steps in the investigative knowledge discovery problem. 

CONTRIBUTIONS 
Given the described challenges and the social utility of using technology to combat illicit activi-
ties, we propose an investigative knowledge discovery approach to perform domain-specific 
search in dynamic, illicit fields. Our approach takes as input raw webpages crawled over multi-
ple Web domains and uses a composite set of tools, including high-recall information extraction 
(Figure 1(a)) and semantic typing, to structure the multi-domain corpus into a semi-structured 
knowledge graph (Figure 1(b)). Being high-recall, our knowledge graph construction (KGC) ap-
proach (based on domain insight graphs or DIG4) is designed to handle illicit-field challenges 
such as information obfuscation without trivially degrading precision. 

54January/February 2018 www.computer.org/inteligent

Authorized licensed use limited to: University of Southern California. Downloaded on February 24,2021 at 18:24:50 UTC from IEEE Xplore.  Restrictions apply. 



 

 KNOWLEDGE DISCOVERY 

A key contribution not included in the DIG KGC is a robust entity-centric search (ECS) engine 
that permits investigators to pose analytical questions to the system from three categories, de-
noted here as point fact, cluster, and aggregate (Figure 1(c)). Together, the three categories are 
expressive enough to capture a wide class of investigative information needs, and also have a 
fairly regular syntax. Consequently, questions in each category can be composed by instantiating 
(and if necessary, supplementing with more constraints) a template that is itself written in a sim-
ple SPARQL5-like structured language, using terms from a specified domain ontology, as subse-
quently discussed. The ECS engine implements a number of query-reformulation strategies 
designed to handle various kinds of noise introduced during KGC. 

RELATED WORK 
The technical innovations in this work draw on two broad fields, namely knowledge graph con-
struction and structured information retrieval. 

Knowledge graph construction (KGC) is the process of structuring a raw corpus of unstructured 
data into a knowledge graph, defined as a directed, labeled multirelational graph in which nodes 
are (possibly multitype) entities and attributes, and labeled edges are either entity-entity or en-
tity-attribute relationships. Important KGC steps4 include information extraction, entity resolu-
tion, semantic typing, and clustering. We subsequently detail these steps and the specific 
technology used in our approach. We note that although individual steps have been well explored 
in the literature, composite KGC systems are still rare. One exception is the domain insight 
graph (DIG) system,4 developed in our own group, which was used as the KGC component in 
our approach. Another example is the DeepDive5 architecture. 

Structured information retrieval has traditionally been linked to entity-centric search, as well as 
search over RDF datasets, in the Semantic Web.3 A popular line of work explores the issuing of 
keyword queries over structured datasets and using the structure in the data to retrieve more rele-
vant, entity-centric results.6 In contrast, the queries explored in this paper are more expressive 
(Figure 1(c)), but executing such queries using traditional triplestores is not straightforward both 
due to scale, as well as the noisy, incomplete nature of the constructed knowledge graph. A ro-
bust query engine must account for the challenges in illicit fields that were earlier described, in-
cluding values that are obfuscated or not properly extracted. The proposed query execution 
engine is designed to handle such challenges. 

We also draw attention to the noninvestigative7,8 analytical potential of the knowledge discovery 
system in this paper. Although this aspect is not detailed herein, we note that the system can be 
used to support or refute certain hypotheses9 especially prevalent in popular imagination, such as 
whether human trafficking activity increases contemporaneously with events like Super Bowl.10 
Carefully designed studies can be used to also study the socio-ethnic impact of HT by collecting 
statistics such as ethnicity extractions. 

APPROACH 
As a preliminary step, a domain discovery team, typically comprising both people and software-
driven agents in a reinforcement-learning paradigm, is initially engaged to crawl the web and 
scrape an inclusive web corpus that contains pages of interest from multiple web domains. Sim-
ultaneously, the domain experts collaboratively model the field by constructing a domain ontol-
ogy to support subsequent analysis in a structured manner. Taking HT as an illicit field example, 
some terms in the ontology are generic (e.g., date, name) but others tend to be domain-specific 
(e.g., hair-color). 

Given these inputs (raw webpages from multiple web domains, as well as a domain ontology), 
we developed a real-time approach that can answer questions in the templated format (Figure 
1(c)) and that also powers a GUI for visual analytics. 

Before detailing the approach, we briefly describe the ontology engineering process. While de-
signing detailed ontologies for traditional fields like biomedicine is a well-studied problem1 re-
quiring lengthy collaboration between domain experts and knowledge engineers, experts in illicit 
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fields prefer broad, shallow ontologies that can be easily constructed and visualized and that 
have a high coverage of concepts without axiomatic or functional detail. In our implemented pro-
totype, for example, the HT domain ontology was constructed by supplementing a relevant sub-
set of generic terms from the widely used schema.org vocabulary11 with domain-specific terms. 
The ontology was defined and finalized in a short time-period, with mostly remote collabora-
tions. Constructing other illicit-field ontologies is expected to follow a similar process. 

Figure 2 illustrates the architecture of the approach. We assume that the original corpus has been 
placed into a distributed file system (e.g., the Apache Hadoop Distributed File System). The cor-
pus is first processed using a sequence of knowledge graph construction modules. Next, the con-
structed knowledge graph is indexed and loaded into a key-value database. Using a custom 
entity-centric query execution engine, this database is used to support both expressive query exe-
cution (using a command-line front end) and visualization (using a graphical front end). 

Information Extraction 
Since robust information extraction2 is key to constructing knowledge graphs that can support 
fine-grained information retrieval, we accommodate a suite of extractors that are diverse along 
several dimensions, including performance, required supervision as well as mode of supervision 
(e.g., manually crafted regular expressions versus annotated training data). Specifically, we con-
struct a high-recall knowledge graph by mapping each term in the domain ontology to an appro-
priate set of extractors. We use Conditional Random Field-based extractors for non-numerical, 
closed-category terms like hair-color and eye-color on which we found them to quickly general-
ize (even across web domains) using only a few labeled annotations; semi-automatic wrapper-
based extractors for structured HTML elements embedded in the webpage; regular expression-
based extractors for highly obfuscated but still constrained terms like phone-number, social-me-
dia-id, and review-site-id that tended to be specific to groups of web domains; text scrapers for 
extracting useful text, title, and descriptions from the webpage; and semantic lexicons for nonob-
fuscated terms like location that can be reliably extracted using open resources. A good example 
of an exhaustive semantic lexicon is GeoNames, which we used for extracting location attributes 
(e.g., city, state, and country) from the text in the webpage. In current work, we are also explor-
ing more advanced capabilities of GeoNames, including both entity disambiguation (e.g., Paris, 
Texas, versus Paris, France) and collective inference for location attributes not directly men-
tioned in the webpage. 

In the general case, extractions are multivalued. It is also not uncommon for a certain attribute 
(e.g., name) to not be extracted at all from a given webpage, despite being present in the underly-
ing data. As noted above, the knowledge graph also contains freeform text attributes. In other 
words, the graph is both semistructured and noisy. This is why one cannot directly query the 
graph by storing it in a triplestore (or database) and executing a SPARQL query verbatim. We 
subsequently outline more robust search specifically designed for noisy graphs. 
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Figure 2. Architectural overview of the approach, including both the command-line front end 
(question answering by posing equivalent SPARQL-like queries; see Figure 1(c)) and the graphical 
front end that is supported by the underlying domain insight graph (DIG) infrastructure. 

Semantic Modeling 
Semantic modeling12 follows the information extraction step and is used to map extractions to 
terms in the domain ontology, as well as to heuristically remove meaningless extractions (e.g., 
containing only HTML tags). In some cases, where there are only one-to-one mappings (e.g., 
between the CRF extractor for hair-color, and a similar hair-color term in the ontology), the map-
ping is trivial. Complications arise when extractor semantics are unknown for a given webpage 
or when there are multiple extractions for a single term in the ontology (e.g., multiple regular 
expression-derived date instances for the date ontology term). 

We use the Karma semantic modeler,12 which was developed in our research group and is al-
ready widely deployed in numerous contexts. Karma is useful for both performing semi-auto-
matic semantic mapping and executing domain-specific scripts for operations such as data 
cleaning. 
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Vendor Resolution 
Although information extraction and semantic modeling are sufficient for answering point-fact 
and aggregate questions, cluster questions demand an additional layer of abstraction in the con-
structed knowledge graph. In the real world, players in illicit fields seldom act alone but offer 
their services through so-called vendors. In HT, vendors might represent intermediaries and even 
specific locations fronted by a legitimate business (e.g., a massage parlor). Automatically clus-
tering individuals into such latent vendors is a nontrivial, and in many cases, an ill-defined entity 
resolution problem that is highly dependent on domain-specific needs and is referred to herein as 
vendor resolution. 

To perform vendor resolution reliably, we execute a connected components graph algorithm on 
manually specified pseudo-identifiers such as phone numbers and email addresses to discover 
vendor entities. We use a blacklist of identifiers, discovered through a graph analytics algorithm 
and manually verified, to circumvent data skew (usually a result of both noisy extractions and a 
few rare identifiers that bridge otherwise disconnected components). In the most recent proto-
type, we integrated scalable random walk-based techniques to fuzzily discover entities while 
demonstrating robustness to data skew. 

Indexing and Loading 
Once structured entities have been vendor-resolved, we load entities and vendors into a key-
value Elasticsearch database and index all attributes in a variety of ways. For instance, we sup-
port both raw lookups in which a string must exactly match against an attribute for the corre-
sponding entity to be retrieved, as well as token-based lookups that are more common in search 
engine-style IR. Hybrid indexing strategies that rely on both structured and unstructured data are 
key to the functioning of query execution. In the rest of this discussion, we refer to the data 
loaded into Elasticsearch as an indexed knowledge graph. 

Command-Line Front End: Question Answering 
Given that questions can be presented using structured instantiated templates (Figure 1(c)), a nat-
ural solution to the question-answering problem is to write scripts that convert each instantiated 
SPARQL template into an equivalent Elasticsearch query, expressed as a weighted tree of key-
value queries. In principle, although not proved here rigorously, such a semantics-preserving 
conversion is always possible for point-fact questions, while multiple queries are required for 
cluster questions and a post-processing module is required for aggregate questions. Unfortu-
nately, semantics-preserving query conversions can fail when the knowledge graph contains 
noisy and missing elements. 

To achieve a more robust outcome, we approach the problem by designing a fuzzy query execu-
tion engine that converts an instantiated SPARQL template into an Elasticsearch query using 
conversion strategies, which might not be semantics preserving. We implement three such strate-
gies (described below) in our question-answering engine, and empirically verify the effective-
ness of the engine in the next section. Intuitively, each strategy yields one subquery that is 
assigned a weight, indicating its importance. All weighted subqueries are collected and inte-
grated into a single tree query that is then executed over the Elasticsearch server. 

The three conversion strategies that are currently implemented in our prototype are briefly de-
scribed below. 

Semantics-preserving strategy 
This strategy is designed to rigidly interpret the original query. For a given entry in the Elas-
ticsearch database to be retrieved by the server, all conditions in the query, as stated, must be ful-
filled. Using the point-fact query in Figure 1(c) as an example, a semantics-preserving query 
requires at least one posting-date and phone-number attribute to have been extracted from a 
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page, in addition to at least one extracted phone-number attribute value mapping exactly to the 
literal 7075610282 for that page to be retrieved with nonzero score. 

Fuzzy strategy 
This strategy interprets each condition in the original query like an OPTIONAL clause. The re-
sulting Elasticsearch query assigns scores to entries in proportion to the number of fulfilled 
clauses, as well as the degree of similarity. Using the running example above, each condition 
(existence of attributes, as well as specific attribute value mappings) is now assigned optional 
semantics. As long as one condition is met, Elasticsearch semantics guarantee that the corre-
sponding page will be returned with non-zero score. 

Information retrieval (IR) strategy 
The IR strategy only uses the text attributes (e.g., description and title) for search and ignores all 
structured attributes in the indexed semistructured knowledge graph. It ignores all ontological 
terms (e.g., phone-number) in the query and converts all specified literal values (e.g., 
7075610282) into keywords that are searched for in the indexed text attributes. We note that this 
is typically the least restrictive strategy since an entity in the database receives a nonzero (albeit, 
low) score against an issued query if a single literal value in the query matches a token in a text 
attribute. Returning to the running example, as long as the literal 7075610282 is found inside an 
extracted text field, the page is retrieved with a nonzero score. 

All sub-queries are currently assigned equal weight (1/3) by default for all three query catego-
ries, as this option was found to work well empirically. One possible reason for this empirical 
finding is that typically, strategy I tends to dominate both strategy II and strategy III when it 
yields a nonzero score for a document, and similarly, strategy II dominates strategy III when it 
yields a nonzero score. In essence, the final score favors the highest score obtained by the most 
constrained nonzero scoring strategy. We also note that the engine is designed to be extensible 
and to permit easy modification, addition and removal of strategies and weights, if deemed nec-
essary. 

The engine operates in real time by virtue of relying on the hybrid indexing strategies briefly de-
scribed earlier. The strategies are also designed to be generic. Given a shallow ontology in any 
field and a mapping from terms in the ontology to the various Elasticsearch indexes, the engine 
can convert any instantiated query to an Elasticsearch query (itself a weighted combination of 
subqueries), execute the query over the Elasticsearch server, and return a ranked list of fine-
grained answers. The structured fields obtained via information extraction are necessary both for 
Strategy I and II (i.e., query reformulation and search), as well as fine-grained answer retrieval 
(e.g., a ranked list of not just relevant pages but also dates extracted from those pages, as shown 
in Figure 1(c)). 

An interesting implementation question is whether the knowledge graph can be stored in a triple-
store such as Virtuoso.13 While it is technically possible to implement query strategies by strate-
gically loosening constraints on the original SPARQL queries, both the scaling and setup 
capabilities proved to be important impediments. Elasticsearch, for example, is designed to be 
horizontally scalable on a commodity infrastructure and is offered by major cloud vendors. On-
demand scaling is important as the system is expected to supports corpora containing hundreds 
of millions of ads in the long run. Furthermore, it is not clear if the aforementioned query execu-
tion strategies are amenable to triplestore implementations. Finally, fast NoSQL databases like 
Elasticsearch also provide robust visualization support, such as in the current GUI. 

Graphical Front End: DIG 
The current GUI facilitates intuitive exploratory browsing using faceted search, map plugins, 
charts, links, and support for both structured and unstructured display of attributes. The GUI is 
currently supported by the open-source domain insight graph (DIG) architecture that was devel-
oped in our group in an earlier phase of the DARPA MEMEX program. We refer the reader to 
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the cited work on DIG4 for more details. Currently, we are also exploring a merging of both the 
command-line and graphical frontends into a unified GUI, supported by a combination of DIG, 
Elasticsearch, and the structured IR strategies. 

PROTOTYPE EVALUATION 
We next had to evaluate our prototype. 

DARPA MEMEX Human Trafficking Challenge 
We implemented a prototype of our approach for the four-week Human Trafficking Challenge 
that was organized by the DARPA MEMEX program in the summer of 2016. Three teams devel-
oped analytical approaches for the question answering component of the challenge, of which our 
approach was the only one that was fully end-to-end (i.e., that integrated both knowledge graph 
construction and query execution). Collaboration was encouraged between the participants for 
implementing subcomponents. For example, one of the teams utilized both our knowledge graph 
and that of another team, but independently developed their question-answering engine. The 
evaluations were carried out in two test phases. 

In the first test, each system was input a multidomain web corpus of 1.3 million pages, most of 
which are from HT (but a significant number comprises irrelevant pages such as job ads); and a 
set of 10 point-fact questions, 16 cluster questions and 14 aggregate questions respectively. We 
denote this corpus as the exhaustive corpus. All teams submitted their answers to the 40 ques-
tions, which were evaluated externally by the challenge organizers. At no point during the chal-
lenge and system fine-tuning was the ground-truth answer set released to the participants. 

In the second test, a smaller corpus of about 4,000 pages from multiple web domains, all of 
which had been manually annotated with ground-truth extractions by domain experts in a prior 
phase, was released to all participants without any annotations. This so-called annotated corpus 
contained very few irrelevant pages, and pages containing the correct answers to the 40 questions 
(whether directly or derivatively) were guaranteed to be in this corpus. However, just like in the 
first test phase, the ground-truth extractions were withheld. Teams executed queries on con-
structed knowledge graphs. Answers resubmitted by the participants were again externally evalu-
ated. The research agenda in conducting the two phases and comparing results was to determine 
the robustness of each of the systems to noise, scale, and irrelevance. 

Evaluation Procedure 
For each of the 40 questions, a ranked, scored list of tuples is returned. Each tuple intuitively 
corresponds to a webpage (representing an underlying advertisement featuring a human traffick-
ing victim). Hence, an ID of the webpage is always included in the answer. Also included are the 
finer-grained answers (e.g., a post-date per returned ad in the point-fact question in Figure 1(c)). 

To evaluate each tuples-list using the annotated corpus, the organizers first removed all tuples 
from the list corresponding to the few pages in the corpus that had not been manually annotated 
(and for which the relevance statuses were unknown). For each such pruned list, the normalized 
discounted cumulative gain (NDCG) score was computed. NDCG is a popular information-re-
trieval metric that logarithmically dampens the relevance scores of documents the lower they are 
ranked in a retrieved list. Because it is normalized, the score of the overall list (which is the sum 
of individual scores) is guaranteed to be between 0 and 1.  

Since NDCG needs the relevance score of a retrieved item (in this case, a tuple) in the list, it is 
appropriate for the question-answering task. The organizers computed the relevance scores in 
two different ways. The automated NDCG was computed in the classic IR fashion by ignoring 
all extraction fields in the answer tuples, and only assigning a tuple a 0 to 1 score based solely on 
whether it contained the correct page ID. To evaluate the extractions, the manual NDCG was 
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computed by a challenge organizer judging each tuple and assigning it a 0 to 1 score if the infor-
mation content of the overall tuple was determined satisfactory for investigative needs. We note 
that subjective relevance judgments are typically unavoidable in IR applications. 

 
Figure 3. Three representative results from prototype evaluations in the DARPA MEMEX Human 
Trafficking challenge held July-August 2016 in Washington, DC. 

Results 
We report three representative sets of results in Figure 3 to illustrate the performance of our ap-
proach, on both the annotated and exhaustive corpora, using the two NDCG metrics. Figure 3(a) 
shows that on the manual NDCG metric, we retrieve relevant answers to questions from each 
category, with best relative performance in the point-fact category. The result also illustrates the 
robustness of our approach with respect to the size and noise in the two corpora. Specifically, we 
find that the approach does not get confused by the many irrelevant pages and extractions in the 
exhaustive corpora that are produced during knowledge graph construction and indexing. 

Figure 3(b) shows that of all participating prototypes in the challenge, our prototype performed 
the best, and was the only one with nonzero results on all question categories on both corpora. A 
per-query result breakdown in Figure 3(c) illustrates the stability of our results. In other words, 
our scores are not skewed by a few well-performing queries. Nonzero scores (on the automated 
NDCG) are achieved for almost all queries. We believe that both high-recall knowledge graph 
construction, as well as robust question answering, contributed to these scores. 

Error Analysis 
In a postevaluation phase conducted by DARPA in November, we analyzed point-fact questions 
on which the system did not retrieve the correct answer in the top 1. Our observations illustrated 
a variety of underlying causes, both simple and complex. Simple causes included misspellings in 
fields like name (e.g., Asheera in the query versus Asheerah in the document), and heterogene-
ous formats (e.g., height in inches versus. centimeters), which nevertheless require ongoing so-
phisticated engineering (e.g., phonetic indices to handle name misspellings) due to their ad-hoc 
nature. 
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Complex causes included text homogeneity (e.g., ads that are copies of one another, but have 
minor differences such as name and hair-color), which especially causes problems for the IR 
strategy; and difficult extractions (e.g., due to irregularly formatted HTML elements such as ta-
bles). The latter problem is especially difficult to resolve because of the long-tail nature of a 
multi-web domain human trafficking corpus. Cluster and aggregate question error analyses 
yielded similar findings, because technically, these questions are involved variants of point-fact 
questions. With more field exploration, we believe that performance on all three query categories 
will uniformly improve. 

PRACTICAL IMPLICATIONS 
NDCG results in Figure 3 show that the system is ready for use in real-world operational scenar-
ios involving point-fact and cluster queries. We note that, while point-fact queries can be an-
swered using the current keyword-style GUI, answering cluster queries requires much manual 
effort, including deep analysis by domain experts. Results in Figure 3(b) show that with 50 to 60 
percent average NDCG per cluster question, this task can largely be automated, allowing law en-
forcement to quickly query for, and uncover, latent ‘vendors’ providing human-trafficking ser-
vices through advertisement of victims. The results have encouraged us to start merging the 
command-line prototype into the current GUI. Simultaneously, we are seeking to improve aggre-
gate query performance.  

CONCLUSION 
Due to its overwhelming success, the web has attracted many players from illicit enterprises. 
Combating such activity requires interdisciplinary research from the AI community. A broad 
goal, towards which we are making steady progress, is to enable nontechnical domain experts to 
deploy the system with minimal effort both serially and in big data ecosystems such as Spark, in 
new investigative fields such as illegal online weapons sales. We are also making our infor-
mation extractors relatively modular so that they operate independently of each other and can be 
updated, replaced, or otherwise modified by a domain expert as deemed fit. Lastly, we are incor-
porating feedback from our users (mainly law enforcement agencies and DARPA) into the new 
GUI to better facilitate search. 
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