Semi-Automatically Mapping Structured
Sources into the Semantic Web*

Craig A. Knoblock!, Pedro Szekely!, Jose Luis Ambite!, Aman Goel®,
Shubham Gupta', Kristina Lerman!, Maria Muslea', Mohsen Taheriyan!, and
Parag Mallick?

1 University of Southern California
Information Sciences Institute and Department of Computer Science
{knoblock ,pszekely,ambite,amangoel, shubhamg,lerman,mariam ,mohsen}@isi .edu

2 Stanford University
Department of Radiology
paragm@stanford.edu

Abstract. Linked data continues to grow at a rapid rate, but a limita-
tion of a lot of the data that is being published is the lack of a semantic
description. There are tools, such as D2R, that allow a user to quickly
convert a database into RDF, but these tools do not provide a way to
easily map the data into an existing ontology. This paper presents a semi-
automatic approach to map structured sources to ontologies in order to
build semantic descriptions (source models). Since the precise mapping
is sometimes ambiguous, we also provide a graphical user interface that
allows a user to interactively refine the models. The resulting source mod-
els can then be used to convert data into RDF with respect to a given
ontology or to define a SPARQL end point that can be queried with
respect to an ontology. We evaluated the overall approach on a variety
of sources and show that it can be used to quickly build source models
with minimal user interaction.

1 Introduction

The set of sources in the Linked Data cloud continues to grow rapidly. Many of
these sources are published directly from existing databases using tools such as
D2R [8], which makes it easy to convert relational databases into RDF. This con-
version process uses the structure of the data as it is organized in the database,
which may not be the most useful structure of the information in RDF. But
either way, there is often no explicit semantic description of the contents of a
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source and it requires a significant effort if one wants to do more than simply
convert a database into RDF. The result of the ease with which one can publish
data into the Linked Data cloud is that there is lots of data published in RDF
and remarkably little in the way of semantic descriptions of much of this data.

In this paper, we present an approach to semi-automatically building source
models that define the contents of a data source in terms of a given ontology. The
idea behind our approach is to bring the semantics into the conversion process
so that the process of converting a data source produces a source model. This
model can then be used to generate RDF triples that are linked to an ontology
and to provide a SPARQL end point that converts the data on the fly into RDF
with respect to a given ontology. Users can define their own ontology or bring in
an existing ontology that may already have been used to describe other related
data sources. The advantage of this approach is that it allows the source to be
transformed in the process of creating the RDF triples, which makes it possible
to generate RDF triples with respect to a specific domain ontology.

The conversion to RDF is a critical step in publishing sources into the Linked
Data cloud and this work makes it possible to convert sources into RDF with the
underlying semantics made explicit. There are other systems, such as R2R [7]
and W3C’s R2RML [9], that define languages for specifying mappings between
sources, but none of this work provides support for defining these mappings. This
paper describes work that is part of our larger effort on developing techniques
for performing data-integration tasks by example [23]. The integrated system is

available as an open-source tool called Karma3.

2 Motivating Example

The bioinformatics community has produced a growing collection of databases
with vast amounts of data about diseases, drugs, proteins, genes, etc. Nomen-
clatures and terminologies proliferate and significant efforts have been under-
taken to integrate these sources. One example is the Semantic MediaWiki Linked
Data Extension (SMW-LDE) [5], designed to support unified querying, naviga-
tion, and visualization through a large collection of neurogenomics-relevant data
sources. This effort focused on integrating information from the Allen Brain At-
las (ABA) with standard neuroscience data sources. Their goal was to “bring
ABA, Uniprot, KEGG Pathway, PharmGKB and Linking Open Drug Data [16]
data sets together in order to solve the challenge of finding drugs that target
elements within a disease pathway, but are not yet used to treat the disease.”
We use the same scenario to illustrate and evaluate our contributions, com-
paring our results to the published SMW-LDE results (see Figure 1). We use
logical rules to formally define the mapping between data sources and an ontol-
ogy. Specifically, we use global-local-as-view (GLAV) rules [13] commonly used
in data integration [15] and data exchange [3] (i.e., rules whose antecedent and
consequent are conjunctive formulas). The rule antecedent is the source relation

3 https://github.com/InformationIntegrationGroup/Web-Karma-Public
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Fig. 1. The ontology used in the SMW-LDE study, one of the KEGG Pathway sources
used, and the source model that defines the mapping of this source to the ontology.

that defines the columns in the data source. The rule consequent specifies how
the source data elements are defined using the ontology terms. For example, the
first term, Pathway(uri( ACCESSION_ID)) specifies that the values in the ACCES-
SION_ID column are mapped to the Pathway class, and that these values should
be used to construct the URIs when the source description is used to gener-
ate RDF. The second term, name(uri( ACCESSION_ID), NAME) specifies that the
values in the ACCESSION_ID are related to the values in the NAME column using
the name property.

The task in the SMW-LDE scenario is to define source models for 10 data
sources. Writing these source models by hand, or the equivalent R2R rules is
laborious and requires significant expertise. In the next sections we describe
how our system can generate source models automatically and how it enables
users to intervene to resolve ambiguities.
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3 Modeling Structured Sources

Figure 2 illustrates our approach for modeling data sources. The inputs to the
process are an OWL ontology, the collection of data sources that the user wants
to map to the ontology, and a database of semantic types that the system has
learned to recognize based on prior use of the tool. The main output is the model
that specifies, for each source, the mapping between the source and the ontology.
A secondary output is a refined database of semantic types, updated during the
process to incorporate semantic types learned using the data contained in the
sources being mapped.

As shown in Figure 2, the modeling process consists of four main steps. The
first step, Assign Semantic Types, involves mapping each column of a source to
a node in the ontology. This is a user-guided process where the system assigns
types automatically based on the data values in each column and a set of learned
probabilistic models constructed from assignments done in prior sessions. If the
semantic type assigned by the system is incorrect, the user can select from a
menu the correct node in the graph. The system learns from this assignment
and records the learned assignment in its database. The second step, Construct
Graph, involves constructing a graph that defines the space of all possible map-
pings between the source and the ontology. At a high level, the nodes in the
graph represent classes in the ontology, and the edges represent properties that
relate these classes. The mapping from the ontology to the graph is not one-to-
one given that, for example, several columns may contain instances of the same
class (Section 3.2). The third step, Refine Source Model, updates the graph to
refine the model based on user input. The graph is constructed so that the map-
ping between the source and the ontology can be computed using a Steiner tree
algorithm (Section 3.3). The final fourth step, Generate Formal Specification,
generates a formal specification of the source model from the Steiner tree com-
puted in the prior step (Section 3.5). An example of this formal specification
appears in the bottom part of Figure 1.

In general, it is not always possible to automatically compute the desired
mapping between a source and an ontology since there may not be enough in-
formation in the source to determine the mapping. So, the automated process
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computes the most succinct mapping, and the user interface allows the user to
guide the process towards the desired interpretation (Section 3.4).

3.1 Inferring the Semantic Types

Semantic types characterize the type of data that appears in a column of data.
For example, in the table shown in Figure 1, the first column contains Phar-
mGKB identifiers of pathways, the second one contains names of pathways, etc.
In some cases, semantic types correspond to classes in an OWL ontology, but
in most cases, they could be most naturally thought of as the ranges of data
properties. It is possible to define semantically meaningful RDFS types in OWL
and use them as the ranges of data properties. However, few ontologies define
such types. The ranges of data properties are almost always missing, or they are
defined using syntactic types such as String or Integer.

In our modeling framework, a semantic type can be either an OWL class or
a pair consisting of a data property and an OWL class (the property domain or
a subclass of it). We use OWL classes to define the semantic types of columns of
data that contain automatically-generated database keys or foreign keys (dur-
ing RDF generation, these keys are used to generate URIs). We use semantic
types defined in terms of data properties and their domain for columns con-
taining meaningful data. In our example, the first column contains PharmGKB
identifiers of pathways, so the values can be characterized by the semantic type
consisting of the data property pharmGKBId and the class Pathway, or Path-
way.pharmGKBId for short.

Karma provides a user interface to let users assign semantic types to the
columns of a data source. In this section we present our approach for automating
the assignment of semantic types by learning from prior assignments defined in
the user interface. The objective is to learn a labeling function ¢(n, {v1, v, ...}) =
t so that given n, the name of a column, and {vy,vs, ...}, the values in that col-
umn, it assigns a semantic type t € T', where T is the set of semantic types used
during training. The training data consists of a set of prior assignments of seman-
tic types t; to columns of data: {(n1, {v1,,v1,,.-.},t1), (n2, {ve,,ve,, ...}, t2),...}.

We use a conditional random field (CRF) [18] to learn the labeling function.
Before giving the details of how we build the feature vectors to train the CRF,
we first explain how we define ¢ in terms of a function ¢ that we use to label
individual values in a column of data. Given a column name n and a single
value v in that column, ¢(n,v) = {(v,tr, pr),tx € T} gives for each t; in T
the probability pp that the semantic type of v is tx. To label a column of data
(n,{v1,va,...}), we compute é(n,vi) for each value v; € {v1,v9,...}, and then
compute the average probability over all values in a column. The result is a set
of pairs ¢(n, {vi,va,...}) = {(t1,p1), (t2,p2),...}. Based on this set, we define
¢(n,{v1,va,...}) = tm, the type with maximum probability, i.e., ¢, is such that
(tm, Pm) € @(n, {v1,v2,...}) and py, > p; for all (tg,pr) € o(n, {v1,ve,...}).
When users load a source, Karma automatically labels every column using
#(n,{v,}) as long as the probability p,, is above a certain threshold.
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The task is now to learn the labeling function (Z)(n, v). As mentioned above,
users label columns of data, but to learn ¢E(n7v) we need training data that
assigns semantic types to each value in a column. We assume that columns
contain homogeneous values, so from a single labeled column (n, {vy,ve,...},t)
we generate a set of training examples {(n,v1,t), (n,ve,t),...} as if each value
in the column had been labeled using the same semantic type t.

For each triple (n,v,t) we compute a feature vector (f;) that characterizes
the syntactic structure of the column name n and the value v. To compute the
feature vector, we first tokenize the name and the value. Our tokenizer uses
white space and symbol characters to break strings into tokens, but identifies
numbers as single tokens. For example, the name ACCESSION_ID produces the
tokens (“Accession”, “", “ld"), the value PA2039 produces the tokens (“PA",
2039), and the value 72.5°F produces the tokens (72.5, °, F).

Each f; is a Boolean feature function f;(n,v) that tests whether the name,
value or the resulting tokens have a particular feature. For example, valueS-
tartsWithA, valueStartsWithB, valueStartsWithPA are three different feature func-
tions that test whether the value starts with the characters ‘A’, ‘B’ or the sub-
string “PA"; hasNumericTokenWithOrderOfMagnitudel, hasNumericTokenWithOr-
derOfMagnitudelO are feature functions that test whether the value contains nu-
meric tokens of order of magnitude 1 and 10 respectively. In general, features
are defined using templates of the form predicate(X), and are instantiated for
different values of X that occur within the training data. In our scenario, valueS-
tartsWith(X) is instantiated with X="P" and X="'A" because “PA2039" is in the
first column and “Arthritis, Rheumatiod” is in the last column; however, there
will be no valueStartsWithB feature because no value starts with the character
‘B’. Our system uses 21 predicates; the most commonly instantiated ones are:

nameContainsToken(X), nameStartsWith(X), valueContainsToken(X), valueStarts-

With(X), valueHasCapitalized Token(), valueHasAllUppercase Token(), valueHasAl-

phabetical TokenOfLength(X), valueHasNumericTokenWithOrderOfMagnitude(X),

valueHasNumericTokenWithPrecision(X), valueHasNegativeNumericToken().

A CRF is a discriminative model, and it is practical to construct feature
vectors with hundreds or even thousands of overlapping features. The model
learns the weight for each feature based on how relevant it is in identifying the
semantic types by optimizing a log-linear objective function that represents the
joint likelihood of the training examples. A CRF model is useful for this problem
because it can handle large numbers of features, learn from a small number of
examples, and exploit the sequential nature of many structured formats, such as
dates, temperatures, addresses, etc. To control execution times, our system labels
and learns the labeling function using at most 100 randomly selected values from
a column. With 100 items, labeling is instantaneous and learning takes up to 10
seconds for sources with over 50 semantic types.

3.2 Constructing the Graph

The central data structure to support the mapping of sources to the ontology
is a graph computed from the semantic types of the source and the domain
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Fig. 3. The graph defines the search space for source models and provides the infor-
mation for the user interface to enable users to refine the computed source model.

ontology. The algorithm for building the graph has three sequential steps: graph
initialization, computing nodes closure, and adding the links.

Graph Initialization: We start with an empty graph called G. In this
step, for each semantic type assigned to a column, a new node with a unique
label is added to the graph. A semantic type is either a class in the ontol-
ogy or a pair consisting of the name of a datatype property and its domain.
We call the corresponding nodes in the graph V;. and V;, respectively. Apply-
ing this step on the source shown in Figure 3 results in Vi, = {} and V;, =
{pharmGK BIdy, pharmGK BIds, pharmGK BIds, pharmGK Bldy, namey,
names, names, geneSymbol }.

Computing Nodes Closure: In addition to the nodes that are mapped
from semantic types, we have to find nodes in the ontology that relate those
semantic types. We search the ontology graph and for every class node that has
a path to the nodes corresponding to semantic types, we create a node in the
graph. In other words, we get all the class nodes in the ontology from which the
semantic types are reachable. To compute the paths, we consider both properties
and ¢sa relationships. The nodes added in this step are called V.. In the example,
we would have V,. = {Thing;, Top1, Gene,, Pathway,, Drug;, Disease;}. In
Figure 3, solid ovals represent {Vi. U V,.}, which are the nodes mapped from
classes of ontology, and the dashed ovals represent V;,, which are the semantic
types corresponding to datatype properties.

Adding the Links: The final step in constructing the graph is adding the
links to express the relationships among the nodes. We connect two nodes in the
graph if there is a datatype property, object property, or isa relationship that
connects their corresponding nodes in the ontology. More precisely, for each pair
of nodes in the graph, u and v:

— If v € Vi, i.e., v is a semantic type mapped from a datatype property, and
u corresponds to the domain class of that semantic type, we create a directed
weighted link (u,v) with a weight equal to one (w = 1). For example, there
would be a link from Pathway, to pharmGK BlId;, because pharmGK Bld,
corresponds to the semantic type Pathway.pharmGKBId.
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— If u,v € {V;.UV,.}, which means both of them are mapped from ontology
classes, we put a weighted link (u,v) with w = 1 in the graph only if there is
an object property such as p in the ontology whose domain includes the class
of v and whose range includes class of v. These links are called E,,. Note that
the properties inherited from parents are also considered in this part, but to
prioritize direct properties in the algorithm, we consider a slightly higher weight
to the inherited properties. In other words, if p is defined such that its domain
contains one of the superclasses of u (at any level) and its range contains one of
the superclasses of v, we add the link (u,v) with w =1+ €.

— Ifu,v € {VieUV,.} and v is a direct or indirect subclass of u, a link (u,v)
with w = 1/e is added to the graph, in which e is a very small value. We call
these links F,.. Subclass links have a large weight so that relationships mapped
from properties are preferred over the relationships through the class hierarchy.

The final graph is a directed weighted graph G = (V,E) in which V =
{Vip UVie UV, } and E = {Eg4, U E,, U E,.}. Figure 3 shows the final graph.

3.3 Generating Source Models

Source models must explicitly represent the relationships between the columns
of a source. For example, after mapping columns to the Gene and Drug classes,
we want to explicitly represent the relationship between these two classes. The
graph we constructed in the previous section explicitly represents all possible
relationships among the semantic types. We construct a source model as the
minimal tree that connects the semantic types The minimal tree corresponds
to the most succinct model that relates all the columns in a source, and this is
a good starting point for refining the model. To compute the minimal tree, we
use one of the variations of the known Steiner Tree algorithm. Given an edge-
weighted graph and a subset of the vertices, called Steiner nodes, the goal is to
find the minimum-weight tree in the graph that spans all Steiner nodes. In our
graph, the Steiner nodes are the semantic type nodes, i.e., the set {Vi. U Vi, }.
The Steiner tree problem is NP-complete, but we use a heuristic algorithm [17]
with an approximation ratio bounded by 2(1 — 1/I), where [ is the number
of leaves in the optimal Steiner tree. The time complexity of the algorithm is
O(|Vie U Vip|[V[?). Figure 4(a) shows the resulting Steiner tree.

It is possible that multiple minimal trees exist, or that the correct interpreta-
tion of the data is specified by a non-minimal tree. In these cases, Karma allows
the user to interactively impose constraints on the algorithms that lead to the
correct model. We enforce these constraints on G by transforming it into a new
graph G’, and using G’ as the input to the Steiner tree algorithm. User actions
can have three types of effects on the algorithm:

Changing the semantic types: If the user changes the semantic type of
one or more columns, we re-construct the graph G and repeat all the steps
mentioned before to get the final Steiner tree.

Specifying a relationship: In the Steiner tree shown in Figure 4(a), Disease
is related to Gene through the isCausedBy property. However, in the correct
model of the data, Gene is related to Pathway through the involves property.
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Fig. 4. Interactive refinement of the automatically computed Steiner trees.

Karma allows the user to correct the model and change the relationship from
isCausedBy to involves. To force the Steiner tree algorithm to select the new
link, we first add the source (Pathway,) and target (Gene;) of the link to the
Steiner nodes. Then we remove all the incoming links to the target except the
link selected by the user. This means that involves would be the only link in the
graph going to Gene;. Finally, we reduce the weight of the user link to e. These
steps guarantee that the user link will be chosen by the Steiner algorithm. Note
that forcing a link by the user does not change graph G and it only affects G’
and the Steiner nodes. Figure 4(b) illustrates the new G’ and Steiner tree after
selecting the involves relationship by the user.

Generating multiple instances of a class: Consider the case that in the
source table, in addition to information about the genes involved in pathway,
we also have the data about genes that cause specific diseases. This means that,
for example, we have two columns GENE_NAME1 and GENE_NAME2 referring to
different genes. Suppose that the CRF model has assigned the Gene.geneSymbol
semantic type to both columns and their corresponding nodes in the graph are
geneSymbol, and geneSymbol,. After constructing the graph, we would have
two outgoing links from Gene; to geneSymbol; and geneSymbols, indicating
that GENE_NAME]1 and GENE_NAME2 are different symbols of the same Gene.
However, the correct model is the one in which GENE_NAME1 and GENE_NAME2
are symbols for two different genes. That is, there should be two instances of
the Gene class, Gene; and Genes that are separately connected to geneSymbol,
and geneSymbols. To solve this problem, Karma gives the option to the user to
generate multiple instances of a class in the GUIL The user selects the Gene;
node and splits it based on the geneSymbol property. Then G’ and the Steiner
tree are re-computed to produce the correct model.

3.4 User Interface for Refining Semantic Models

Karma visualizes a source model as a tree of nodes displayed above the column
headings of a source. Figure 5 shows the visualization of the source model corre-
sponding to the Steiner tree shown in Figure 4(a). The root of the Steiner tree
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Fig. 5. Karma screen showing the PharmGKBPathways source. Clicking on the pencil
icon brings up a menu where users can specify alternative relationships between classes.
Clicking on a semantic type brings up a menu where the user can select the semantic
types from the ontology. A movie showing the user interface in action is available at
http://isi.edu/integration/videos/karma-source-modeling.mp4.

appears at the top, and shows the name of the class of objects that the table
is about (in our example the table is about diseases?). The Steiner nodes corre-
sponding to the semantic types are shown just below the column headings. The
nodes between the root and the semantic types show the relationships between
the different objects represented in the table. Internal nodes of the Steiner tree
(e.g., nodes 4, 5 and 8) consist of the name of an object property, shown in italics
and a class name (a subclass of the range of the property). The property defines
the relationship between the class named in the parent node and the class of
the current node. For example, node 4 is “disrupts Pathway”, which means that
the Disease (node 1) disrupts the Pathway represented by the columns under
node 4. The leaves of the tree (nodes 6, 7, 9, etc.) show the name of data prop-
erties. For example, node 6 is pharmGKBId, meaning that the column contains
the pharmGKBId of the Pathway in node 4.

According to the model shown in Figure 5, the table contains information
about diseases (1): the last column contains the disease names (3) and the next
to last column contains their identifiers (2). The Disease disrupts a Pathway (4),
and isCausedBy a Gene (5). The Pathway is identified using its pharmGKBId in

4 Selection of the root is not unique for ontologies that declare property inverses.
In this example, any of the classes could have been selected as the root yielding
equivalent models.
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Fig. 6. Karma screen showing the user interaction to change the model of a column
from a Pathway label to a Drug label.

the first column (6), and its name appears in the second column (7). The Pathway
isTargeted by the Drug (8) whose identifier (9) and label (10) appear in the third
and fourth columns. The gene that causes the disease (5) is identified using its
pharmGKBId (11) and its geneSymbol (12).

This is a plausible model, but it is incorrect because the table lists the genes
involved in the pathways that are disrupted by the disease instead of the genes
that cause the disease; in other words, the isCausedBy property in cell 5 is incor-
rect. Users can edit the model to adjust the relationships between columns by
clicking on the pencil icons. The pop-up in Figure 5 appears the user clicks on the
pencil icon on the Gene cell (5): it shows the possible relationships corresponding
to all incoming edges to the Gene; node in the graph shown in Figure 3. Figure 6
shows the adjusted model after the user selects the “Pathway Involves” option
in Figure 5 to specify the correct relationship between the disease and the gene.
The Gene cell (5) is now below Pathway (4) related using the involves property.

Karma also provides capabilities to clean, normalize and transform data be-
fore modeling it. For example, a source in our scenario contained alternative
symbols for genes as comma-separated values stored in individual cells (e.g.,
“CP12, P3-450, P450(PA)”). Karma provides a “split cell” command to break
the value into multiple cells so that each value can be modeled as a separate al-
ternative symbol. These commands can be saved in scripts to enable automatic
preprocessing of sources when source models are used to generate RDF.

3.5 Generation of Formal Source Model Specification

After users have (optionally) imposed constraints to reflect the correct seman-
tics, the system processes the resulting Steiner tree to generate GLAV rules that
provide a formal specification of (1) how the sources are combined and which at-
tributes of the source are relevant, (2) how the source data maps to the ontology,
and (3) how URIs for objects in the ontology are generated. We illustrate the
algorithm that generates the GLAV rule of Figure 1 based on the Steiner tree
from Figure 4(b), which corresponds to the user interface shown in Figure 6.

Class nodes generate unary predicates corresponding to classes in the on-
tology. The uri function builds URIs for class instances based on the key(s), or
foreign key(s), in the source tables. For example, the Pathway node in Figures 3
and 6 generates the predicate Pathway(uri( ACCESSION_ID)) because the values
in the ACCESSION_ID column represent instances of Pathway.
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The system also supports class nodes that are not associated with a source
column. These correspond to existentially quantified variables in the rule con-
sequent and would generate blank nodes in RDF. However, we generate unique
regular URIs to support linking (owl:sameAs) into these URIs at a later stage.
For example, assume that the ontology included a Mutation class, where a Gene
has a Mutation that causes a Disease, then the corresponding fragment of the rule
consequent would be: hasMutation(uri( GENE_ID), uri(1)) " Mutation(uri(1)) *
causes(uri('1), uri(DISEASE_ID)). The index in the uri function is used to iden-
tify different existentially quantified variables.

Data property nodes generate binary predicates corresponding to data
properties in the ontology. For example, the name; node associated with Pathway
in Figure 3 generates the binary predicate name(uri( ACCESSION_ID), NAME),
specifying that instances of Pathway have the name data property filled with
values from the NAME column.

Edges between class nodes generate binary predicates corresponding to ob-
ject properties in the ontology. For example, the edge between Pathway, and
Gene; in Figure 4(b) generates the predicate involves(uri( ACCESSION_ID),
uri( GENE_ID)).

The resulting GLAV rules can now be used to generate the appropriate RDF
for a source in terms of the domain ontology, as in data exchange [3]. Alterna-
tively, the mappings can be interpreted dynamically by a mediator, as in data
integration [15]. The mediator would provide a SPARQL endpoint exposing the
ontology and executing queries directly over the original sources.

4 Evaluation

We evaluated our approach by generating source models for the same set of
sources integrated by Becker et al.[5], as described in Section 2. The objective
of the evaluation was 1) to assess the ability of our approach to produce source
models equivalent to the mappings Becker et al. defined for these sources, and
2) to measure the effort required in our approach to create the source models.
Becker et al. defined the mappings using R2R, so we used their R2R mapping files
as a specification of how data was to be mapped to the ontology. Our objective
was to replicate the effect of the 41 R2R mapping rules defined in these files. Each
R2R mapping rule maps a column in our tabular representation. We measured
effort in Karma by counting the number of user actions (number of menu choices
to select correct semantic types or adjust paths in the graph) that the user had
to perform. Effort measures for the R2R solution are not available, but appears
to be substantial given that the rules are expressed in multiple pages of RDF.

Using Karma we constructed 10 source models that specify mappings equiv-
alent to all of the 41 R2R mapping rules. Table 1 shows the number of actions
required to map all the data sources. The Assign Semantic Type column shows
the number of times we had to manually assign a semantic type. We started this
evaluation with no training data for the semantic type identification. Out of the
29 manual assignments, 24 were for specifying semantic types that the system
had never seen before, and 5 to fix incorrectly inferred types.
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Table 1. Evaluation Results for Mapping the Data Sources using Karma.

User Actions
Source Table Name|# Columns Assign Semantic T}ﬁ)e Specify Relationship] Total

Genes 8 8 0 8
Drugs 3 3 0 3
PharmGKB Diseagses 4 4 0 4
Pathways 5 2 1 3
ABA Genes 6 3 0 3
Drugs 2 2 0 2
KEGG Diseases 2 2 0 2
Pathway Genes 1 1 0 1
Pathways 6 3 1 4
UniProt Genes 4 1 0 1

Total: 41 Total: 29 Total: 2 Total: 31
Avg. # User Actions/Column = 31/41 = 0.76

Events databasc[ 19 Tables [ Total: 64 Total: 43 [ Total: 4 [Total: 47
Avg. # User Actions/Column = 47/64 = 0.73

The Specify Relationship column shows the number of times we had to select
alternative relationships using a menu (see Figure 5). For the PharmGKB and
KEGG Pathway sources, 1 action was required to produce a model semantically
equivalent to the R2R mapping rule. The total number of user actions was 31,
0.76 per R2R mapping rule, a small effort compared to writing R2R mapping
rules in RDF. The process took 11 minutes of interaction with Karma for a user
familiar with the sources and the ontology.

In a second evaluation, we mapped a large database of events into the ACE
OWL Ontology [12]. The ontology has 127 classes, 74 object properties, 68 data
properties and 122 subclass axioms. The database contains 19 tables with a
total of 64 columns. We performed this evaluation with no training data for the
semantic type identification. All 43 manual semantic type assignments were for
types that the system had not seen before, and Karma was able to accurately
infer the semantic types for the 21 remaining columns. Karma automatically
computed the correct source model for 15 of 19 tables and required one manual
relationship adjustment for each of the remaining 4 tables. The average number
of nodes in our graph data structure was 108, less than the number of nodes in
the ontology (127 classes and 68 types for data properties). The average time for
graph construction and Steiner tree computation across the 19 tables was 0.82
seconds, which suggests that the approach scales to real mid-size ontologies. The
process took 18 minutes of interaction with Karma.

5 Related Work

There is significant work on schema and ontology matching and mapping [21,
6]. An excellent recent survey [22] focuses specifically on mapping relational
databases into the semantic web. Matching discovery tools, such as LSD [10]
or COMA [20], produce element-to-element matches based on schemas and/or
data. Mapping generation tools, such as Clio [11] and its extensions [2], Altova
MapForce (altova.com), or NEON’s ODEMapster [4], produce complex map-
pings based on correspondences manually specified by the user in a graphical
interface or produced by matching tools. Most of these tools are geared toward
expert users (ontology engineers or DB administrators). In contrast, Karma fo-
cuses on enabling domain experts to model sources by automating the process



14 Knoblock et al.

as much as possible and providing users an intuitive user interface to resolve
ambiguities and tailor the process. Karma produces complex GLAV mappings
under the hood, but users do not need to be aware of the logical complexities of
data integration/exchange. They see the source data in a familiar spreadsheet
format annotated with hierarchical headings, and they can interact with it to
correct and refine the mappings.

Alexe et al. [1] elicit complex data exchange rules from examples of source
data tuples and the corresponding tuples over the target schema. Karma could
use this approach to explain its model to users via examples, and as an alternative
method for users to customize the model by editing the examples.

Schema matching techniques have also been used to identify the semantic
types of columns by comparing them with labeled columns [10]. Another ap-
proach [19] is to learn regular expression-like rules for data in each column and
use these expressions to recognize new examples. Our CRF approach [14] im-
proves over these approaches by better handling variations in formats and by
exploiting a much wider range of features to distinguish between semantic types
that are very similar, such as those involving numeric values.

The combination of the D2R [8] and R2R [7] systems can also express GLAV
mappings as Karma. D2R maps a relational database into RDF with a schema
closely resembling the database. Then R2R can transform the D2R-produced
RDF into a target RDF that conforms to a given ontology using an expressive
transformation language. R2RML [9] directly maps a relational database to the
desired target RDF. In both cases, the user has to manually write the mapping
rules. In contrast, Karma automatically proposes a mapping and lets the user
correct/refine the mapping interactively. Karma could easily export its GLAV
rules into the R2RML or D2R/R2R formats.

6 Discussion

A critical challenge of the Linked Data cloud is understanding the semantics of
the data that users are publishing to the cloud. Currently, users are linking their
information at the entity level, but to provide deeper integration of the available
data, we also need semantic descriptions in terms of shared ontologies. In this
paper we presented a semi-automated approach to building the mappings from
a source to a domain ontology.

Often sources require complex cleaning and transformation operations on the
data as part of the mapping. We plan to extend Karma’s interface to express
these operations and to include them in the source models. In addition, we plan
to extend the approach to support modeling a source in which the relationships
among columns contain a cycle.
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