
Automatic Spatio-temporal Indexing to
Integrate and Analyze the Data of an Organization

Craig A. Knoblock
USC Information Sciences Institute

Marina del Rey, CA
knoblock@isi.edu

Aparna R. Joshi
National Institute of Technology

Karnataka
Mangalore, Karnataka
aparna29th@gmail.com

Abhishek Megotia
USC Information Sciences Institute

Marina del Rey, CA
megotia@usc.edu

Minh Pham
USC Information Sciences Institute

Marina del Rey, CA
minhpham@usc.edu

Chelsea Ursaner
O�ce of Los Angeles Mayor Garcetti

Los Angeles, CA
chelsea.ursaner@lacity.org

ABSTRACT
Organizations are awash in data. In many cases, they do not know
what data exists within the organization and much information
is not available when needed, or worse, information gets recre-
ated from other sources. In this paper, we present an automatic
approach to spatio-temporal indexing of the datasets within an
organization. The indexing process automatically identi�es the spa-
tial and temporal �elds, normalizes and cleans those �elds, and
then loads them into a big data store where the information can
be e�ciently searched, queried, and analyzed. We evaluated our
approach on 600 datasets published by the City of Los Angeles
and show that we can automatically process their data and can
e�ciently access and analyze the indexed data.

KEYWORDS
spatio-temporal indexing, large-scale integration, e�cient querying
and analysis, data cleaning, urban data

ACM Reference format:
CraigA. Knoblock, Aparna R. Joshi, AbhishekMegotia,Minh Pham, andChelsea
Ursaner. 2017. Automatic Spatio-temporal Indexing to Integrate and Ana-
lyze the Data of an Organization. In Proceedings of UrbanGIS’17:3rd ACM
SIGSPATIAL Workshop on Smart Cities and Urban Analytics, Redondo Beach,
CA, USA, November 7–10, 2017 (UrbanGIS’17), 8 pages.
https://doi.org/10.1145/3152178.3152185

1 INTRODUCTION
As we move to a world where everything is computerized, organi-
zations are collecting and maintaining more and more data about
everything they do. This is a huge problem for cities since they have
to manage and maintain data about a broad range of city services

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
UrbanGIS’17, November 7–10, 2017, Redondo Beach, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5495-0/17/11. . . $15.00
https://doi.org/10.1145/3152178.3152185

and infrastructure. The challenge is how to help these organizations
�nd and manage the information they already have, and how to
provide integrated access to this information to both visualize and
analyze the data across a wide range of sources.

We have been collaborating with the City of Los Angeles to pro-
vide better access to the data that they alreadymaintain. LA City has
published a great deal of their city datasets as open data available in
two repositories: https://data.lacity.org and http://geohub.lacity.org.
In these two repositories there are about 1,100 datasets that contain
detailed information about everything related to the city from busi-
ness licenses to which trees are planted in each park. The number
of datasets is so large that departments within the city will often
be unaware of relevant datasets.

To address this problem of locating and querying datasets, we
developed a general approach to automatically organizing and in-
dexing the data for a large organization, such as a city. The key idea
is to exploit the fact that a large majority of the data for a city has
a strong spatial and temporal component. Thus, we developed an
approach to determine a spatio-temporal index of each record in
each of the city data sources. To perform this task automatically,
our algorithms analyze each dataset, identify the �elds that contain
spatial information for each record, identify the �elds that contain
temporal information for each record, and then normalize the spa-
tial and temporal information into standard formats across all of
the datasets. Once we have determined this spatial and temporal
information for all the records, we than store every record from
each dataset with the newly derived metadata into Elasticsearch.1
Elasticsearch is a big data document store that provides e�cient
access to large numbers of documents. The resulting system, which
will typically store millions of records, makes it possible to e�-
ciently access all the records for a speci�ed region within the city
over a given time span. Queries such as which datasets contain
any records for a particular area can be answered in just a few
milliseconds, whereas searching each of the original datasets would
take considerably longer.

In the remainder of this paper, we �rst describe our approach to
automatic spatio-temporal indexing of the records in each dataset,

1www.elastic.co

https://doi.org/10.1145/3152178.3152185
https://doi.org/10.1145/3152178.3152185

UrbanGIS’17, November 7–10, 2017, Redondo Beach, CA, USA Knoblock et al.

including the methods to identify the spatial and temporal at-
tributes, to automatically normalize those attributes, and to orga-
nize the resulting data for easy and e�cient access. We also present
an evaluation of the coverage and e�ciency of this approach to
indexing the data. Second, we describe how we use Elasticsearch
to query and analyze the data, and we present an evaluation of the
e�ciency of this approach to querying the data. Next, we present
related techniques on automatic indexing. Finally, we conclude with
a discussion of the generality of the techniques and directions for
future research.

2 SPATIO-TEMPORAL INDEXING OF THE
DATA

In this section we describe the end-to-end techniques for auto-
matically processing all of the data for a given organization. The
system �rst identi�es the spatial and temporal �elds of each dataset,
geocodes the addresses for any datasets that lack latitude/longitude
information, normalizes the formats, and then creates and stores a
document into Elasticsearch for each record in each dataset.

2.1 Identifying the Spatial and Temporal Fields
Because datasets usually contain spatial and temporal information
in di�erent representations, identifying spatial and temporal �elds
in multiple datasets is challenging. For example, date values can
have many formats such as dd:mm:yyyy, mm/dd/yyyy or dd MM,
yyyy and datasets can contain temporal data in any of these formats.

To identify spatial and temporal �elds in the data, we use our
previously-developed DSL approach to semantic labeling [14]. The
purpose of DSL is to label unseen attributes by comparing them
with sample data using various similarity measures. In our system,
since we need to discriminate spatial and temporal attributes from
other attributes in new datasets, we provide DSL samples of both
spatial and temporal data. For spatial data, we have the following
types of data: longitude, latitude, street address, city, state and
zip code. For temporal data, we consider all temporal data as one
general date/time type. All sample data is indexed and stored into
Elasticsearch for faster queries in the prediction phase.

In the prediction phase, we need to recognize temporal and spa-
tial attributes in new datasets. Many of these attributes are stored
in unseen formats that our sample data does not cover. To identify
temporal and spatial data with unseen formats, DSL extracts a set
of similarity features between unseen and sample data for each
attribute. Similarity features consist of:

• Attribute name similarity compares names between new at-
tributes with indexed types using string similarity measures,
such as Jaccard similarity.

• Value similarity compares the occurrences of overlapping
values in attributes using metrics such as Jaccard similarity
and TF-IDF cosine similarity.

• Distribution similarity acknowledges di�erences and simi-
larities on how data are distributed over their range of values
using hypothesis tests, such as Kolmogorov-Smirnov test.

• Histogram similarity recognizes similarity even when new
attributes have di�erent representations compared with our
sample data. In histogram similarity, we convert values into
histogram, which removes di�erences in representations and

then use the Mann-Whitney test hypothesis test to compare
these histograms.

After extracting similarity features, DSL uses a trained Logistic
Regression model to classify whether a new attribute is similar
to an indexed type. If the classi�cation probability is higher than
a threshold, we say that the attribute is similar with one of the
indexed type and we can label the new attribute with that indexed
type.

2.2 Geocoding Address Fields
For datasets that do not contain latitude and longitude coordinates,
the system uses a geocoder to convert any available street address
data into latitude and longitude coordinates. To perform this task,
we use the TAMU geocoder. 2 To perform this mapping, the dataset
must contain a spatial extent including a street address or zip code.
In cases where there is only a street address and no city or zip code,
we use a city of "Los Angeles" since all of the datasets are about LA.

Once we query the geocoder for a given location to retrieve
its coordinates, we then cache this location-coordinate pair in a
Mongo database.3 We use MongoDb here to e�ciency store and
retrieve the cached data. This improves the speed of geocoding
since we may encounter the same address in multiple datasets. It
also reduces the load on the geocoder when we need to re-index
the data when the city databases are updated.

Figure 2 provides an example of a street address taken from
one of the datasets which is then converted to its corresponding
geographical coordinates using the TAMU geocoder.

2.3 Normalizing the Data
In many datasets, the same information may be represented in a
variety of formats. For example, we have found at least �ve di�erent
formats for the temporal data in the City of Los Angeles datasets.
Since our goal is a fully automatic approach to analyzing the data,
we need an approach to automatically clean this data without any
user input.

We have developed an unsupervised method for automatic data
cleaning. Suppose that we have two attributes a1, a2 which have
the same semantic types but di�erent formats. We want to convert
data values in a1 so that they will have the same format with data
values from a2.

Our method consists of three di�erent phases:
• Inferring data templates from attributes
• Mapping corresponding elements in templates across di�er-
ent attributes

• Replace corresponding elements in the standard format with
elements from original format

In the inference phase, we implemented a recursive algorithm
to recognize common substrings from sets of values from a format
and cluster values into di�erent groups, which requires di�erent
mappings to the standard format data. Details of our recursive
algorithm are described as follows:

• Find the longest common substring (LCS) for all data values
using su�x tress [9].

2http://geoservices.tamu.edu
3http://www.mongodb.com

Automatic Spatio-temporal Indexing to
Integrate and Analyze the Data of an Organization UrbanGIS’17, November 7–10, 2017, Redondo Beach, CA, USA

Figure 1: Example of semantic labeling

Figure 2: Example of geocoding using the TAMU Geocoder

• If there is no LCS for all data values, �nd the LCS that appear
in the most number of values. The LCS needs to appear in
more than 50% of the data values.

• Split values by common substrings and cluster values that
have the same number of tokens after splitting.

• Rerun the �rst three steps for each cluster until there is no
LCS found in one cluster.

For example, if we have a temporal attribute in mm/dd/yyyy
format and we want to convert data in this attribute to standard
ISO 8601 format (yyyy:mm:ddThh:mm:ss.sssZ). Using our inference
algorithm, we can infer that "/" is constant in mm/dd/yyyy format.
Likewise, constants in ISO format are ":", "T" and ".".

After inferring templates from attributes, we will have a set of
clusters for each attribute. Each cluster can be considered as a set
of columns since they contain multiple sets of values which are

the result of data splitting from the original attribute. With both
mm/dd/yyyy and ISO formats, because we always have the same
numbers of tokens after splitting on constants, we have one cluster
for each attribute as shown in Table 1 and 2.

In the mapping phase, we use a similarity measure to map
columns ci from clusters in attribute a1 to columns c j in clusters in
attribute a2. Let X be a boolean matrix where Xi j = 1 i� column
ci is assigned to column c j and S is a similarity matrix where Si j
is similarity score between column ci and column c j , the mapping
objective function between clusters is as follows:

max
’
i

’
j
Si jXi j

In the replacement phase, data values in columns of clusters
from s2 will be replaced by corresponding columns in s1. After that,

UrbanGIS’17, November 7–10, 2017, Redondo Beach, CA, USA Knoblock et al.

Table 1: Template of columns for mm/dd/yyyy

dd / mm / yy
... / ... / ...
... / ... / ...

Table 2: Template of columns for ISO format

yyyy : mm : dd T hh : mm : ss . sss Z
... : ... : ... T ... : mm : ss Z
... : ... : ... T ... : mm : ss Z

we will have the �nal data that contains the same values as s1 but
has the format of s2. For example, with data in mm/dd/yyyy, dd,
mm and yyyy columns are mapped with corresponding columns
in ISO format. After that, the values inside ISO format columns
are replaced by values corresponding columns from mm/dd/yyyy
format. Finally, we concatenate values in the same rows to obtain
data in the ISO format.

In this work, our algorithm can only handle cases where format
transformation requires replacement.We are working on improving
the algorithm so that it can handle more sophisticated transforma-
tions.

2.4 Storing the Data in Elastic Search
ElasticSearch is a distributed full-text search and analytics engine
built on Apache Lucene. ElasticSearch allows searching and ana-
lyzing of large volumes of data in near real time, thus explicitly
addressing issues related to scalability, big data search and perfor-
mance that traditional relational databases were never designed to
support. Many applications can take advantage of advanced Lucene
indexing or scoring capabilities of ElasticSearch. ElasticSearch also
provides a web interface, Kibana, for querying and visualisation of
data.

ElasticSearch has aided numerous organizations in overcoming
the shortcomings of their previous approaches to meet the require-
ments of real time data processing, storage and retrieval [8]. We
selected this open source technology as our integrated data store
since it supports e�cient spatial search, enhanced search capa-
bilities, and low query response times. ElasticSearch provides an
extremely rich query and indexing API.

We store all of the data across all of the original sources in Elas-
ticSearch. In this process, we use a common format for representing
all the data. The meta �elds in ElasticSearch consist of "_index"
to represent the index to which the document belongs, "_type" to
denote the document’s mapping type, "_id" for the document’s ID
and "_source" for the original JSON representing the body of the
document. We introduce six �elds at the top level of the _source
meta �eld. These �elds are described as:

(1) table_name for the name of the SOURCE table
(2) row_in_dataset for the row of the record (instance of the

dataset) in the original source
(3) url_link for the address of the dataset
(4) date for the temporal extent of the record
(5) location for the spatial extent of the record

(6) data for the raw data for the record

An example of a record in JSON in the speci�ed format is given
in Figure 3.

Before we load the data in Elasticsearch in this speci�ed common
format, we de�ne mappings for the Date and Location �elds. We
establish a geo_point mapping for the Location �eld. The geo_point
datatype is an object with "lat" (latitude) and "lon" (longitude) keys,
which Elasticsearch uses to support e�cient spatial searches. Sim-
ilarly, we de�ne a date mapping with a "datetime" format for the
Date �eld, which Elasticsearch uses to support e�cient �lters by
the date range.

2.5 Evaluation of the Spatio-temporal Indexing
In our experiments we processed the �rst 600 datasets from the
City of Los Angeles. Of these datasets, 300 were taken from the
http://data.lacity.org portal while the remaining 300 datasets were
taken from the http://geohub.lacity.org portal. Running on a Mac-
book Pro with a 2.3 GHz Intel Core i7 processor and 16 GB 1600
MHz DDR3 memory, it took approximately 60 hours to insert the
records that could be processed from the 600 datasets, which in-
cluded almost 4 million records. The large time duration was due
to the large number of API calls made to the mongoDB cache and,
if needed, the geocoder for the cases where there were no latitude
and longitude coordinates present in the dataset.

Of the 300 datasets from the geohub.lacity.org portal, 177 of
them had a spatial extent where each record could be mapped to
a latitude/longitude coordinate. The remaining datasets were not
mapped since they had a spatial extent consisting of some more
complex shape involving multiple coordinates. Of the 177 datasets,
20 datasets did not contain any latitude and longitude coordinates,
but they did have an address and we geocoded that address using
the TAMU geocoder.

Table 3 shows the analysis of the mapping of the spatial data.
Of the 177 datasets from Geohub, 23 datasets were incorrectly
mapped to the wrong spatial extent. This was usually because the
semantic labeling module incorrectly predicted a column as the
spatial extent which was then passed to the geocoder resulting in
incorrect coordinates. Therewere 122 datasets that were determined
to have no spatial extent out of which 16 datasets were incorrectly
predicted as they did have some spatial extent. This was because
the semantic labeling prediction score of the coordinate column
was below the threshold value of 0.25.

Table 4 shows the analysis of the mapping of the temporal data.
Of the 177 datasets that were indexed into elasticsearch from the
Geohub portal, 154 datasets have temporal extent and were cor-
rectly mapped by the model. There were 6 datasets which did not
have any temporal data but the model incorrectly predicted them
as having some temporal data. Two datasets did not have any tem-
poral data and were correctly predicted by the model. Four of the
datasets had temporal data but was not predicted by the semantic
labeling module. The remaining �ve datasets predicted the wrong
column for the temporal data.

As shown in Table 3, for the data.lacity.org portal there were
35 datasets which were identi�ed as having some spatial extent
out of which �ve were incorrectly mapped. And 256 datasets were
predicted to not contain any spatial extent out of which 37 datasets

Automatic Spatio-temporal Indexing to
Integrate and Analyze the Data of an Organization UrbanGIS’17, November 7–10, 2017, Redondo Beach, CA, USA

Figure 3: A record of Trees_Recreation_and_Parks_Department dataset in JSON

did in fact contain some spatial data. This was because the model
did not account for addresses containing street address and geo-
points in the same column and also did not account for addresses
stored in multiple lines instead of one single line. This can be solved
by retraining the model accordingly. Of the 35 datasets, 17 of them
had to be geocoded as they did not have any latitude or longitude
coordinates present.

As shown in Table 4, Of the 35 datasets, 19 datasets were mapped
correctly with their temporal extent and eight datasets were pre-
dicted correctly as not having any temporal extent. Five datasets
were predicted to have some temporal extent when they did not
have any temporal data in the dataset. Of these, two datasets had
temporal data but the model mapped these datasets without any
temporal extent. The remaining dataset was mapped to the wrong
column.

In the 600 datasets, there were a few datasets that were faulty or
unaccessible either due to maintenance of the datasets or dataset
corruption.

3 QUERYING AND ANALYZING THE DATA
Once the data from all of the original data sources has been loaded
into Elasticsearch, we can now e�ciently query and visualize the
available data.

Visualization of queries with geographic and temporal bounds
on a map with street level precision enables easy analysis of huge
amount of integrated data. One of the advantages o�ered by this
practice is that users can interact more naturally with the data,
without having to master a query language to understand the un-
derlying structure of the data sets. The right presentation makes it
easier to organize and understand the information in addition to
gathering insights from analyzing the data.

To provide the visualization of the data, we use Kibana, which
is an open source data analytics platform that is designed to work

with ElasticSearch to provide an interface through which data in the
ElasticSearch cluster is analyzed and correlated. Kibana leverages
the API calls to access the ElasticSearch storage and sift through
parsed data with user generated queries. In addition to providing
interactive insights, Kibana makes monitoring the data simple with
quick visualizations for the �ltered data that results from queries.

Once all of the data is inserted into ElasticSearch, queries to
�lter the data based on spatial and temporal information can be
performed e�ciently and the results can be visually presented on
maps. Di�erent types of spatial queries can be performed such as
retrieving all data present within some radius of a certain location
or given the topleft and bottomright coordinates, getting back the
data present in that rectangular box which is supported by the
geo_distance and geo_bounding_box in ElasticSearch. Similarly,
data can be �ltered temporally with the range query, such as a
query retrieving documents that have temporal information after
and/or before a date value.

For instance, the query in Figure 4 retrieves and displays the doc-
uments that have locations that lie within 2km of the location spec-
i�ed by coordinates (latitude, longitude) as (34.052749942056835,-
118.29490008763969) having dates that fall after the date speci�ed,
"19900101T17:56:13.833Z".

We can also e�ciently perform queries to identify all of the
datasets which have records that satisfy given geographical and
temporal bounds. An example is shown in Figure 5. This query re-
turns the record count for each table/dataset satisfying the speci�ed
�lter conditions, which can also include keywords.

3.1 Evaluation of the Querying and Analysis
In this experiment, we evaluate the scalability of the model and the
time taken to retreive the results on di�erent types of queries.

UrbanGIS’17, November 7–10, 2017, Redondo Beach, CA, USA Knoblock et al.

Table 3: Analysis of indexing and mapping of the datasets with respect to spatial extent

Portal Total Number
of Datasets

Datasets predicted
and mapped with
spatial extent

Datasets which predicted
incorrect Spatial Extent

Datasets predicted
having NO
spatial extent

Datasets incorrectly
predicted as having
NO spatial extent

Datasets which
were geocoded

Faulty
Datasets

http://geohub.lacity.org/ 300 177 23 122 16 3 1

https://data.lacity.org/ 300 35 5 256 37 17 9

Table 4: Analysis of indexing and mapping of the datasets with respect to temporal extent

Portal

Total number of
datasets predicted
and mapped with
Spatial Extent

Datasets having
temportal extent and
correctly predicted

Datasets predicted
with wrong column
as temportal extent
when no temportal extent exists

Datasets not
having temportal extent
and correctly predicted

Datasets having
temportal extent
but not predicted

Datasets having
temportal extent but
wrong column predicted

http://geohub.lacity.org/ 177 154 6 2 4 5

https://data.lacity.org/ 35 19 5 8 2 1

Figure 4: Query with a speci�ed radius

At increments of each 500,000 records, we make di�erent queries
on the indexed ElasticSearch and record the time taken for each of
these queries to run.

The di�erent types of queries we ran our experiments are:
(1) Fetch all the records in a 2 km radius from a given coordinate

x ,� where the date is greater than some date d .
(2) Fetch all the data that is indexed in the data-store.
(3) Given a rectangular box with its top left coordinates x1,�1

and bottom right coordinates x2,�2, fetch all the records that
are located inside this box.

(4) Fetch the table name and url for all the records in a 2 km
radius from a given coordinate x ,� where the date is greater
than some date d .

As is evident from Figure 6, the model is scalable since even on
querying on larger number of records at each increment, the time
taken to execute these queries is less than 100ms.

4 RELATEDWORK
With a rapid rise in the spatio-temporal applications, the need
for new query processing methods for data dealing with both the

domains: spatial and temporal, is increasing. Some examples of
these applications include location-aware services [12] and tra�c
monitoring [13].

Further, models have been proposed for automating extraction,
integration and analysis of data. R. Ahsan, et al [1] describes a
Data Integration through Object Modeling (DIOM) framework em-
ploying a spatial-temporal model for generalizing information ex-
traction. The entity classi�er proposed in the model extends the
Stanford Name Entity Recognizer for identifying objects in the
spatial-temporal model. While this work automatically classi�es
entities based on inference from implicit knowledge such as titles or
footnotes (unstructured data) in spreadsheets, we focus on deduc-
ing the semantic types of data with machine learning techniques
by training the model on relevant types.

Rattenbury [17] described an approach for extracting place and
event semantics to assign to photos by burst detection assuming
that signi�cant patterns for event and place tags are manifested as
bursts over small parts of time or space. This work relies on the
usage distribution for extraction of spatial and temporal semantics

Automatic Spatio-temporal Indexing to
Integrate and Analyze the Data of an Organization UrbanGIS’17, November 7–10, 2017, Redondo Beach, CA, USA

Figure 5: Query for retrieving sources having a satisfying record

Figure 6: Scalability of the model using a time vs record
count graph

whereas our approach is independent of the distribution of spatio-
temporal information for identi�cation of semantic types.

Before the use of temporal information in other applications is
possible, the �rst task to solve is to extract and normalize temporal
expressions. There are two commonly used methods to approach
this. First is rule-based and second uses machine learning tech-
niques. HeidelTime [18] is a proposed system for extraction and
normalization of temporal expressions that falls in the �rst category
as opposed to ours. HeidelTime is a rule-based system primarily
using regular expression patterns for the extraction of temporal
information and knowledge resources along with linguistic clues
for their normalization. Numerous frameworks for mining spatial

data have been proposed. Chawla et al [5], presents a framework
for prediction of locations using map similarity.

Mei and Shen[11] have studied probabilistic approaches to au-
tomate labeling multinomial topic models where they model the
problem as an optimization problem of minimizing KL divergence
between distributions and maximizing mutual information between
a label and a topic model. Attribute labeling has also been studied in
Zhu’s work [20], with e�cient integration of all useful features by
learning their importance. They propose a probabilistic model to in-
tegrate data record detection and attribute labeling with availability
of semantics.

In the �eld of data cleaning, Raman et al [16] proposed a system
called Potter’s Wheel that automatically infer structure from data
and allows user to interact with system to provide transformation
rules. However, their inference method runs in exponential time
since they enumerate all possible valid structures instead of �nd-
ing constants and slots as our approach. Moreover, our approach
also infers the transformations automatically based on clustering
and similarity matching. Gulwani [6] has used programming-by-
example (PBE) as an interactive way for a user to provide a small
number of examples so that the system can transform data based on
these examples. However, PBE systems require input-output pairs
to be aligned to learn the transformation rules and thus cannot
be used in data integration since we do not have the alignments
between data across sources.

More semantically-rich location analysis problems have been
studied in the domain of web-based information retrieval. Aram-
patzis et al’s work [2] aims to extract geographic information for a
web page, based on the page links and network properties, as well
as geographic terms that appear on the page. The second related

UrbanGIS’17, November 7–10, 2017, Redondo Beach, CA, USA Knoblock et al.

research e�ort [15] in GeoIR focused on extracting the scope of
geographic terms or entities based on co-occurring text and de-
rived latitude-longitude information. In [10], automated methods
for extracting geo-temporal semantics from text, using simple text
mining methods that leverage on a gazetteer service are described.

In recent years, with the explosion of published data from cities in
the United States and around the world, multiple research projects
have been conducted in integrating and using this large amount of
data. Barbosa et al. [3] have done a detailed analysis of open urban
data in 20 cities in the United States and Canada. They have run
multiple experiments on understanding the data in di�erent aspects
such as volumes, schema diversity, data sparseness and informa-
tiveness, etc. However, all of their experiments are run separately
and mostly based on heuristic rules, which makes these modules
di�cult to reuse in new applications. On the other hand, Ribeiro
et al [4] implemented a system called UrbanPro�ler that processes
data from New York City Open Data and provides complex search
queries, including spatial visualization of the data. While it is an
automatic system, some of their components such as automatic
type detection are built based on heuristic rules that are speci�cally
for the data and may requires manual labor to extend for data in
other domains. In contrast, our system provide a full pipeline for
automatic labeling, normalizing, indexing and querying the data.
All of our modules, such as semantic labeling, data normalizing and
analyzing are built in an unsupervised manner. Therefore, the sys-
tem can be adapted to run on other datasets from di�erent domains
with little e�ort.

5 DISCUSSION
The availability of big data infrastructure today makes it possible
today to approach data challenges in novel ways. For example,
we can integrate the City of LA’s datasets by performing spatio-
temporal indexing on every record of each dataset and constructing
a document from those records and then loading them into a sin-
gle big data document store. The resulting system then provides
millisecond-based access to over four million records that were
originally stored in separate databases. The resulting organization
now makes it possible to �nd and access data in ways that would
have been inconceivable even a few years earlier.

While this approach to indexing and integrating the data of a
city provides a huge advance over what was previously available,
it is just the �rst step in providing integrated access to the data of
a city. Time and space provide a great way to organize much of
the data, but there are many types of analysis that require a better
model of the rest of the �elds of the available data. In previous work,
we developed semi-automatic methods to create a detailed model
of a dataset in a system called Karma [7, 19]. However, given the
human interaction required, that work does not scale well to the
large number of datasets available here. So an important direction
of future work is developing automatic mapping techniques that
will support more detailed types of analysis over the data of a city.

ACKNOWLEDGEMENTS
We thank Dan Goldberg for generously allowing us to use the
TAMU Geocoder (http://geoservices.tamu.edu/Services/Geocode/)
to geocode many thousands of addresses.

REFERENCES
[1] R Ahsan, R Neamtu, and E Rundensteiner. 2016. Using entity identi�cation and

classi�cation for automated integration of spatial-temporal data. International
Journal of Design & Nature and Ecodynamics 11, 3 (2016), 186–197.

[2] Avi Arampatzis, Marc Van Kreveld, Iris Reinbacher, Christopher B Jones, Subodh
Vaid, Paul Clough, Hideo Joho, and Mark Sanderson. 2006. Web-based delineation
of imprecise regions. Computers, Environment and Urban Systems 30, 4 (2006),
436–459.

[3] Luciano Barbosa, Kien Pham, Claudio Silva, Marcos R Vieira, and Juliana Freire.
2014. Structured open urban data: understanding the landscape. Big data 2, 3
(2014), 144–154.

[4] Daniel Castellani Ribeiro, Huy T Vo, Juliana Freire, and Cláudio T Silva. 2015. An
urban data pro�ler. In Proceedings of the 24th International Conference on World
Wide Web. ACM, 1389–1394.

[5] Sanjay Chawla, Shashi Shekhar, Weili Wu, and Uygar Ozesmi. 2001. Modeling
spatial dependencies for mining geospatial data. In Proceedings of the 2001 SIAM
International Conference on Data Mining. SIAM, 1–17.

[6] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. In ACM SIGPLAN Notices, Vol. 46. ACM, 317–330.

[7] Craig A. Knoblock and Pedro Szekely. 2015. Exploiting Semantics for Big Data
Integration. AI Magazine (2015).

[8] Oleksii Kononenko, Olga Baysal, Reid Holmes, and Michael W Godfrey. 2014.
Mining modern repositories with elasticsearch. In Proceedings of the 11th Working
Conference on Mining Software Repositories. ACM, 328–331.

[9] Laurent Marsan and Marie-France Sagot. 2000. Algorithms for extracting struc-
tured motifs using a su�x tree with an application to promoter and regulatory
site consensus identi�cation. Journal of computational biology 7, 3-4 (2000),
345–362.

[10] Bruno Martins, Hugo Manguinhas, and José Borbinha. 2008. Extracting and ex-
ploring the geo-temporal semantics of textual resources. In Semantic Computing,
2008 IEEE International Conference on. IEEE, 1–9.

[11] Qiaozhu Mei, Xuehua Shen, and ChengXiang Zhai. 2007. Automatic labeling of
multinomial topic models. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 490–499.

[12] Mohamed F Mokbel, Walid G Aref, Susanne E Hambrusch, and Sunil Prabhakar.
2003. Towards scalable location-aware services: requirements and research issues.
In Proceedings of the 11th ACM international symposium on Advances in geographic
information systems. ACM, 110–117.

[13] Tamer Nadeem, Sasan Dashtinezhad, Chunyuan Liao, and Liviu Iftode. 2004.
Tra�cview: A scalable tra�c monitoring system. In Mobile Data Management,
2004. Proceedings. 2004 IEEE International Conference on. IEEE, 13–26.

[14] Minh Pham, Suresh Alse, Craig Knoblock, and Pedro Szekely. 2016. Semantic
labeling: A domain-independent approach. In ISWC 2016 - 15th International
Semantic Web Conference.

[15] Ross Purves, Paul Clough, and Hideo Joho. 2005. Identifying imprecise regions
for geographic information retrieval using the web. In Proceedings of the 13th
Annual GIS Research UK Conference. 313–18.

[16] Vijayshankar Raman and Joseph M. Hellerstein. 2001. Potter’s Wheel: An Inter-
active Data Cleaning System. In Proceedings of the 27th International Conference
on Very Large Data Bases (VLDB ’01). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 381–390. http://dl.acm.org/citation.cfm?id=645927.672045

[17] Tye Rattenbury, Nathaniel Good, and Mor Naaman. 2007. Towards automatic
extraction of event and place semantics from �ickr tags. In Proceedings of the
30th annual international ACM SIGIR conference on Research and development in
information retrieval. ACM, 103–110.

[18] Jannik Strötgen and Michael Gertz. 2010. Heideltime: High quality rule-based
extraction and normalization of temporal expressions. In Proceedings of the 5th
International Workshop on Semantic Evaluation. Association for Computational
Linguistics, 321–324.

[19] Mohsen Taheriyan, Craig A. Knoblock, Pedro Szekely, and Jose Luis Ambite. 2016.
Learning the semantics of structured data sources. Journal of Web Semantics 37,
C (2016).

[20] Jun Zhu, Zaiqing Nie, Ji-RongWen, Bo Zhang, andWei-Ying Ma. 2006. Simultane-
ous record detection and attribute labeling in web data extraction. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 494–503.

http://dl.acm.org/citation.cfm?id=645927.672045

	Abstract
	1 Introduction
	2 Spatio-temporal Indexing of the Data
	2.1 Identifying the Spatial and Temporal Fields
	2.2 Geocoding Address Fields
	2.3 Normalizing the Data
	2.4 Storing the Data in Elastic Search
	2.5 Evaluation of the Spatio-temporal Indexing

	3 Querying and Analyzing the Data
	3.1 Evaluation of the Querying and Analysis

	4 Related Work
	5 Discussion
	References

