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Abstract

This paper describes an automated approach to generating abstractions for the

Tower of Hanoi and analyzes the use of these abstractions for problem solving. The

analysis shows that the learned abstractions produce an exponential reduction in the

size of the search space. Since few problem solvers actually explore the entire search

space, the paper also presents an empirical analysis of the speedup provided by ab-

straction when a heuristic search is employed. The empirical analysis shows that the

bene�t of abstraction is largely determined by the portion of the base-level search space

explored. Thus, using breadth-�rst search, which searches the entire space, abstraction

provides an exponential reduction in search. However, using a depth-�rst search, the

search reduction is smaller and depends on the amount of backtracking required to

solve the problem.

Abstractions, 1990

1 Introduction

The Tower of Hanoi puzzle has be studied extensively in the problem-solving literature
[Ernst, 1969, Eavarone, 1969, Korf, 1980, Ernst and Goldstein, 1982, Knoblock, 1990b,

Benjamin et al., 1990, Christensen, 1990]. Previous work has primarily focused on various

approaches for generating abstractions, but has largely ignored the issues in using the ab-

stractions for problem solving. This papers reviews an approach that generates abstractions

for the Tower of Hanoi, shows that the abstractions provide an exponential reduction in

the size of the search space, and then analyzes the use of the abstractions in the prodigy

problem solver [Minton et al., 1989, Carbonell et al., 1991].
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The paper is organized as follows. The next section describes the Tower of Hanoi problem

and presents a representation of the problem. Section 3 reviews an algorithm for automati-

cally generating abstractions and describes the abstractions the algorithm generates for the

Tower of Hanoi. Section 4 describes how the abstractions are used for hierarchical problem

solving and presents both analytical and empirical results on the search reduction provided

by the abstractions. Section 5 compares the abstraction generation method in this paper to

other approaches that have been applied to the Tower of Hanoi. The last section concludes

with some general remarks about when abstractions will be useful and how they might be

used more e�ectively.

2 Representing the Tower of Hanoi

The Tower of Hanoi puzzle involves moving a pile of di�erent size disks from one peg to

another using an intermediate peg. Only one disk at a time can be moved, a disk can only

be moved if it is the top disk on a pile, and a larger disk can never be placed on a smaller

one. Figure 1 shows the initial and goal states of a three-disk problem.
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Figure 1: Intial and Goal States in the Tower of Hanoi

The most straight-forward axiomatization of this problem consists of an operator for

moving each disk between each pair of pegs. For the three-disk problem, this axiomatization

requires 18 operators. Table 1 shows the operator for moving disk C, the largest disk, from

peg 1 to 3. The preconditions require that disk C is initially on peg 1 and that neither disk

A nor B are on peg 1 or 3. This representation is far from the most concise one, but it is

used in this paper to simplify the exposition. The basic ideas described in this paper apply

to and have been tested on more compact representations.

(Move_DiskC_From_Peg1_to_Peg3

(preconds ((and (on diskC peg1)

(~ (on diskB peg1))

(~ (on diskA peg1))

(~ (on diskB peg3))

(~ (on diskA peg3)))))

(effects ((del (on diskC peg1))

(add (on diskC peg3)))))

Table 1: Example Operator in the Tower of Hanoi Domain

The size of the problems in the Tower of Hanoi puzzle vary based on the number of disks.

The number of possible states for a given puzzle with n disks is 3n since each disk can be on
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one of the three pegs. The state space for the three-disk puzzle is shown in Figure 2 [Nilsson,

1971]. Each node represents a state and is labeled with the a picture of the state, and each

arrow represents an operator that can be applied to reach the adjacent state. A solution to

the three-disk problem given above consists of any path through the state space that starts

at the initial state and terminates at the goal state. The shortest solution follows the path

along the diagonal between the initial and goal states.

Goal
State

Move DiskC
From Peg1 
To Peg3

Initial
 State

Figure 2: State Space for the Three-Disk Tower of Hanoi Puzzle

3 Automatically Generating Abstractions

This section reviews an algorithm for generating abstraction hierarchies [Knoblock, 1990b]

and describes the hierarchy produced for the three-disk Tower of Hanoi problem. The algo-

rithm is given a set of operators, which describe a domain, and it produces an abstraction hi-

erarchy by partitioning and ordering the literals in the domain. Literals are possible negated

atomic formulae (e.g., (on diskC peg1)), which are used to de�ne the preconditions and

e�ects of the operators. A hierarchy of abstraction spaces is formed by removing successive

classes of literals, such that each abstraction space is an approximation of the original prob-

lem space. The hierarchy is ordered such that the highest level is the most abstract. The

�nal hierarchy has the ordered monotonicity property [Knoblock, 1990a], which requires that

the literals are partitioned in such a way that the achievement of a literal introduced at one

level cannot change the truth value of a literal in a more abstract level.

The algorithm for producing a hierarchy of abstraction spaces is shown in Table 2. The

algorithm forms a directed graph, where the vertices of the graph represent one or more lit-

erals (called a literal class) and the edges represent constraints between literals. A directed

edge from one literal class to another indicates that the �rst literal class must be higher or

at the same level in the abstraction hierarchy as the second literal class. A literal and its
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Input: The set of operators for a domain.

Output: A hierarchy of abstraction spaces.

Create Abstraction Hierarchy(OPERATORS)

1. ForEach OP in OPERATORS

ForEach LIT1 in E�ects(OP)

i. ForEach LIT2 in E�ects(OP)

Add Directed Edge(LIT1,LIT2,GRAPH)

ii. ForEach LIT2 in Preconditions(OP)

Add Directed Edge(LIT1,LIT2,GRAPH)

2. Combine Strongly Connected Components(GRAPH)

3. Topological Sort(GRAPH)

Table 2: Algorithm for Producing Abstraction Hierarchies

negation are always placed in the same class since they directly interact with one another.

The algorithm �rst adds constraints that guarantee the achievement of a particular literal

could never require adding or deleting a literal higher in the abstraction hierarchy. Next, the

algorithm removes the cycles in the graph by combining the literals within a strongly con-

nected component into a single class. Third, the partial order of literal classes is transformed

into a total order, which forms an abstraction hierarchy.

For the three-disk Tower of Hanoi problem, this algorithm generates the directed graph

shown in Figure 3. The ovals in the graph represent the strongly connected components.

The literals within each component must be placed in the same abstraction level. The arrows

between the components specify the constraints on the order in which the literal classes can

be removed to form the abstraction spaces.

(on diskC peg1)

(on diskC peg2) (on diskC peg3)

(on diskA peg1)

(on diskA peg2) (on diskA peg3)

(on diskB peg1)

(on diskB peg2) (on diskB peg3)

Figure 3: Constraints on the Literals in Tower of Hanoi Domain

The resulting abstraction hierarchy, shown in Figure 4, partitions the literals of the

domain based on the size of the disks. For the three-disk puzzle, the highest abstraction

level includes literals involving only the largest disk, the next level includes both the largest

and middle size disk, and the third level includes all three disks. The disks can be divided

into separate abstraction levels since the steps necessary to move a given disk can always
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be inserted into an abstract plan without interfering with any larger disks. For a n-disk

problem, the algorithm produces a n-level abstraction hierarchy.

(on diskC peg1)

(on diskC peg2)

(on diskC peg3)

(on diskC peg1)

(on diskC peg2)

(on diskC peg3)

(on diskB peg1)

(on diskB peg2)

(on diskB peg3)

(on diskA peg1)

(on diskA peg2)

(on diskA peg3)

(on diskB peg1)

(on diskB peg2)

(on diskB peg3)

(on diskC peg1)

(on diskC peg2)

(on diskC peg3)

Figure 4: Abstraction Hierarchy for the Tower of Hanoi

The reduced state spaces of the three-disk puzzle are shown in Figure 5. The state space

on the left shows the result of removing the smallest disk. The nodes that di�er only by the

location of the smallest disk are collapsed into a single node, reducing the state space from

27 states to 9 states. The operators that are not relevant to a given state space are replaced

with dotted lines. Removing the two smaller disks produces a state space with only 3 states,

which is shown on the right of Figure 5.

Figure 5: Reduced State Spaces for the Three-Disk Puzzle

4 Using Abstractions for Problem Solving

This section describes how abstractions are used for problem solving and the e�ect of the

abstractions in reducing search. The use of the abstraction hierarchy described in the pre-

vious section provides an exponential reduction in the size of the search space [Knoblock,

1990b]. This section describes how such dramatic reductions are achieved in this domain,

veri�es the result empirically, and then explores the e�ect of the search space reduction on

a depth-�rst search.
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4.1 Hierarchical Problem Solving

The abstractions described in the previous section can be used to solve problems hierarchi-

cally. Hierarchical problem solving maps the initial and goals states into the most abstract

space, solves the abstract problem, and then uses the intermediate states to guide the search

for a solution at each successive level. Figure 6 shows a hierarchical solution to the three-disk

Tower of Hanoi problem. The picture shows the plans produced at each level of abstraction

and the mapping between the levels. The upward arrows specify the mapping of the initial

and goals states into the abstraction spaces and the downward arrows indicates how an ab-

stract plan guides the search at the next level. At the highest level there is simply a one step

plan that moves the largest disk from the �rst peg to the third peg. This creates two new

subproblems at the next level, where the �rst subproblem is to get to the state where the

abstract operator can be applied, and the second subproblem is to reach the goal state. The

resulting three-step plan at the second level then creates four subproblems in the base-level,

which are solved to produce the �nal plan.

Figure 6: Hierarchical Planning in the Tower of Hanoi

This example illustrates the importance of the ordered monotonicity property, where

the work done at each abstraction level is never undone in the process of re�ning the plan.

The solution in the most abstract space produces a plan that moves the largest disk to the

goal peg. Since the abstraction hierarchy has the ordered monotonicity property, at the

next level only steps for moving the medium disk can be inserted. Thus, the abstraction

hierarchy partitions the state space into three smaller spaces and any subproblem must be

solved within one of these smaller state spaces. At the �nal level the hierarchy partitions

the state space into nine separate state spaces all of equal size.

4.2 Analytical Results

Hierarchical problem solving using the abstractions for the Tower of Hanoi reduces the size

of the search space from exponential to linear in the length of the solution. In the original

problem the size of the search space is O(bl), where b is the branching factor, and l is the

length of the solution. The abstraction hierarchy divides up the problem into l subproblems

of equal size that can be solved serially. The abstraction hierarchy partitions a problem

such that each disk is placed in a separate abstraction level and the levels are ordered such

that any disk smaller than the disk at the given level will be ignored. Each step in the �nal

solution will correspond to a subproblem in hierarchical problem solving, so the number
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of subproblems is l. Using an admissible search procedure (i.e., one that is guaranteed to

produced the shortest solution), each subproblem will be solved in one step. Since each disk

can be moved from one of two places, the branching factor is two. Thus, the size of each

subproblem is 21 = 2, so the entire search is bounded by 2l, which is O(l). Consequently,

hierarchical problem solving reduces the search space in this domain from O(bl) to O(l).

4.3 Empirical Results

This section compares problem solving in the Tower of Hanoi both with and without using

the abstractions described in this paper. The abstractions are generated by the alpine

abstraction learner [Knoblock, 1990a, Knoblock, 1991] and then used in a hierarchical version

of prodigy [Minton et al., 1989, Carbonell et al., 1991], a means-ends analysis problem

solver. To evaluate the abstractions empirically, prodigy was run both with and without

the abstractions using breadth-�rst search, depth-�rst search, and depth-�rst search with an

additional restriction on how the problem is solved. The experiments compare the number

of nodes searched and the length of the solutions on problems that range from one to as

many as seven disks. The graphs below measure the problem size in terms of the optimal

solution length, not the number of disks, since the solution to the 4-disk problem is twice as

long as the solution to the 3-disk problem.

Figure 7 compares hierarchical and nonhierarchical problem solving using breadth-�rst

search. As the analytical results predict, the use of abstraction with breadth-�rst search

produces an exponential reduction in the amount of search. The results are plotted with

the problem size, which is the optimal solution length, along the x-axis and the number of

nodes searched along the y-axis. With abstraction the search is linear in the problem size

and without abstraction the system cannot solve problems with more than 3 disks. (The

4-disk problem could not be solved in 100,000 nodes.) The dashed line shows the optimal

search, which is the number of nodes that would be searched if the system made the correct

choice at every point. Both with and without abstraction, the breadth-�rst search produces

the optimal (shortest) solutions.
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Figure 7: Comparison using Breadth-First Search
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In most interesting domains it is impractical to produce optimal solutions to problems.

Thus, an interesting question arises as to the e�ect abstraction has on search when a non-

admissible search procedure is used. Figure 8 compares the nodes searched and the solution

lengths for problem solving with and without abstraction using depth-�rst search. As shown

in the graphs, problem solving with abstraction produced fewer nodes and shorter solu-

tions than problem solving without abstraction, but the di�erences are small. This can be

attributed to the fact that simply using a depth-�rst search neither con�guration is perform-

ing much search. When they make a mistake they simply plow forward adding steps to undo

their mistakes. Problem solving with abstraction performed better because the abstraction

provides some guidance on which goals to work on �rst and thus produces shorter solutions.
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Figure 8: Comparison using Depth-First Search

The small di�erence between the hierarchical and nonhierarchical depth-�rst search is

largely due to the fact that the problem can be solved with relatively little backtracking.

If we impose some additional structure on the domain the di�erence will be much greater.

Consider a variation of the Tower of Hanoi problem that has the additional restriction

that no disk can be moved twice in a row [Amarel, 1984, VanLehn, 1989]. This constrains

the problem considerably since the suboptimal plans in the previous graph were caused by

moving disks to the wrong peg. Figure 9 compares the nodes searched and the solution

lengths for the two con�gurations with this additional restriction on the domain. This small

amount of additional structure enables the abstract problem solver to produce the optimal

solution in linear time, but has a much smaller e�ect on the nonhierarchical version.

5 Related Work

The Tower of Hanoi has been studied extensively in both arti�cial intelligence and psychol-

ogy. This section reviews only the most closely related work, which includes both reformu-

lating the puzzle and automatically generating abstractions.

The Tower of Hanoi puzzle has been discussed in a number of papers on reformulation.

Korf [1980] was the �rst to identify the reformulation, which the algorithm in this paper

generates, where the problem is simpli�ed by successively removing the smallest disk. Korf's
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Figure 9: Comparison using Depth-First Search with Restriction

paper presents a language for representing reformulations, but does not provide a technique

for �nding them. Amarel [1984] describes a variety of reformulations that can be generated

using production and reduction schemas. Benjamin et al. [1990] presents an approach to

reformulating the problem by combining disks into macro objects to simplify the problem.

Thus, the three-disk problem can be transformed into the two-disk problem by combining

the two smallest disks. This abstraction is analogous to the one described in this paper, but

it is generated by forming aggregate objects instead of ignoring details.

The work on di�erence ordering in gps [Ernst, 1969, Eavarone, 1969, Ernst and Gold-

stein, 1982] is closely related to the algorithm for generating abstractions described in this

paper. Their work focuses on producing a triangular table of connections for solving a prob-

lem in gps. The construction of a triangular table is based on the interactions of the e�ects

of operators, while the construction of abstraction hierarchies in this paper is based on both

the interactions of the e�ects and preconditions of the operators. The techniques for pro-

ducing good di�erence orders for gps is only able to identify the disks as good di�erences,

but cannot produce a useful ordering of the disks. For example, [Eavarone, 1969] presents a

program that produces 24 triangular tables of connections for the four-disk problem without

any preference for which table provides the best di�erence ordering.

Christensen [1990] describes a system called pablo that automatically generates ab-

stractions for this domain. His system partially evaluates the operators by back-propagating

the goals through the operators. pablo uses this result to determine the number of steps

required to achieve each of the given goals. The problem solver solves a problem by focusing

at each point on the part of the problem that requires the greatest number of steps. His

approach decides on what to work on based on the number of steps required to achieve a

goal, while the approach presented in this paper focuses on the parts of the problem that

can be solved and left unchanged while the remaining parts of the problem are solved.
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6 Discussion

This paper described a technique for generating abstractions of the Tower of Hanoi and then

explored the utility of these abstractions in an actual problem solver. The empirical analysis

shows that with breadth-�rst search the use of abstraction produced an exponential reduc-

tion in search, but with depth-�rst search the use of abstraction produced a much smaller

reduction. However, by imposing an additional constraint on the problem that increased

the amount of search required to solve a problem, the di�erence between hierarchical and

nonhierarchical problem solving was much larger.

There are several general conclusions that one can draw from the experiments. First,

the degree to which abstraction reduces search depends on the portion of the base-level

search space that is explored. Thus, the more backtracking in a problem, the more bene�t

provided by the use of abstraction. Second, with a nonadmissible search procedure the use

of abstraction will tend to produce shorter solutions since the abstractions focus the problem

solver on the parts of the problem that should be solved �rst.

These experiments also point out several ideas that might be used to improve the ef-

fectiveness of hierarchical problem solving. First, performing an admissible search, such as

depth-�rst iterative deepening, in an abstract space may save time and produce better solu-

tions. In the Tower of Hanoi, the quality of the abstract solution has a direct impact on the

time required and the quality of the �nal solution. Second, imposing additional structure

on a domain either through restrictions on the operators or added search control knowledge

may improve the e�ectiveness of the abstractions.
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