
A Scalable Architecture for Extracting, Aligning, Linking,
and Visualizing Multi-Int Data

Craig A. Knoblock and Pedro Szekely

University of Southern California, Information Sciences Institute, Marina del Rey, CA, USA;

ABSTRACT

An analyst today has a tremendous amount of data available, but each of the various data sources typically
exists in their own silos, so an analyst has limited ability to see an integrated view of the data and has little
or no access to contextual information that could help in understanding the data. We have developed the
Domain-Insight Graph (DIG) system, an innovative architecture for extracting, aligning, linking, and visualizing
massive amounts of domain-specific content from unstructured sources. Under the DARPA Memex program
we have already successfully applied this architecture to multiple application domains, including the enormous
international problem of human trafficking, where we extracted, aligned and linked data from 50 million online
Web pages. DIG builds on our Karma data integration toolkit, which makes it easy to rapidly integrate structured
data from a variety of sources, including databases, spreadsheets, XML, JSON, and Web services. The ability
to integrate Web services allows Karma to pull in live data from the various social media sites, such as Twitter,
Instagram, and OpenStreetMaps. DIG then indexes the integrated data and provides an easy to use interface
for query, visualization, and analysis.

Keywords: big data, information integration, analysis, visualization

1. INTRODUCTION

There is a huge variety of data available that can be exploited to understand what is going on in a given area
or to answer specific intelligence questions. The available data includes GEOINT data (e.g., satellite imagery,
motion imagery, mapping data, etc.), MASINT data (e.g., LIDAR, SAR, hyperspectral data, etc.), SIGINT data
(e.g., ELINT, COMINT, etc.), HUMINT data (e.g., intelligence reports, documents, etc.), and OSINT (e.g.,
news articles, photos, videos, telephone books, web sites, publications, social media, domain registrations, etc).
The challenge is to allow an analyst to easily integrate or fuse the various sources available to answer specific
intelligence questions or to detect anomalies.

To address this problem, we developed the Domain-specific Insight Graph (DIG) system, an innovative
architecture for extracting, aligning, linking, and visualizing massive amounts of domain-specific content from
both structured and unstructured sources. The DIG system harnesses state-of-the-art open source software
combined with an open architecture and flexible set of APIs to facilitate the integration of a variety of extraction
and analysis tools. DIG builds on rich models of a domain that support fine-grained data collection, organization,
and analysis. DIG builds a graph of the entities and relationships within a domain using scalable extraction
and linking technologies. DIG also includes a faceted content search interface for users to query the data and
visualize information on maps, timelines, and tables. DIG is designed to be scalable by building on open-source
cloud-based infrastructure (i.e., HDFS, Hadoop, Elastic Search, etc.), supports a diversity of source types, and
is rapidly re-targetable to new domains of interest. We have already successfully applied this architecture to
multiple application domains, including human trafficking, where we extracted, aligned and linked data from 50
million online web advertisements. We have also applied it on publications and patents in material science to
understand the research trends in that area.

Consider the case where one wants to determine the nuclear know-how of a given country by analyzing
the open source data for the universities within a country, which would include the people, publications, and
affiliations of the physicists within the universities. In this paper , we describe how we would build a specific
domain-specific insight graph (DIG) by analyzing the open-source data available to build a highly detailed

For additional information, contact Craig Knoblock: knoblock@isi.edu



Figure 1. Sample pages with researcher profiles and publications

knowledge base about the scientists within a country (we are using this application to illustrate the process
and have not built this particular application.) Such a knowledge base would include all of the open source
information that is available about such scientists, including their education histories, organizational affiliations,
connections to other scientists, publications, areas of research, and so on. The data about such scientists is spread
over a huge number of sources, including university web pages, individual home pages, social media web sites,
and online databases. Figure 1 shows two sample pages with data that we would like to acquire and integrate
into the DIG knowledge base. Creating this DIG requires identifying the relevant web sites to crawl, creating
domain-specific feature extractors, and building a domain vocabulary to align the data in this domain. Once that
initial application work is done, the DIG architecture will be able to extract the data from the aggregated pages,
align the data to the domain vocabulary, link the scientists to organizations and other scientists, and provide
a visualization of the results. The DIG architecture makes it possible to perform this task on the millions of
available web pages, rapidly creating a comprehensive knowledge base that is not available today. In addition,
DIG provides an analysis dashboard that enables users to query the database and discover connections between
individuals, academic institutions, research topics, conferences, publications and other concepts as they evolve
over geography and time. In the remainder of this paper, we describe each step in the process to create the
domain-specific insight graph about scientists within a given country.

2. CRAWLING

The DIG crawling capability, illustrated in Figure 2, is designed to download just the relevant to an application
domain. A key challenge is to enable data scientists building a DIG to configure the crawling capability to
download only those pages that contain relevant information. Restricting a crawler to remain within a domain
(e.g., usc.edu) is not restrictive enough. In our sample application, the crawler would download all pages of a
university rather than just the pages from the physics department.

Figure 2. Crawling acquires data from
the web

DIG uses the Apache Nutch framework to support crawling at scale,
enabling the construction of integrated datasets consisting of millions of
pages. Nutch offers a RESTful configuration interface that makes it easy
to specify the URL patterns to be crawled, to monitor crawling progress
and to define revisit cycles to re-crawl periodically, downloading revisions
to already crawled pages. To provide further control over the crawled
pages, we are integrating a semi-structured content extractor into Nutch.
The extractor can identify specific elements within a page, such as the
researcher home pages in Figure 1, and direct Nutch to follow only those
links within a page. Without the extractor, Nutch would follow links that
point to the university home page and start downloading all pages in a
university.



In addition to providing access to the shallow (or surface) web, DIG also provides capabilities to access the
deep web, i.e., web pages residing behind web forms and REST services, which are inaccessible to crawlers that
acquire pages by following links. To do so, DIG uses Karma, which provides a scripting language that enables data
scientists to easily compose RESTful URLs based on previously downloaded data, and the ability to subsequently
invoke these URLs to download data. Together, Nutch and Karma provide the ability to download relevant data
for a domain.

3. EXTRACTING

After crawling, the next step is to extract features from the harvested data to produce a structured rep-
resentation that can be used for indexing and linking in the next step of the DIG construction pipeline.

Figure 3. Extraction identifies useful
data in web pages and constructs a
structured representation of it

Given the wide variety of pages and data on the web, it is infeasible to
develop data extraction technology that works for any page and any type
of data. DIG provides an open architecture that makes it easy to integrate
a wide range of extraction technologies, so that data scientists can select
the extraction technology most appropriate for the pages in their application
domain. As illustrated in Figure 3, an extractor is a component that takes
as input a web page or a text document and produces as output a structured
data representation (JSON, XML, CSV, etc.) Data scientists can configure
the DIG workflows to include a wide variety of data extractors as long as
they comply with the simple input/output conventions described above. In
addition to providing an open data extraction architecture, DIG also provides
components for extracting data from semi-structured pages and from text.

The DIG semi-structured page extractor, called the landmark extractor,
identifies elements in a page using landmarks defined with regular expres-
sions. The key feature of this extractor is that it can identify lists of elements

(e.g., all the publications in Figure 1, it can identify records within lists (e.g., each paper consists of authors,
title, etc.) and it can recurse to identify lists within lists (e.g., the individual authors in each publication). For
example, the extractor to extract the metadata for scientific publications in Journal of Artificial Intelligence
is defined using five simple rules.The rule that extracts the page numbers of an article in a journal uses two
landmarks, as shown below. The desired data is between the text “, pages ” and “</cite>”:

{

"name": "pages",

"rule_type": "RegexRule",

"begin_regex": ", pages ",

"end_regex": "</cite>"

}

DIG provides a learning component that automatically infers rules for the landmark extractor from examples.
To train an extractor, the data scientist provides a collection of pages and corresponding extractions (e.g., a
persons home page containing a list of publications and the data elements that should be extracted from the
page). Using a handful of examples, the learning component automatically creates a landmark extractor that
extracts data from similar pages.

To support extraction from text, DIG offers a capability to enable data scientists to easily train extractors
specialized to an application domain. For example, we used DIG in the human trafficking domain and needed
to extract data elements such as eye-color, hair type and color, and ethnicity from escort advertisements in
web sites. To train a new extractor for a text corpus, a data scientist highlights the desired data elements in
small number of sample sentences or short paragraphs, selected from the corpus. For example, in the sentence
“Perfect Green eyes Long curly black hair Im a Irish, Armenian and Filipino”, the data scientists highlights
“Green eyes” and “Long curly black hair”. After the data scientists designates a text corpus and defines the
examples, DIG automatically constructs thousands of tasks to acquire additional annotations for the desired



data elements on randomly selected paragraphs from the corpus. DIG uses the examples provided by the data
scientist as instructions for workers, and automatically deploys thousands of annotation tasks on the Amazon
Mechanical Turk crowd sourcing platform. By default, DIG requests three annotations on each task and uses
the majority answer when workers provide conflicting answers.

After a few days, once workers complete the tasks, DIG automatically downloads the responses, and uses the
annotations as training data to train an automatic text labeler. Once trained, the text labeler can take as input
any text from the corpus, automatically annotate it, and produce the annotated text as output. For example,
after training a text labeler on annotations for eye color and hair characteristics, the labeler can automatically
extract these characteristics from new text. Our learning component uses a Conditional Random Field model
and simple domain independent features. In our approach, data scientists do not need to understand the machine
learning technology or worry about defining features for the learning algorithms.

We evaluated our approach on news wire text, training it to extract persons, organizations and places,
and comparing it with the Stanford NER.1 Our approach achieves 78% precision, 3 percentage points within
the performance of the Stanford NER, but our approach is easily trainable on new corpora and for arbitrary
domain-specific attributes.

4. CLEANING

(a)

(b)

Figure 4. Data cleaning corrects in-
correct extractions (a) and removes
unwanted extractions (b)

Since much of the data that we use to build a DIG comes from online sources,
a significant problem is dealing with noisy data. As shown in Figure 4,
the tools for creating a DIG must support this data cleaning task, which
often involves incorrect extractions, unwanted extractions, or other types
of inconsistent data. Consider the publications shown in Figure 1. In the
first publication, one of the co-authors is listed as ”Iraji-zad A.” and the
second publication lists one of the co-authors as ”A. Iraji-zad”. If we can
correct these types of inconsistencies, it will improve the accuracy of the
entity resolution described in a later step.

In previous work we developed Karma, a tool to semi-automatically clean
and integrate data from a variety of sources.2 Within Karma, we have de-
veloped several methods to support the cleaning and normalization of data.

• Visualization: Karma provides a histogram for each attribute, which shows the distribution of data values
for a particular attribute. This allows a user to quickly see if there are irregularities in the data that might
indicate a problem. For example, one can immediately see if there are null values where none are expected
or if there are duplicate entries when all entries are expected to be unique.

• Learned Transformations: Karma provides a capability to learn transformation rules by example.3

A user simply provides examples of the desired format for a few examples and the system generates a
transformation rule, applies it to the relevant data, and displays the results. The user can then confirm
the transformation or provide additional examples to refine the learned transformation rule.

• Cleaning programs: Some types of data cleaning can be quite complex, so Karma also allows one to
write data cleaning scripts in Python, which will support arbitrarily complex transformations on the data.
This makes it possible to filter rows, which can be used to eliminate bad records, or specific rows in a
nested table. Cleaning scripts can be used to remove html from the extractions or to remove data that
does not parse correctly.

5. INTEGRATION

After cleaning, the DIG knowledge base will contain a large number of structured data records. Some of these
records come from databases or other structured representations such as XML, JSON or CSV. Many of the
records are the output of a variety of extractors that extract data items from web pages or text documents.



Figure 5. Schema alignment followed by data integration

At this stage of processing, the records consist of
data items represented in different schemas (different
shapes in Figure 5), and the only connections between
data items are those that were present in the page
from where data items were extracted. The goal of
the integration step is to convert all records to a uni-
form schema defined by a domain ontology, and to
unify records that contain unique identifiers such as
an email address (Figure 5).

We also use Karma to support the integration of
data across sources. One of Karma’s unique capa-
bilities is that it learns semantic descriptions of the
sources.4–6 These descriptions define a mapping from
the contents of a source (e.g., the extracted features
or the columns in a spreadsheet) to a domain ontology

that the user specifies. Karma uses these descriptions to integrate data from multiple sources, merging fields
only when their meaning is the same, and publishing the integrated data in any of a variety of formats, including
XML, RDF, and JSON.

Karma plays an important role in DIG by providing the mapping of both the extracted data as well as
structured data sources into shared domain ontology. This makes it possible to bring data together from various
web sources, databases, spreadsheets, etc. and align all of the data using the same vocabulary. This mapping
directly supports further analysis and reasoning on the data.

Figure 6 shows a screenshot of Karma with the data extracted from a web page containing publications and
includes the authors, titles, abstracts, countries of affiliation, and so on. The bottom part of the figure contains

Figure 6. Screenshot of Karma showing the model of the publication data



the extracted data fields, which can contain multi-valued attributes. The histogram for data cleaning are shown
immediately above the columns of data. And the source model is shown by the graph at the top of the figure. The
model provides the mapping from the data to the domain ontology and gives the precise relationships between
the sources. In the model shown in the figure, the dark ovals are the classes of information and the links labeled
with gray rectangles are the relations between the classes. For example, the overall class is a WebPage and it
has a set of relations including hasTitlePart and hasAbstractPart, which in turn have WebPageElements that
link to the actual text. An initial source model is proposed by the system using machine learning techniques and
then the user refines the model using an easy-to-use interactive graphical user interface (GUI).

The integration of the data is performed by creating the source model for each of the different types of
extracted data. In the example from Figure 1, there would be one model for the pages containing the faculty
members and another model for the pages containing publications. After modeling each of these sources, Karma
can then generate the data in a standard language called JSON-LD (json-ld.org) using a the consistent set of
terms from the domain ontology. We then use this aligned data in the following steps of the DIG pipeline.

6. SIMILARITY

After the integration step, data will be represented in the schema of the domain ontology and records containing
unique identifiers are merged. Most pages and records do not contain identifiers, so the knowledge base at this
stage of processing consists of a large number of small data islands represented in a homogeneous schema. The
goal of this stage of processing is to augment the knowledge base with links between similar data items (Figure 7).

Figure 7. Similarity analysis

DIG provides capabilities to compute similarity for images and for
text data. DIG’s image similarity capability uses DeepSentiBank, a deep
convolutional neural networks approach.7 The approach extracts over
2,000 features from each image and computes hashcodes that can be used
to retrieve similar images. An important benefit of this approach is that
there is no need to train the similarity algorithms with images in the
domain of interest. In our human trafficking application we used this
approach with a database of 20 million images. The system is able to
find identical and near duplicate images for an unseen image in less than
2 seconds. For example, given a photo of a person, the system can find
other photos of a person taken in similar settings (e.g., in the same room)
even if the person is in a different pose.

DIG uses Minhash/LSH algorithms8 to compute similarity on text data, as these algorithms can scale to large
datasets containing hundreds of millions of documents. These algorithms work by computing random hashing
functions on the tokens of a document, and can find pairs of similar items in a large dataset in O(n∗ log(n)) time.
Minhash/LSH computes an approximation of Jaccard similarity, defined as the ratio of tokens two documents
have in common over the combined number of tokens in the two documents.

To use these algorithms, DIG needs to associate a document with each data record, and then run the
Minhash/LSH algorithms over the associated documents. DIG provides a library of tokenization methods to
compute the tokens that form the document associated with a data record. If a data record contains sentences
or larger texts, then the document can be formed using the words in the document, or word n-grams (sequences
of several words). If the data records contain small values such as names of people or geographic locations, then
the document can be formed using character n-grams (sequences of several characters). These n-grams are useful
because they allow the algorithm to find similar items when they use slightly different spellings for words.

To find similar data items, a data scientist first uses the tokenization library to define appropriate tokenization
schemes for the data items. Then, the data scientist designates a property in the ontology to record data item
similarity and adds a step to the data workflows to compute the similarity over the complete data set. It is
common to compute similarities over different data items. For example, in a scientist domain we may compute
similarity of research profiles to identify scientists working on very similar topics; we may compute similarity
between publication records to identify multiple copies of publications; etc.



7. ENTITY RESOLUTION

The next step in the DIG pipeline is to find the matching entities (often called entity resolution). Consider
our running example with the data extracted from web pages about scientists. The entities are scientists,
organizations, and publications and each of these entities has a set of properties associated with them. The task
in this step is to determine which data corresponds to the same entities. For example, if the same scientist is
extracted from multiple pages, we would want to determine that all of the associated information corresponds
to the same scientist. Or when publications list multiple authors, we would want to find the connection to
the researchers that might be listed on other university faculty pages. The output of this step would be a set
of explicit links between entities extracted from different sources. The objective, illustrated in Figure 8 is to
discover the relevant entities in the data (blue circles in the figure), and to associate the appropriate entities
with the relevant records.

Figure 8. Entity resolution determines
the matching entities

DIG addresses two variations of the problem. The easier case is when
there is an appropriate reference dataset that contains all the relevant
entities. For example, GeoNames (geonames.org) is a comprehensive
geographical database containing over 2.8 million populated places, so it
can be used as a reference set for cities. In DIG, we use GeoNames as a
reference set for populated places, so entity resolution for cities becomes
the problem of mapping mentions of cities to the appropriate entity in
GeoNames (e.g., mapping the string “Los Angeles, CA” to the record
identifier for the city of Los Angeles in California.

To solve this variant of the entity resolution problem, a data scien-
tist first uses Karma to map the reference dataset to the ontology being
used. Then, the data scientist uses the similarity analysis discussed in
the previous section to compute similarities between records in the refer-
ence dataset and other records in the knowledge base. The output of the

similarity matching step is a small number of candidate entities for each entity mention in the knowledge base.
Often, to identify entities accurately, it is necessary to define matching algorithms tuned to the entity type. Data
scientists can define custom matching algorithms or use classifiers such as support vector machines (SVM) to
define custom matching components to determine whether a mention should be matched with an entity. This
final step is not subject to the same scalability requirements as the previous similarity step. As mentioned in the
previous section, the similarity step is highly scalable and yields a small number of similar items for each entry.
Consequently, the final custom matching step is allowed to be quadratic without affecting overall scalability.

The second variant of the entity resolution problem addresses the case when there is no reference set for the
entities of interest. For example, there is no reference set for the set of physics researchers. For these cases
it is necessary to infer the set of entities from their mentions. DIG represents each entity as a set of features
(e.g., a person can be represented by a name feature, birth-place and work-place features, a research interests
feature, etc.) To define entities, DIG first converts each mention to a set of features and defines a new entity
for each mention. This first step creates redundant entities given that multiple mentions may refer to the same
entity. The second step eliminates the redundant entities using a clustering approach similar to Swoosh.9 Using
the techniques described in the previous section, a data scientist directs DIG to compute similarities between
potentially redundant entities. When the similarity between entities is above a certain threshold, DIG combines
the entities by defining a new entity whose set of features is a combination of the set of features of the component
entities. This technique works well with strict thresholds that lead to a conservative policy for combining entities.
Strict thresholds lead to small, but correct clusters (high precision). The down-side is that entities that should be
combined do not get combined (e.g., DIG may have two entities for a single person). Less strict thresholds leads
to a higher likelihood of correctly combining all the entities that should be combined, but also leads to situations
where entities are combined incorrectly (higher recall, lower precision). The downside of lower thresholds, is that
the feature sets of the combined entities grow and make it more likely for an increasing number of entities to be
incorrectly combined. For this reason we encourage data scientists to use strict thresholds as this increases the
likelihood of creating correct entities.



Entity resolution is a critical step in the analysis process since it provides a way of finding the data that refers
to the same entities, which in turn allows us to find the interesting connections between entities. In the case
of integrating the data about scientists, the entity resolution combines the data about the individual scientists
with their publications and co-authors on those publications. This allows us to build a graph of the connections
between scientists, organizations and co-authors, which can be used to find the clusters of scientists that work
together and especially those groups of scientists that have specific areas of expertise, such as those required to
create nuclear weapons.

8. GRAPH CONSTRUCTION

The steps described in the previous sections operate on datasets that can have hundreds of millions or records. In
the DIG approach, the crawling and extraction steps consume and produce heterogeneous data representations.
The data integration step converts all data to a homogeneous schema as defined in a domain ontology, and
converts all data to a homogeneous representation as JSON-LD documents. The similarity and entity resolution
steps that follow consume and produce JSON-LD documents.

Figure 9. All data is integrated into a
graph that can be queried and analyzed

DIG stores crawled data in the Hadoop File System (HDFS), and uses
the Oozie workflow system (oozie.apache.org) to automate all process-
ing steps. The output of the entity resolution steps are a collection of
JSON-LD document, one per entity (depicted on the left side of Fig-
ure 9) Naturally, the number of documents can be in the hundreds of
millions.

DIG can deploy the data in multiple formats, tuned to multiple uses:

HDFS: the integrated dataset is available as a collection of sequence files
in HDFS. This representation is appropriate for applications that
will to run additional analyses using Hadoop.

ElasticSearch: a highly scalable document store supporting keyword
and structured query (elastic.co).

Graph databases: including RDF stores such as OpenLink Virtuoso
(virtuoso.openlinksw.com) and native graph databases such as
Titan (thinkaurelius.com).

DIG supports bulk processing in Hadoop, enabling the processing of large amounts of data (e.g., 50 mil-
lion documents in 2 hours in a 20-node Hadoop cluster). This processing pipeline enables data scientists to
experiment with different ontologies, different similarity and entity resolution approaches, and to run large scale
experiments in a reasonable amount of time. In addition, DIG supports incremental processing using the same
Oozie workflows, updating the deployed datasets periodically (e.g., every hour). The DIG components are also
designed to run in Apache Storm (storm.apache.org) to support real-time incorporation of crawled data. Data
scientists can define appropriate Storm topologies to support real-time processing.

9. QUERY, ANALYSIS, & VISUALIZATION

Supporting efficient querying of large datasets is challenging. A query, represented as a graph pattern over
the green arrow in Figure 10, selects subgraphs that match the pattern. The choice of data store determines
the types of queries that can be answered efficiently as well as a variety of other trade-offs relating to loading
time, replication, transactions, and a range of other issues beyond the scope of this paper. As mentioned in
the previous section, DIG supports deployment of the integrated dataset in multiple kinds of data stores to give
developers options to navigate the trade-off space.

For interactive query, DIG deploys the dataset in ElasticSearch, which provides efficient support for keyword
querying, for facetted browsing, and aggregation queries.



Figure 10. Queries are graph patterns
that selects subgraphs of a larger graph

Figure 11 shows a screenshot of the DIG user interface. The user is
looking for publications from Iran that contain the word “carbon” in the
abstract. The interface paradigm is similar to that of popular web sites
such as Amazon (amazon.com). The interface provides a box for keyword
search at the top, shows ranked results in the main panel below the search
box, provides facets on the left to enable users to filter the results by
category. This interface paradigm makes DIG easy to use given that this
paradigm is familiar to millions of users who routinely purchase goods on
the Internet.

The visualization at the top of Figure 11 shows a timeline of all pub-
lications that match the search criteria. The visualization changes dy-
namically as the user refines the query. In addition to time lines, DIG

supports a variety of visualizations types including bar charts, line charts, tag clouds, maps and social network
displays.

10. DISCUSSION

In this paper we described the DIG system and discussed how it could be applied to the problem of assessing the
nuclear know-how of a country based on open source data. DIG can pull data from a combination of web pages
and databases, extract and clean the data from those sources, integrate the data across sources, link the entities
within the sources, build a graph of all of the data, and then query the data to solve specific analytical problems.
DIG is not limited to this specific application and has already been applied to the problem of combating human
and labor trafficking and understanding the research trends in the field of material science. The underlying tools
and technology are widely applicable and can be applied to many other applications, such as integrating and
analyzing multi-INT data

In future work, we plan to refine the tools and technology to make it easier and faster to build new applications.
In particular, we are developing improved tools for rapidly training information extractors for new applications
domains. We are working on highly scalable entity-linking and entity resolution techniques, which will allow us
to both find entities within the set of extracted data as well as to resolve the entities with known entities in
another source. And we are working on improving the machine learning techniques for automatically modeling
new sources, which will improve the accuracy and speed of integrating new sources of data.

Figure 11. Screenshot of DIG query interface showing results for keyword “carbon” and authors from “Iran”



ACKNOWLEDGMENTS

This research is supported in part by the Defense Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL) under contract number FA8750-14-C-0240, and in part by the National
Science Foundation under Grant No. 1117913. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA, NSF, or the U.S. Government.

REFERENCES

[1] Finkel, J. R., Grenager, T., and Manning, C., “Incorporating non-local information into information extrac-
tion systems by gibbs sampling,” in [Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics ], 363–370, Association for Computational Linguistics (2005).

[2] Knoblock, C. A. and Szekely, P., “Exploiting semantics for big data integration,” AI Magazine (2015).

[3] Wu, B. and Knoblock, C. A., “Iteratively learning conditional statements in transforming data by example,”
in [Proceedings of the First Workshop on Data Integration and Application at the 2014 IEEE International
Conference on Data Mining ], 1105–1112, IEEE (2014).

[4] Knoblock, C. A., Szekely, P., Ambite, J. L., , Goel, A., Gupta, S., Lerman, K., Muslea, M., Taheriyan, M.,
and Mallick, P., “Semi-automatically mapping structured sources into the semantic web,” in [Proceedings of
the Extended Semantic Web Conference ], (2012).

[5] Taheriyan, M., Knoblock, C. A., Szekely, P., and Ambite, J. L., “A graph-based approach to learn semantic
descriptions of data sources,” in [Proceedings of the 12th International Semantic Web Conference (ISWC
2013) ], (2013).

[6] Taheriyan, M., Knoblock, C. A., Szekely, P., and Ambite, J. L., “A Scalable Approach to Learn Seman-
tic Models of Structured Sources,” in [Proceedings of the 8th IEEE International Conference on Semantic
Computing (ICSC 2014) ], (2014).

[7] Chen, T., Borth, D., Darrell, T., and Chang, S., “Deepsentibank: Visual sentiment concept classification
with deep convolutional neural networks,” CoRR abs/1410.8586 (2014).

[8] Leskovec, J., Rajaraman, A., and Ullman, J. D., [Mining of massive datasets ], Cambridge University Press
(2014).

[9] Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S. E., and Widom, J., “Swoosh: A generic
approach to entity resolution,” The VLDB Journal 18, 255–276 (Jan. 2009).


