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Abstract

The use of abstraction in problem solving is an
e�ective approach to reducing search, but �nding
good abstractions is a di�cult problem, even for
people. This paper identi�es a criterion for se-
lecting useful abstractions, describes a tractable
algorithm for generating them, and empirically
demonstrates that the abstractions reduce search.
The abstraction learner, called alpine, is inte-
grated with the prodigy problem solver [Minton
et al., 1989b, Carbonell et al., 1991] and has been
tested on large problem sets in multiple domains.

Introduction

Hierarchical problem solving uses abstraction to re-
duce the complexity of search by dividing up a prob-
lem into smaller subproblems [Korf, 1987, Knoblock,
1990]. Given a problem space and a hierarchy of
abstractions, called abstraction spaces, a hierarchi-
cal problem solver �rst solves a problem in an ab-
stract space, and then uses the abstract solution to
guide the search for a solution in successively more
detailed spaces. The technique was �rst used in gps

[Newell and Simon, 1972] and has since been used in
a number of problem solvers. abstrips [Sacerdoti,
1974] was the �rst system that attempted to auto-
mate the formation of abstraction spaces, but only par-
tially automated the process. Most hierarchical prob-
lem solvers are simply provided with abstractions that
are hand-tailored to a speci�c domain [Sacerdoti, 1977,
Tate, 1977, Wilkins, 1984].
This paper describes an abstraction learner, called

alpine, that completely automates the formation of
abstraction hierarchies. Given a problem space, which
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consists of a set of operators with preconditions and ef-
fects, and a problem to be solved, alpine reformulates
this space into successively more abstract ones. Each
abstraction space is an approximation of the original
problem space (base space), formed by dropping lit-
erals in the domain. The system determines what to
abstract based on the ordered monotonicity property.
This property separates out those features of the prob-
lem that can be solved and then held invariant while
the remaining parts of the problem are solved. Since
this property depends on the problem to be solved,
alpine produces abstraction hierarchies that are tai-
lored to the individual problems.
The paper is organized as follows. The next sec-

tion de�nes the ordered monotonicity property. The
third section describes the algorithm for generating ab-
straction hierarchies in alpine. The fourth section de-
scribes the use of the abstractions for hierarchical prob-
lem solving, which is implemented in prodigy. The
�fth section presents extensive empirical results that
demonstrate the e�ectiveness of the abstractions in re-
ducing search. The sixth section outlines the related
work on automatically generating abstractions. The
last section summarizes the contributions and sketches
some directions for future work.

Ordered Abstraction Hierarchies

This section de�nes the ordered monotonicity property
and describes how this property can be used as the
basis for generating useful abstraction hierarchies. The
ordered monotonicity property captures the idea that
as an abstract solution is re�ned, the structure of the
abstract solution should be maintained. The process of
re�ning an abstract plan requires inserting additional
steps to achieve the literals (possibly negated atomic
formula) ignored at the abstract level. The property
constrains this re�nement process.
The ordered monotonicity property of an abstrac-

tion hierarchy is de�ned as follows. (A more formal
de�nition of this property can be found in [Knoblock,
1991].)

Ordered Monotonic Re�nement: A re�nement of
an abstract plan that leaves the truth value of every



literal in an abstract space unchanged.1

Ordered Monotonic Hierarchy An abstraction hi-
erarchy with the property that for every solvable
problem there exists an abstract solution that has a
sequence of ordered monotonic re�nements into the
base space.

(Throughout the remainder of the paper ordered is used
to mean ordered monotonic.) An ordered hierarchy can
be constructed by dividing the literals that comprise a
domain into levels (abstraction spaces) such that the
literals in a given level do not interact with any lit-
erals in a more abstract level. If a solution exists it
will be found by searching for abstract solutions and
ordered re�nements of those solutions. If there is no
abstract solution, the problem is unsolvable. Unfortu-
nately, there is no guarantee that an ordered abstrac-
tion hierarchy will reduce the overall search, since it
may be necessary to backtrack to �nd alternative ab-
stract solutions. In practice, this property provides
a surprisingly good criterion for producing useful ab-
straction hierarchies.
Consider an example that distinguishes an ordered

abstraction hierarchy from an unconstrained one. A
simple machine-shop scheduling domain consists of op-
erations for changing the shape, making holes, and
painting parts. The operations interact in various
ways. For example, changing the shape of a part also
removes any holes or paint. A problem solver is given
the problem of producing a black, cylindrical part with
a hole drilled through it. Imagine that the problem
solver uses an abstraction that ignores shape and pro-
duces an abstract plan that drills the hole and paints
the part black. The plan is then re�ned in the next ab-
straction level to make the part cylindrical, but when
this step is inserted in the abstract plan it changes
the truth values of the literals involving both holes
and paint that were achieved in the abstract space.
The resulting re�ned plan might be: drill hole, paint
black, make cylindrical, drill hole, paint black. This
is a valid re�nement in the sense that it achieves the
goal, but not an ordered re�nement because it altered
the paint and hole properties, which had already been
achieved in a more abstract space. The ordered mono-
tonicity property requires that the operation of making
the shape of a part cylindrical is placed at the same or
more abstract level as the other two operators because
changing the shape undoes the e�ects of the other op-
erators. If shape were dealt with �rst, the problem
solver would produce an abstract plan that made the
part cylindrical and then insert the steps to make the
hole and paint the object.

1An ordered monotonic re�nement is more restrictive
than a monotonic re�nement [Knoblock, 1990] because it
requires that every literal in the abstract space is left un-
changed instead of just the speci�c literals that comprise
the abstract plan. The distinction between an ordered mon-
otonic hierarchy and a monotonic one is analogous.

Using the ordered monotonicity property, alpine
produces problem-speci�c abstraction hierarchies. The
standard approach to using abstraction spaces is to
provide a system with a single, �xed abstraction hi-
erarchy, which is then used for all problem solving in
a given domain. The disadvantage of this approach
is that it limits the possible abstractions in a domain
since the hard parts of one problem may be details in
another problem and vice versa. Instead of attempt-
ing to �nd a �xed abstraction hierarchy to use for all
problems, alpine dynamically generates an abstrac-
tion hierarchy that is tailored to the particular problem
to be solved. The next section describes how alpine

generates these abstraction hierarchies.

Learning Abstraction Hierarchies

alpine is a fully implemented abstraction learner,
which produces abstraction hierarchies for use in the
prodigy problem solver. The system is given a do-
main speci�cation, which consists of the operators and
axioms that de�ne a problem space. For each problem
to be solved, alpine selects an abstraction hierarchy
and uses that hierarchy for problem solving.
alpine forms abstraction hierarchies by grouping

the literals in a domain into classes and ordering the
classes. Initially, literals of the same type are placed
in the same class (e.g., (SHAPE A CYLINDRICAL) and
(SHAPE B RECTANGULAR) are both instances of the lit-
eral type (SHAPE obj shape)). The initial classes are
further combined and then ordered based on an anal-
ysis of the domain. The abstraction spaces are then
formed by successively removing the literal classes from
the original problem space. An abstract space does not
simply involve dropping preconditions or goals; instead
an abstract space is an abstract model of the original
problem space, where both the operators and states
are simpli�ed.
Table 1 de�nes the algorithm for creating a problem-

speci�c abstraction hierarchy. The �rst step in the al-
gorithm produces a set of constraints on the order of
the literals in an abstraction hierarchy. The constraints
are placed in a directed graph, where the literals form
the nodes and the constraints form the edges. A con-
straint in the graph indicates that some literal must be
higher (in a more abstract space) or at the same level
in the abstraction hierarchy as some other literal. The
constraints are su�cient to guarantee that a hierar-
chy built from these constraints will have the ordered
monotonicity property. The algorithm for determining
these constraints is described below. The second step
in the procedure �nds the strongly connected compo-
nents and combines the literal classes within each con-
nected component. Each strongly connected compo-
nent contains the literals that comprise an abstraction
space, and the constraints between components deter-
mines a partial order of abstraction spaces. The third
step in the procedure performs a topological sort of the
strongly connected components to �nd a total ordering



of the literal classes, which forms an abstraction hierar-
chy. E�cient algorithms for determining the strongly
connected components and performing a topological
sort can be found in [Aho et al., 1974].

Input: Domain operators and a problem to be solved.
Output: An ordered hierarchy for the given problem.

procedure Create Hierarchy(goal,operators):

1. Find Constraints(goal,operators);

2. Combine Strongly Connected Components(GRAPH);

3. Topological Sort(GRAPH)

Table 1: Creating an Abstraction Hierarchy

Table 2 de�nes a recursive procedure for �nding a
su�cient set of constraints to guarantee the ordered
monotonicity property. Lines 1-4 loop through each
of the literals in the goal and �nd the operators that
can be used to achieve these literals. An operator can
only be used to achieve a literal if the literal is in the
primary e�ects of the operator, which is part of the op-
erator de�nition. Lines 5-6 add constraints that force
the other e�ects of those operators to be at the same or
lower level in the abstraction hierarchy as the goal lit-
erals. Lines 7-10 determine the preconditions of the op-
erator that could be subgoaled on and add constraints
that force these potential subgoals to be at the same or
lower level in the hierarchy as the goal literals. Lastly,
line 11 calls the procedure recursively on the potential
subgoals.

Input: Domain operators and a problem to be solved.
Output: A su�cient set of constraints to guarantee an
ordered abstraction hierarchy for the given problem.

procedure Find Constraints(goal lits,operators):

1.for each lit in goal lits do

2. if Constraints Not Determined(lit,GRAPH) then

3. for each op in operators do

4. if lit in Primary Effects(op) do f

5. for each other lit in Effects(op) do

6. Add Directed Edge(lit,other lit,GRAPH);

7. preconds  Preconditions(op);

8. subgoals  Can Be Sugoaled On(preconds);

9. for each prec lit in subgoals do

10. Add Directed Edge(lit,prec lit,GRAPH);

11. Find Constraints(subgoals,operators) g

Table 2: Finding the Constraints on a Hierarchy

The procedure for determining the potential sub-
goals, Can Be Subgoaled On, returns only those pre-
conditions that could be subgoaled on while solving the
given problem. The naive approach is simply to mark
every precondition that can be achieved by some oper-

ator as a potential subgoal. However, this would over-
constrain the �nal abstraction hierarchy since there are
preconditions of an operator will never be subgoaled
on and there are other preconditions that would not
be subgoaled on in the context of achieving particular
goals. Instead, alpine determines the subgoals based
on the goal context and some simple domain axioms.
This analysis is performed in a preprocessing step that
only needs to be done once for a domain. When an
hierarchy is created the algorithm simply looks up the
potential subgoals in a table. This step is completely
described in [Knoblock, 1991].
When there are no abstractions for a problem the

directed graph will collapse into a single node. An im-
portant advantage of the problem-speci�c abstractions
is that the algorithm will produce fewer constraints,
which reduces the likelihood that the hierarchy will
collapse.
Consider a problem in the scheduling domain that

requires making a part cylindrical, painting it black,
and joining it to another part. Each of these top-level
goals would generate constraints on the �nal abstrac-
tion hierarchy. For example, a part can be made cylin-
drical using the lathe operator, which has the side ef-
fect of removing any paint. Thus a constraint would
be generated that forces shape to be higher or at the
same level in the hierarchy as painted. A part can
be joined to another part by bolting the two parts to-
gether, and the bolt operator has a precondition that
the two parts have holes. Thus another constraint is
generated that forces joined to be higher or at the
same level as has-hole. This process continues un-
til all the required constraints have been generated.
The �nal directed graph for this problem is shown in
Figure 1. The dotted boxes indicate the connected
components and the arrows indicate the constraints.

(SHAPE obj shape)

(HAS-HOLE obj width orientation)

(PAINTED obj color)

(SCHEDULED obj machine time)

(JOINED obj obj orientation)

Figure 1: Directed Graph for a Scheduling Problem

Each abstraction hierarchy generated by the algo-
rithm above has the ordered monotonicity property.
The constraints guarantee that once the literals in a
given space are achieved they cannot be undone in the
process of re�ning the plan. This holds because the
constraints force any literal that could be changed, ei-
ther directly or indirectly in the process of achieving
some goal, to be placed at the same or lower level in
the abstraction hierarchy as the goal literal. The proof



that the basic algorithm produces ordered abstraction
hierarchies is given in [Knoblock, 1990].
The complexity of determining the constraints, and

thus the complexity of creating the problem-speci�c
abstraction hierarchies, is O(o � n2), where o is the
maximum number of operators relevant to achieving
any given literal and n is the number of di�erent types
of literal in the domain. The complexity of the other
steps in creating the abstraction hierarchies, combining
the strongly connected components and performing the
topological sort, are quadratic in the number of literal
types. Thus, for reasonable values of n, it is tractable
to produce problem-speci�c abstraction hierarchies.

Hierarchical Problem Solving

To plan hierarchically, a problem is �rst mapped into
the highest level of the abstraction hierarchy. This
is done by removing details from the initial and goal
states to form the corresponding abstract states and
removing details from the preconditions and e�ects of
the operators to form a set of abstract operators. Next,
the problem is solved in this abstract problem space.
The resulting abstract plan is then mapped into suc-
cessively more detailed levels by forming subproblems
where each intermediate state in an abstract plan forms
an intermediate goal at the next level of detail. When
the problem has been re�ned into the base space (the
original problem space), the problem is solved. If an
abstract plan cannot be re�ned (e.g., conditions intro-
duced at the current abstraction level cannot be satis-
�ed), then the problem solver backtracks to reformu-
late the plan at a higher level of abstraction.
The hierarchical problem solving is implemented

in the prodigy architecture [Carbonell et al., 1991].
prodigy is a means-ends analysis problem solver,
which has been extended to perform the necessary hi-
erarchical control and bookkeeping. The system can
backtrack e�ciently both across abstractions levels
and within an abstraction level by maintaining the rel-
evant problem-solving traces. While prodigy makes
e�ective use of alpine's abstraction spaces, they are suf-
�ciently general to be used by any hierarchical problem
solver that employs a state-space representation.

Results

alpine produces useful abstraction hierarchies in a
number of problem domains. This section demon-
strates the e�ectiveness of alpine's abstractions in a
machine-shop scheduling domain and a robot planning
domain [Minton, 1988, Minton et al., 1989a]. These
domains were originally used to evaluate explanation-
based learning (ebl) in prodigy. A problem in
the machine-shop scheduling domain involves �nding
a valid sequence of machining operations and schedul-
ing the operations to produce various parts. The robot
planning domain is an extended version of the strips
domain [Fikes and Nilsson, 1971], which includes locks,
keys, and a robot that can both push and carry objects.

alpine produces useful abstraction hierarchies in
both problem domains. In the scheduling domain, the
abstraction hierarchies provide an order on the op-
erations that need to be performed and separate the
planning of the operations from the scheduling. In the
robot planning domain the movement of boxes, keys,
and the robot are separated from the details.

To evaluate the abstraction hierarchies produced by
alpine, this section compares problem solving with
alpine's abstractions to problem solving in prodigy.
In the scheduling domain, the use of alpine's abstrac-
tions is also compared to the use of search control rules
generated using explanation-based learning [Minton,
1988]. The systems were tested on 100-200 randomly
generated problems in each domain and were allowed
to run on each problem until it was solved or the 300
second CPU time limit was exceeded. Since alpine

uses problem-speci�c abstraction hierarchies, the time
spent creating the abstraction hierarchy for each prob-
lem (between 0.5 and 3.5 seconds) was included in the
cost of solving a problem.

Figure 2 compares alpine, prodigy, and ebl in the
scheduling domain. The graph shows the cumulative
CPU time (in seconds) on all solved problems up to the
given problem number. The systems were run on the
100 problems that were originally used for testing ebl,
but the graph only includes the problems that could be
solved by all three systems within the time limit. The
number of problems that could not be solved by each
system is shown in the key. Since the problems are
ordered by increasing size, the cumulative time curves
upward. The graph shows that alpine and ebl pro-
duce comparable speedups, and both systems produce
signi�cant speedups over the basic problem solver. In
addition, alpine solved 98% of the problems within
the time limit, while ebl solved 94%, and prodigy

solved only 76%. As discussed later, future work will
explore the integration of abstraction and ebl.

0

200

400

600

800

1000

1200

1400

C
u

m
u

la
ti

ve
 T

im
e 

(C
P

U
 s

ec
.)

0 10 20 30 40 50 60 70 80
Number of Problems

ALPINE: 2 Unsolved
EBL: 6 Unsolved
PRODIGY: 24 Unsolved

Figure 2: Comparison in the Scheduling Domain



Figure 3 shows an analogous graph that compares
alpine and prodigy in the robot planning domain.
ebl was not included in this comparison because
alpine uses knowledge about the primary e�ects of
the operators to produce the abstractions in this do-
main, and ebl was not originally provided with this
knowledge. To avoid an unfair bias in the favor of
alpine, both alpine and prodigy are given control
knowledge to exploit the information about primary
e�ects. The systems were run on 200 problems, in-
cluding the 100 problems used for testing ebl. As the
graph shows, alpine performed signi�cantly better
than prodigy on the solvable problems, and alpine

was able solve 99% of the problems within the time
limit, while prodigy only solved 90%.
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Related Work

abstrips [Sacerdoti, 1974] was one of the earliest at-
tempts at automating the formation of abstraction hi-
erarchies. The system was provided with an initial ab-
straction hierarchy, which was used to automatically
assign criticalities to the preconditions of the opera-
tors. abstrips formed the abstraction levels by plac-
ing those preconditions which could not be achieved
by a \short plan" in a separate level. Any further
re�nement of the levels came from the user-de�ned ab-
straction hierarchy. In the abstrips's domain,alpine
completely automates the formation of the abstraction
hierarchies and produces abstractions that are con-
siderably more e�ective at reducing search [Knoblock,
1989].
Unruh and Rosenbloom [1989] describe a weak

method implemented in soar that dynamically forms
abstractions for look-ahead search by ignoring un-
matched preconditions. The choices made in the look-
ahead search are stored by soar's chunking mecha-
nism and the chunks are then used to guide the search
in the original space. This approach forms abstrac-

tions based on which conditions hold during problem
solving, while alpine forms abstractions based on the
structure of the domain,
pablo [Christensen, 1990] is a hierarchical planner

that also forms its own abstraction hierarchies, but the
system uses a completely di�erent approach from the
one described in this paper. The operators are par-
tially evaluated before problem solving to determine
the number of steps required to achieve any given goal.
The system then solves a problem in successive ab-
straction levels by �rst working on the parts of the
problem that require the greatest number of steps.
gps did not create abstractions, but did automat-

ically generate di�erence orderings [Eavarone, 1969,
Ernst and Goldstein, 1982], which specify the order
in which to work on the various goal conditions. The
algorithm described in this paper is similar to the tech-
niques for ordering di�erences, but the di�erence order-
ing algorithm only considers the interactions between
e�ects of operators, while the algorithm described in
this paper considers the interactions between both ef-
fects and preconditions of operators.
Mostow and Prieditis [1989] identify a set of trans-

formations that can be used to form admissible heuris-
tics. One of these is the drop predicate transformation,
which produces abstract problem spaces. Since the ab-
stractions are formed using a brute-force generate and
test procedure, the techniques described in this paper
could be applied to their work.

Discussion

This paper described a general criterion for selecting
abstraction hierarchies and presented a tractable al-
gorithm for generating them. The approach has been
applied to a variety of problem-solving domains and,
as shown in this paper, produces abstractions that are
e�ective at reducing search.
A current limitation of alpine is that the gran-

ularity of the abstractions is limited to the literal
types in a domain. To address this problem the sys-
tem has been extended to abstract speci�c instances
of literals. Thus, instead of dropping all the liter-
als of the same type, the system can drop instances
of literals that can been shown not to interact with
di�erent instances of the same literal (e.g., (SHAPE
A CYLINDRICAL) could be separated from (SHAPE B
RECTANGULAR)). The di�culty is that the cost of form-
ing these �ner-grained abstraction hierarchies becomes
prohibitive as the number of literal classes gets large.
Future work will include developing techniques to e�-
ciently generate these �ner-grained hierarchies.
Another promising direction for future work is the

integration of alpine with other types of learning,
such as explanation-based learning and learning by
analogy [Veloso and Carbonell, 1989]. Since alpine

forms abstract models of the original problem space,
these other types of learning can be applied within
the abstract spaces. Thus, ebl could produce control



knowledge within an abstract space, and analogy could
store and reuse abstract problem-solving episodes.
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