
Deploying Information Agents on the Web

Craig A. Knoblock
University of Southern California

Information Sciences Institute and Computer Science Department
4676 Admiralty Way

Marina del Rey, CA 90292, USA
knoblock@isi.edu

Abstract

The information resources on the Web are vast, but
much of the Web is based on a browsing paradigm
that requires someone to actively seek information.
Instead, one would like to have information agents
that continuously attend to one’s personal informa-
tion needs. Such agents need to be able to extract
the relevant information from web sources, inte-
grate data across sites, and execute efficiently in
a networked environment. In this paper I describe
the technologies we have developed to rapidly con-
struct and deploy information agents on the Web.
This includes wrapper learning to convert online
sources into agent-friendly resources, query plan-
ning and record linkage to integrate data across
different sites, and streaming dataflow execution
to efficiently execute agent plans. I also describe
how we applied this work within the Electric Elves
project to deploy a set of agents for continuous
monitoring of travel itineraries.

1 Introduction
There is a tremendous amount of information available on the
Web, but the access to this information is largely dependent
on the information providers. The individual web sites de-
cide what information to provide to the visitors to their site
and how a visitor will access that information. There is little
in the way of capabilities to combine information across sites
and only the most primitive capabilities to monitor informa-
tion on individual sites. Of course, sites may provide inte-
grated access to specific data sources or sophisticated mon-
itoring capabilities on their data, but users of the Web are
dependent on a site to make these capabilities available.

In contrast, imagine a world where access to information
is driven by the consumers of the data. Where it is not only
possible, but simple to task your own personal information
agents to gather specific information, monitor for changes in
the gathered data, and to notify you of important information
or changes. The challenges are that the required information
is often embedded in HTML pages, the data is organized in
different ways on different sites, there are a huge number of
ways the information could be combined, and it can be slow
and cumbersome to combine the information.

We have developed a set of core technologies to simplify
the task of building intelligent agents for gathering and mon-
itoring information on the Web [Knoblock et al., 2003; 2001;
Barish and Knoblock, 2002a]. The technologies include the
ability to gather information from the Web, to link that infor-
mation with related information, to build plans to integrate
the various sources of data, and to efficiently execute these
plans in the Web environment. We have applied these tech-
nologies to build agents for a variety of applications [Barish
et al., 2000; Ambite et al., 2002], including an application for
monitoring travel plans from online sources.

Researchers have developed a variety of agents that have
been deployed on the Web over the years. Some notable sys-
tems include the Internet Softbot [Etzioni and Weld, 1994],
an agent that interacts with a range of Internet resources, Bar-
gainFinder [Krulwich, 1996], a comparison shopping agent
for CDs, ShopBot [Perkowitz et al., 1997], a system for au-
tomatically locating and incorporating new stores into a com-
parison shopping agent, and Warren [Decker et al., 1997], a
system for gathering data on a financial portfolio. There has
also been a significant amount of research on the underly-
ing technologies required for developing agents on the Inter-
net [Levy and Weld, 2000]. As noted by Etzioni [1996], the
Web provides a tremendous opportunity for building intelli-
gent software agents. Yet, surprisingly few have seized this
opportunity. This is almost certainly because there are many
technical issues that must be addressed to build such agents.
Our work is designed to address these issues and simplify the
task of building agents for the Web.

In this paper I first describe an example set of agents for
monitoring travel plans. Then I will briefly describe the tech-
nologies that we have developed to gather data from web
sources, link data across sources, generate plans to integrate
the data, and efficiently execute these plans. Finally, I present
directions for future research and conclusions.

2 Information Agents for Monitoring Travel
As part of the Electric Elves project [Chalupsky et al., 2001;
Ambite et al., 2002] we have applied our agent technologies
to build a set of agents for various tasks including tracking
visitor schedules, monitoring meeting schedules, and moni-
toring a user’s travel plans. In the case of monitoring travel
plans, this task is particularly well-suited for applying agent
technology for several reasons: a) this is a fairly compli-

cated task with many possible forms of failure ranging from
flight cancellations and schedule changes to hotel rooms be-
ing given away when a traveler arrives late at night, b) there
are a large number of online resources that can be exploited
to anticipate problems and keep a traveler informed, and c)
these tasks would be tedious and impractical for a human to
perform with the same level of attention that could be pro-
vided by a set of software agents.

To deploy a set of agents for monitoring a planned trip, the
user first enters the travel itinerary and then specifies which
aspects of the trip she would like to have the agents monitor.
A set of information agents are then spawned to perform the
requested monitoring activities. For the travel planning appli-
cation, we developed the following set of agents to monitor a
trip:

� A airfare-monitoring agent that tracks the current price
of a flight itinerary. The agent sends a notification on
price increases and/or decreases. A traveler might con-
sider reticketing if the price drops significantly below
what they paid.

� A schedule-change agent that keeps track of the pub-
lished schedule for a given flight itinerary and notifies
a traveler of any change to this itinerary. Small sched-
ule changes occur quite frequently, especially if one pur-
chases tickets well in advance of a flight. Travel agents
are supposed to notify their customers of changes, but
one usually arrives at the airport before discovering that
the scheduled departure time has changed.

� A flight-status agent that continually monitors the status
of a flight. When a change of status or cancellation is
detected, the traveler is immediately notified. This agent
also sends a fax to the hotel if the flight arrival is de-
layed past 5pm in order to ensure that the hotel room
is held for the traveler. This agent differs from what is
available from commercial sites, such as ual.com, which
simply check the status a fixed period of time prior to the
flight. In contrast, our agents maintain state and can no-
tify the user of multiple status changes without sending
messages that provide no new information.

� An earlier-flight agent that checks for flights that leave
before the scheduled flight. It also checks the status of
these flights to avoid suggesting delayed or cancelled
flights. This agent is particularly handy when one fin-
ishes a meeting early or one wants to skip out of a par-
ticularly boring meeting.

� A flight-connection agent that monitors a users sched-
uled flights and if there is a connecting flight it wakes up
a few minutes before the projected landing time, checks
the status and gate information of the connecting flight
and also searches for any earlier flights to the same des-
tination that the user might be able to take instead. This
agent is particularly useful when there are only a few
minutes to make an earlier connection that is about to
depart.

� A restaurant-finding agent that locates the nearest restau-
rant based on the user’s GPS location. On request, it sug-
gests the five closest restaurants providing cuisine type,

price, address, phone number, latitude, longitude, and
distance from the user’s location.

These agents are scheduled to run at regular intervals,
where the agents are woken up to perform their task. The
agents can cancel their own task once it is complete and can
change the interval in which they are run based on the in-
formation from other agents. The agents often invoke other
agents to help them perform their tasks. For example, the
flight-status agent calls another agent that extracts the flight
status information directly from a web site and it invokes the
hotel notification agent, which in turn sends a message to the
fax agent.

Figure 1 shows the messages that various agents generated
during actual use of the system. The original set of agents
were in use for about a year and then based on feedback and
requests from the users we recently developed a new set of
agents that provide improved capabilities.

(a) Airfare-Monitoring Agent: Airfare dropped message
The airfare for your American Airlines itinerary (IAD - LAX) dropped to $281.

(b) Schedule-Change Agent:
The schedule of your United Airlines flight 1287 has changed from 7:00 PM to

7:31 PM.

(c) Flight-Status Agent: Flight delayed message
Your United Airlines flight 190 has been delayed. It was originally scheduled

to depart at 11:45 AM and is now scheduled to depart at 12:30 PM. The new

arrival time is 7:59 PM.

(d) Flight-Status Agent: Flight cancelled message
Your Delta Air Lines flight 200 has been cancelled.

(e) Flight-Status Agent: Fax to a hotel message
Attention : Registration Desk

I am sending this message on behalf of David Pynadath, who has a reservation

at your hotel. David Pynadath is on United Airlines 190, which is now scheduled

to arrive at IAD at 7:59 PM. Since the flight will be arriving late, I would like to

request that you indicate this in the reservation so that the room is not given

away.

(f) Earlier-Flight Agent:
The status of your currently scheduled flight is:

190 LAX (11:45 AM) - IAD (7:29 PM) 45 minutes Late

The following United Airlines flight arrives earlier than your flight:

946 LAX (8:31 AM) - IAD (3:35 PM) 11 minutes Late

(g) Flight-Connection Agent:
Your connecting United Airlines flight 925 will depart at 9:45 PM (25 minutes

late) at gate C6.

(h) Restaurant-Finding Agent:
These are the five closest restaurants from your location.

Wingmaster’s on I St, American, 1825 I St NW, 202-429-0058, $5-10, Lat:

38.90111, Lon: -77.04158, 0.23 miles

. . .

Figure 1: Actual messages sent by monitoring agents

3 Gathering Data from Web Sources
A key capability for information agents is the ability to reli-
ably access information. As the Web moves towards XML
and Web Services, accessing data could become greatly sim-
plified. However, movement in this direction has been quite

slow and for various reasons many sources will remain avail-
able only in HTML, so there is still a critical need to turn
HTML sources into agent-enabled sources.

The challenge in building wrappers for online sources is
how to achieve broad coverage and high accuracy with min-
imal user input. The two general approaches to this problem
are supervised machine learning techniques [Kushmerick,
1997; Muslea et al., 2001; Hsu and Dung, 1998] and unsu-
pervised grammar induction techniques [Lerman et al., 2001;
Crescenzi et al., 2001; Hong and Clark, 2001]. The unsuper-
vised grammar induction techniques have the advantage of
no user input, but they are not able to handle the full range
of semistructured sources. In contrast, the supervised learn-
ing techniques apply to a wider set of sites, but can require a
significant amount of labeled data to achieve high accuracy.

We developed an machine learning algorithm called
Stalker [Muslea et al., 2001] that requires labeled data, but
attempts to minimize the amount of information that must be
provided by a user. Given labeled data, the system employs
a greedy set covering algorithm to learn extraction rules that
define a wrapper for a source. We minimize the amount of
labeled data required by decomposing the learning problem
into a number of simpler subproblems, which require fewer
examples to learn. The decomposition is based on the hier-
archical structure of the information in a web source. This
approach allows Stalker to learn how to extract data from
complicated sites that involve lists of information and even
arbitrary nesting of embedded lists.

An issue for any learning system, even Stalker, is that to
achieve high accuracy the system must see the right set of ex-
amples. Since the expectation in a wrapper is to extract the
data with 100% accuracy, finding a representative set of ex-
amples is a critical part of the problem. Rather than relying
on the user to identify these examples, we developed an active
learning technique called Co-Testing [Muslea et al., 2000;
Muslea, 2002; Muslea et al., 2003] that selects the most in-
formation examples to label. Co-Testing works by learning
multiple classifiers using different views of the same problem.
In the case of wrapper learning, the system exploits the fact
that it can learn equally well a classifier by finding landmarks
from the beginning of the page or by finding landmarks from
the end of the page. The system can then exploit the fact that
both classifiers should agree if they have learned the same
concept and any disagreement provides a source of training
examples. Both classifiers are applied to the unlabeled exam-
ples and the user is asked to label the examples where there
is disagreement. This allows the system to quickly identify
the unusual cases in the data set to rapidly converge on an
accurate set of extraction rules.

Another important challenge building wrappers is to ensure
that they continue to work properly over time. This problem
has not received much attention. The exception is the work
by Kushmerick [2000] who developed an approach that uses
the global properties of a page, such as the density of HTML
tokens on a page, to determine when the page or even the spe-
cific information being extracted has changed. The limitation
of this approach is that it is too coarse to detect some sites
that have changed [Lerman et al., 2003].

We developed a wrapper maintenance system that can re-

Web
pages

Wrapper
Induction
System

Labeled
Web pages

Wrapper
Verification

Automatic
Re-labeling

GUI

Extracted
data

Change
detected

Wrapper

Pages to be

labeled

Figure 2: Wrapper induction, verification, and reinduction
process

pair wrappers by learning a description of the content ex-
tracted by a wrapper [Lerman et al., 2003]. This approach
learns a pattern by using a hierarchy of pattern types, such as
number or capitalized word, and then learning a description
of the beginning and ending of the information that is being
extracted. The resulting description or learned patterns are
then stored and compared to the information being extracted.
The patterns are compared statistically to avoid false positives
due to examples that have not been seen before. In a large test
set, this approach was able to identify 95% of the Web sites
that had changed.

Once the system has identified a source that has changed,
the learned patterns can then be used to automatically rela-
bel the site and run the labeled examples through Stalker, the
wrapper learning system. The wrapper learning, validation,
and reinduction process are illustrated in Figure 2.

4 Linking Information
Once data has been extracted from a web site, then one fre-
quently needs to combine it with other information in order
to perform some task. For example, if one wants to build an
agent for recommending nearby restaurants, then one might
want to combine the data on a restaurant review site with the
department of health site to ensure that the restaurant has an
adequate health rating. The problem is that the information
on these two distinct sites will often refer to the restaurants in
different ways – the name, address, and phone number may
all have slight variations that preclude simply joining the two
sites across a single attribute.

To address this problem, we developed a machine learn-
ing approach to record linkage [Tejada et al., 2002; 2001]. In
this approach the system, called ActiveAtlas, compares the
attributes that are shared across the two data sets and learns
two things. First, it uses a committee of decision tree learn-
ers to decide whether two records are matched based on the
strength of the match of the various attributes (Figure 3). Sec-
ond, it improves the accuracy of these matches by learning an
appropriate set of weights on a library of transformation rules
(Figure 4). ActiveAtlas takes an active learning approach to

Zagat’s

Art’s Delicatessen 12224 Ventura Blvd. 818/755-4100Dept of Health

Name Street Phone

Art’s Deli 12224 Ventura Boulevard. 818-756-4124

Figure 3: ActiveAtlas learns which attributes are important to
decide whether two records should be linked

Art’s Deli
California Pizza Kitchen
Philippe The Original

Zagat’s Dept of Health

Art’s Delicatessen
CPK
Philippe’s The Original

Abbreviation
Acronym
Stemming

Transformations

Figure 4: ActiveAtlas also learns the weighting of the trans-
formation rules for an application

select examples for the user to label in order maximize the ac-
curacy of the matches and minimize the amount of user input.
Compared to other approaches to this problem [Cohen, 2000;
Sarawagi and Bhamidipaty, 2002], the combination of the
transformation weight learning and the active learning of the
rules allows the system to achieve very high accuracy in
matching entities.

5 Planning to Integrate Sources
Once an agent has access to the sources and can link the data
across sources, the problem remains how to compose a set of
information sources to perform some task. We developed an
approach to automatically planning the integration of these
sources to answer queries. In this approach, which is im-
plemented in the Ariadne information mediator [Knoblock et
al., 1998; 2001], the contents of the sources available to the
system are described using a common model [Ambite et al.,
2001]. The system uses this model to create a plan that spec-
ifies both the data sources and the specific operations to be
performed to satisfy a request.

One of the interesting problems is that due to the large
search space and the need to optimize the plans, traditional
planning techniques do not scale. To overcome this problem
we developed a general-purpose planning approach, called
Planning by Rewriting [Ambite and Knoblock, 2001], and
we use it as the planner for Ariadne [Ambite and Knoblock,
2000]. In Planning by Rewriting, the system starts with an
initial, but suboptimal plan, and then the planner performs
a local search through the space of plan transformations to
maximize the given evaluation criterion. In the query plan-
ning application, the planner searches through the space of
sources and the operations on these sources to find an effi-
cient way to process a query. Figure 5 shows a simple exam-
ple of how Planning by Rewriting searches through the space
of plan transformations. Researchers have explored a variety
of approaches to this general problem of planning for infor-
mation gathering (see [Lambrecht and Kambhampati, 1997]
for a summary of this work).

We are currently exploring planning techniques for com-
posing Web Services [Thakkar et al., 2003]. The Web Ser-

name ssn

Ret Payroll
@ HQ-db

Ret Project
@ Branch-db

Ret Emp
@ HQ-db

name

ssn

Ret Emp
@ HQ-db

Ret Payroll
@ HQ-db

Ret Project
@ Branch-db

name

ssn

Ret Emp
@ HQ-db

Ret Project
@ Branch-db

Ret Payroll
@ HQ-db

Remote
Join
Eval

Join
Swap

name

Payroll)Ret (Emp
@HQ-db

Ret Project
@Branch-db

HQ-db
Emp(name ssn)
Payroll(ssn sal)

Branch-db
Project(name proj)

Figure 5: Planning by Rewriting searches through the space
of possible transformations on a plan

vice infrastructure provides access to online sources in a form
with which agents can interact without having to construct a
wrapper for a site. In addition, the Semantic Web provides
semantic-level descriptions of the services that are available
[Ankolenkar et al., 2002]. Our approach to integration plan-
ning builds on previous work on data integration [Levy, 2000]
and applies the inverse rules approach of Duschka [1997].

One challenge is that the sources available online often
have restrictions on how they can be accessed in that cer-
tain inputs may be required to access a source. In the in-
verse rules framework this means that computing a complete
set of answers to a query may require recursion. Since it can
be expensive to execute integration plans in a language such
as Datalog, we have developed an approach to automatically
convert the recursive plans produced by the inverse rules al-
gorithm into a streaming dataflow execution framework that
can efficiently execute these plans [Thakkar and Knoblock,
2003]. This execution framework is described next.

6 Executing Plans
Given a plan for performing some task on the Web, an agent
needs to be able to efficiently execute this plan. In the Web
environment, sources can be quite slow and the latencies of
the sources are also unpredictable since they can be caused by
heavy loads on both servers and networks. Since the primary
bottleneck of most agent plans on the web is retrieving data
from online sources, we would like to execute information
requests as early as possible. To address these issues, we have
developed a streaming dataflow language and executor, called
Theseus [Barish and Knoblock, 2002a], which is optimized
for the Web environment in the following three ways. First,
since the executor is based on a dataflow paradigm, actions
are executed as soon as the data becomes available. Second,
Theseus performs the actions in a plan in separate threads, so
they can be run asynchronously and in parallel. Third, the
system streams the output from one action to the next so that
sequential operations can be executed in parallel.

Theseus is similar to network query engines, such as Tele-
graph [Hellerstein et al., 2000] or Tukwila [Ives et al., 2002],

WRAPPER
ConsumerGuide

Search

(Midsize coupe/hatchback,
2002, $4000 to $12000)

(http://cg.com/summ/20812.htm,
other summary review URLs)

(http://cg.com/full/20812.htm,
other full review URLs)

search
criteria WRAPPER

ConsumerGuide
Summary

WRAPPER
ConsumerGuide

Full Review

(car reviews)
WRAPPER

Edmunds
Search

(Oldsmobile Olero,
Dodge Stratus,
Pontiac Grand Am,
Mercury Cougar)

JOIN

SELECT
maker !=

'Oldsmobile'

WRAPPER
NHTSA
Search

(safety report)

result

(Dodge Stratus,
Pontiac Grand Am,
Mercury Cougar)

Figure 6: Example plan for integrating data from three car-
related sites

in that they are also streaming dataflow execution systems.
However, the network query engines focus on the efficient
execution of of XML queries, while Thesues provides an ex-
pressive language for expressing information gathering and
monitoring plans. The Theseus language supports capabili-
ties that go beyond network query engines in that it supports
recursion, notification operations, and writing and reading
from databases to support monitoring tasks.

Recently we developed an approach to increase the po-
tential parallelism in a streaming dataflow execution sys-
tem. This optimization technique, called speculative execu-
tion [Barish and Knoblock, 2002b; 2003], attempts to predict
the results of an operation based on data and patterns that it
has seen in the past. The predicted results can then be used to
speculate about the operations that will need to be performed
later in the plan. The system decides where to speculate by
analyzing a plan and determining the critical paths. On these
paths it then inserts a “speculate” operation, which uses in-
put to earlier operations to predict the input to later opera-
tions. The system also inserts a “confirm” operation, which
ensures that the final result is correct regardless of whether the
prediction is correct. This approach to optimizing streaming
dataflow plans can achieve arbitrary speedups by speculating
on the speculations. If the system is able to make accurate
predictions, the executor could speculate on all of the input,
execute the entire plan in parallel, and then confirm all of the
results.

Figure 6 shows an example agent plan for integrating car-
related data from three online sources. This plan first uses the
Edmunds.com site to find the midsize cars priced between
$4000 and $12000. Next it selects out those cars made by
Oldsmobile. Then for each of those cars, in parallel it calls
both the NHTSA site to get safety reports and the Consumer
Guide site to retrieve car reviews. Finally, all of this infor-
mation is combined into a single report. Figure 7 shows an
abstract version of the same plan with the speculation opera-
tions inserted into the plan. The use of speculative execution
in this plan makes it possible to invoke all three web sites in
parallel.

The effectiveness of the speculation technique depends on
making accurate predictions. We have developed a learning
system that uses decision tree learning to make predictions
on similar inputs and transducer learning to discover patterns
in Web navigation paths. The learning system is described in
more detail in [Barish and Knoblock, 2003].

J

SW

W

Speculate

Confirm
hints

predictions/additions

confirmations

answers

WW

W

Figure 7: Augmented plan for speculative execution

7 Future Directions
Given the growing interest in both Web Services and the Se-
mantic Web [Hendler, 2001], we believe it will become easier
to rapidly create and deploy agents on the Web. As more se-
mantic information becomes available about online sources,
we plan to exploit this information to automatically discover
and integrate new sources of information. Similarly, as web
services become available that can support transactions, we
plan to move beyond gathering and monitoring of online
sources to build agents that perform more complex tasks, such
as not just finding the lowest price ticket, but also purchasing
it.

There are many possible uses of agents for retrieving and
monitoring data from online sources. Ideally, users could de-
fine their own tasks that they want an agent to perform. For
example, I might want an agent that monitors airfares and no-
tifies me the moment I can buy a ticket to Hawaii for less
then $300. Someone else might want an agent to monitor for
travel delays in their connecting airport and notify them when
the average delay exceeds 30 minutes. The possibilities are
endless. We are currently working on what we call an Agent
Wizard, which allows the user to define new agents for mon-
itoring tasks simply by answering a set of questions about
the task. The resulting system will work similar to the Excel
Chart Wizard, which converts numerical data into charts by
asking the user a set of questions. The Agent Wizard will au-
tomatically build the corresponding Theseus plan and sched-
ule the monitoring task for the user.

Another exciting direction is to deploy agents to collect and
learn about online data and then use the results to make pre-
dictions about the world. For example, we recently developed
a system called Hamlet that advises a user about whether they
should immediately buy a ticket on a particular flight or wait
for a possible drop in the price [Etzioni et al., 2003]. Hamlet
makes these recommendations by collecting data on the cur-
rent pricing of flights on a particular route and then learning
a model of the pricing in order to make predictions about fu-
ture price behavior. In a simulation using real data, Hamlet
was able to save 607 simulated passengers $283,904, which
was 88.6% of the savings possible with complete knowledge
of the future price changes. Hamlet provides a compelling
example of the potential of information agents.

8 Conclusion
The World Wide Web provides a tremendous opportunity for
AI researchers to build, deploy and test software agents. The
Web provides a real world environment that sidesteps many

of the difficult issues of sensing and control and makes it pos-
sible to explore higher level capabilities. We have developed
the tools and infrastructure for rapidly constructing agents on
the Web for performing various types of information gather-
ing and integration tasks.

While the agents we have developed are extremely useful,
there are many interesting and challenging problems that re-
main to be solved in order to widely deploy agents on the
Web. Agents need to be able to robustly accomplish their
tasks, responding appropriately to failures of various types.
They must be able to communicate flexibly with people and
other software agents, ideally in natural language. They need
the ability to explain their behavior, especially as the tasks
they perform become more complex. And, of course, we
want agents that can learn from their past experience to both
broaden their capabilities and improve their performance.

Acknowledgments
I want to thank my collaborators for their many contribu-
tions to the projects described in this paper. Steve Minton has
worked closely with me on defining, building, and executing
many of the research projects described here. Jose Luis Am-
bite, Greg Barish, Maria Muslea, Jean Oh, Snehal Thakkar,
and Rattapoon Tuchinda all helped build the travel applica-
tion of the Electric Elves. Ion Muslea developed the wrap-
per learning systems, Kristina Lerman developed the wrapper
maintenance and repair techniques, Sheila Tejada developed
the record linkage approach, Snehal Thakkar and Jose Luis
Ambite developed the various query planning algorithms, and
Greg Barish built the Theseus executor and speculative ex-
ecution techniques. I also want to thank both Doug Dyer
and Robert Herklotz for their support of my research over
the years.

This research was supported in part by the Air Force Of-
fice of Scientific Research under grant numbers F49620-
01-1-0053 and F49620-02-1-0270, in part by the Defense
Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory under contract/agreement num-
bers F30602-01-C-0197 and F30602-00-1-0504, in part by
the United States Air Force under contract number F49620-
02-C-0103, and in part by a gift from the Microsoft Corpora-
tion.

The U.S.Government is authorized to reproduce and dis-
tribute reports for Governmental purposes notwithstanding
any copy right annotation thereon. The views and conclu-
sions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of any of the
above organizations or any person connected with them.

References
[Ambite and Knoblock, 2000] Jose Luis Ambite and Craig A.

Knoblock. Flexible and scalable cost-based query planning in
mediators: A transformational approach. Artificial Intelligence
Journal, 118(1-2):115–161, April 2000.

[Ambite and Knoblock, 2001] Jose Luis Ambite and Craig A.
Knoblock. Planning by rewriting. Journal of Artificial Intelli-
gence Research, 15:207–261, 2001.

[Ambite et al., 2001] Jose Luis Ambite, Craig A. Knoblock, Ion
Muslea, and Andrew Philpot. Compiling source descriptions for
efficient and flexible information integration. Journal of Intelli-
gent Information Systems, 16(2):149–187, March 2001.

[Ambite et al., 2002] Jose Luis Ambite, Greg Barish, Craig A.
Knoblock, Maria Muslea, Jean Oh, and Steven Minton. Getting
from here to there: Interactive planning and agent execution for
optimizing travel. In Proceedings of the Fourteenth Conference
on Innovative Applications of Artificial Intelligence (IAAI-2002),
pages 862–869, AAAI Press, Menlo Park, CA, 2002.

[Ankolenkar et al., 2002] Anupriya Ankolenkar, Mark Burstein,
Jerry R. Hobbs, Ora Lassila, David L. Martin, Drew McDer-
mott, Sheila A. McIlraith, Srini Narayanan, Massimo Paolucci,
Terry R. Payne, and Katia Sycara. Daml-s: Web service descrip-
tion for the semantic web. In Proceedings of the First Interna-
tional Semantic Web Conference (ISWC), Sardinia, Italy, 2002.

[Barish and Knoblock, 2002a] Greg Barish and Craig A. Knoblock.
An efficient and expressive language for information gathering on
the web. In Proceedings of the AIPS-2002 Workshop on Is there
life after operator sequencing? – Exploring real world planning,
pages 5–12, Tolouse, France, 2002.

[Barish and Knoblock, 2002b] Greg Barish and Craig A. Knoblock.
Speculative execution for information gathering plans. In Pro-
ceedings of the Sixth International Conference on Artificial Intel-
ligence Planning and Scheduling (AIPS 2002), pages 184–193,
AAAI Press, Menlo Park, CA, 2002.

[Barish and Knoblock, 2003] Greg Barish and Craig A. Knoblock.
Learning value predictors for the speculative execution of infor-
mation gathering plans. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI-2003), Aca-
pulco, Mexico, 2003.

[Barish et al., 2000] Greg Barish, Craig A. Knoblock, Yi-Shin
Chen, Steven Minton, Andrew Philpot, and Cyrus Shahabi. The
TheaterLoc virtual application. In Proceedings of Twelfth Annual
Conference on Innovative Applications of Artificial Intelligence
(IAAI-2000), Austin, Texas, 2000.

[Chalupsky et al., 2001] Hans Chalupsky, Yolanda Gil, Craig A.
Knoblock, Kristina Lerman, Jean Oh, David V. Pynadath,
Thomas A. Russ, and Milind Tambe. Electric elves: Applying
agent technology to support human organizations. In Proceed-
ings of the Conference on Innovative Applications of Artificial
Intelligence, 2001.

[Cohen, 2000] William Cohen. Data integration using similar-
ity joins and a word-based information representation language.
ACM Transactions on Information Systems, 18:288–321, 2000.

[Crescenzi et al., 2001] Valter Crescenzi, Giansalvatore Mecca,
and Paolo Merialdo. Roadrunner: Towards automatic data extrac-
tion from large web sites. In Proceedings of 27th International
Conference on Very Large Data Bases, pages 109–118, 2001.

[Decker et al., 1997] Keith Decker, Anandeep Pannu, Katia Sycara,
and Mike Williamson. Designing behaviors for information
agents. In Proceedings of the First International Conference
on Autonomous Agents (Agents’97), pages 404–412, ACM Press,
New York, 1997.

[Duschka, 1997] Oliver M. Duschka. Query Planning and Opti-
mization in Information Integration. PhD thesis, Stanford Uni-
versity, Department of Computer Science, 1997.

[Etzioni and Weld, 1994] Oren Etzioni and Daniel S. Weld. A
softbot-based interface to the Internet. Communications of the
ACM, 37(7), 1994.

[Etzioni et al., 2003] Oren Etzioni, Craig A. Knoblock, Rattapoom
Tuchinda, and Alexander Yates. To buy or not to buy: Mining
airline fare data to minimize ticket purchase price. Submitted for
Publication, 2003.

[Etzioni, 1996] Oren Etzioni. Moving up the information food
chain: Deploying softbots on the world wide web. In Proceedings
of the Thirteenth National Conference on Artificial Intelligence,
pages 1322–1326, AAAI Press / MIT Press ,Menlo Park, 1996.

[Hellerstein et al., 2000] Joseph M. Hellerstein, Michael J.
Franklin, Sirish Chandrasekaran, Amol Deshpande, Kris Hil-
drum, Sam Madden, Vijayshankar Raman, and Mehul A. Shah.
Adaptive query processing: technology in evolution. IEEE Data
Engineering Bulletin, 23(2):7–18, 2000.

[Hendler, 2001] James Hendler. Agents on the web. IEEE Intelli-
gent Systems, Special Issue on the Semantic Web, 16(2):30–37,
March/April 2001.

[Hong and Clark, 2001] Theodore W. Hong and Keith L. Clark. Us-
ing grammatical inference to automate information extraction
from the Web. In Principles of Data Mining and Knowledge Dis-
covery, Lecture Notes in Computer Science, volume 2168, pages
216–227. Springer-Verlag, 2001.

[Hsu and Dung, 1998] Chun-Nan Hsu and Ming-Tzung Dung.
Generating finite-state transducers for semi-structured data ex-
traction from the web. Information Systems, 23(8):521–538,
1998.

[Ives et al., 2002] Zachary G. Ives, Alon Y. Halevy, and Daniel S.
Weld. An XML query engine for network-bound data. VLDB
Journal, 11(4):380–402, 2002.

[Knoblock et al., 1998] Craig A. Knoblock, Steven Minton,
Jose Luis Ambite, Naveen Ashish, Pragnesh Jay Modi, Ion
Muslea, Andrew G. Philpot, and Sheila Tejada. Modeling
web sources for information integration. In Proceedings of
the Fifteenth National Conference on Artificial Intelligence,
Madison, WI, 1998.

[Knoblock et al., 2001] Craig A. Knoblock, Steven Minton,
Jose Luis Ambite, Naveen Ashish, Ion Muslea, Andrew G.
Philpot, and Sheila Tejada. The ARIADNE approach to
web-based information integration. International Journal
of Cooperative Information Systems (IJCIS), Special Issue
on Intelligent Information Agents: Theory and Applications,
10(1/2):145–169, 2001.

[Knoblock et al., 2003] Craig A. Knoblock, Kristina Lerman,
Steven Minton, and Ion Muslea. Accurately and reliably extract-
ing data from the web: A machine learning approach. In Piotr S.
Szczepaniak, Javier Segovia, Janusz Kacprzyk, and Lotfi A.
Zadeh, editors, Intelligent Exploration of the Web, pages 275–
287. Springer-Verlag, Berkeley, CA, 2003.

[Krulwich, 1996] Bruce Krulwich. The bargainfinder agent: Com-
parison price shopping on the internet. In Agents, Bots, and other
Internet Beasties, pages 257–263. Macmillan Publishing, May
1996.

[Kushmerick, 1997] Nicholas Kushmerick. Wrapper Induction for
Information Extraction. PhD thesis, Department of Computer
Science and Engineering, University of Washington, 1997.

[Kushmerick, 2000] Nicholas Kushmerick. Wrapper verification.
World Wide Web, 3(2):79–94, 2000.

[Lambrecht and Kambhampati, 1997] Eric Lambrecht and Sub-
barao Kambhampati. Planning for information gathering: A tu-
torial survey. ASU CSE technical report 96-017, Department

of Computer Science and Engineering, Arizona State University,
May 1997.

[Lerman et al., 2001] Kristina Lerman, Craig A. Knoblock, and
Steven Minton. Automatic data extraction from lists and tables
in web sources. In Proceedings of the IJCAI 2001 Workshop on
Adaptive Text Extraction and Mining, Seattle, WA, 2001.

[Lerman et al., 2003] Kristina Lerman, Steven N. Minton, and
Craig A. Knoblock. Wrapper maintenance: A machine learning
approach. Journal of Artificial Intelligence Research, 18:149–
181, 2003.

[Levy and Weld, 2000] Alon Y. Levy and Daniel S. Weld. Intel-
ligent internet systems. Artificial Intelligence, 118(1-2):1–14,
April 2000.

[Levy, 2000] Alon Y. Levy. Logic-based techniques in data integra-
tion. In Jack Minker, editor, Logic-Based Artificial Intelligence.
Kluwer Academic Publisher, 2000.

[Muslea et al., 2000] Ion Muslea, Steven Minton, and Craig A.
Knoblock. Selective sampling with redundant views. In Proceed-
ings of the 17th National Conference on Artificial Intelligence,
2000.

[Muslea et al., 2001] Ion Muslea, Steven Minton, and Craig A.
Knoblock. Hierarchical wrapper induction for semistructured in-
formation sources. Autonomous Agents and Multi-Agent Systems,
4(1/2), March 2001.

[Muslea et al., 2003] Ion Muslea, Steven Minton, and Craig A.
Knoblock. Active learning with strong and weak views: A case
study on wrapper induction. In Proceedings of the 18th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-2003),
Acapulco, Mexico, 2003.

[Muslea, 2002] Ion Muslea. Active Learning with Multiple Views.
PhD thesis, Department of Computer Science, University of
Southern California, 2002.

[Perkowitz et al., 1997] Mike Perkowitz, Robert B. Doorenbos,
Oren Etzioni, and Daniel S. Weld. Learning to understand in-
formation on the internet: An example-based approach. Journal
of Intelligent Information Systems, 8(2):133–153, 1997.

[Sarawagi and Bhamidipaty, 2002] Sunita Sarawagi and Anuradha
Bhamidipaty. Interactive deduplication using active learning. In
Proceedings of the Eighth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD-2002),
Edmonton, Alberta, Canada, 2002.

[Tejada et al., 2001] Sheila Tejada, Craig A. Knoblock, and Steven
Minton. Learning object identification rules for information inte-
gration. Information Systems, 26(8), 2001.

[Tejada et al., 2002] Sheila Tejada, Craig A. Knoblock, and Steven
Minton. Learning domain-independent string transformation
weights for high accuracy object identification. In Proceedings
of the Eighth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD-2002), Edmonton, Al-
berta, Canada, 2002.

[Thakkar and Knoblock, 2003] Snehal Thakkar and Craig A.
Knoblock. Efficient execution of recursive integration plans. In
Proceedings of 2003 IJCAI Workshop on Information Integration
on the Web, Acapulco, Mexico, 2003.

[Thakkar et al., 2003] Snehal Thakkar, Jose-Luis Ambite, and
Craig A. Knoblock. A view integration approach to dynamic
composition of web services. In Proceedings of 2003 ICAPS
Workshop on Planning for Web Services, Trento, Italy, 2003.

