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Abstract

It has long been recognized that hierarchical prob-
lem solving can be used to reduce search. Yet,
there has been little analysis of the problem-
solving method and few experimental results.
This paper provides the �rst comprehensive an-
alytical and empirical demonstrations of the e�ec-
tiveness of hierarchical problem solving. First, the
paper shows analytically that hierarchical prob-
lem solving can reduce the size of the search space
from exponential to linear in the solution length
and identi�es a su�cient set of assumptions for
such reductions in search. Second, it presents em-
pirical results both in a domain that meets all of
these assumptions as well as in domains in which
these assumptions do not strictly hold. Third, the
paper explores the conditions under which hierar-
chical problem solving will be e�ective in practice.

Introduction
Identifying intermediate states in a search space can
be used to decompose a problem and signi�cantly re-
duce search [Newell et al., 1962, Minsky, 1963]. One
approach to �nding intermediate states is to use hi-
erarchical problem solving [Newell and Simon, 1972,
Sacerdoti, 1974], where a problem is �rst solved in
an abstract problem space and the intermediate states
in the abstract plan are used as intermediate goals to
guide the search at successively more detailed abstrac-
tion levels.
While hierarchical problem solving has been used in

a number of problem solvers, there has been little anal-
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ysis and few empirical demonstrations of the search re-
ductions. Both Newell et al. [1962] and Minsky [1963]
present analyses that show that identifying interme-
diate states can reduce the depth of the search, but
these analyses assume that the intermediate states are
given. Korf [1987] provides an analysis of abstraction
planning with macros, but his analysis assumes you
are given a hierarchy of macro spaces, so that once a
problem is solved in the macro space, the problem is
solved. abstrips [Sacerdoti, 1974] provides the best
empirical demonstration to date, but these results are
in a single problem-solving domain on a small set of
problems.
This paper describes hierarchical problem solving,

shows that this method can reduce the size of the
search space from exponential to linear in the solu-
tion length, presents the assumptions that make this
reduction possible, and then describes experimental re-
sults in three di�erent problem-solving domains. The
�rst set of experiments provide an empirical demon-
stration of the exponential-to-linear search reduction
in a domain that fully satis�es the stated assumptions
and then explores the conditions under which hierar-
chical problem solving will be e�ective when the as-
sumptions do not strictly hold. These experiments use
the Tower of Hanoi puzzle because the highly regular
structure of the problem space makes it easy to show
that it satis�es the assumptions. The second set of
experiments provide results in both a robot-planning
and a machine-shop scheduling domain, which show
that even when the assumptions of the analysis do not
hold, the problem-solving method can still provide sig-
ni�cant reductions in search.

Hierarchical Problem Solving

A problem solver is given a problem space, de�ned by
the legal operators and states, and a problem, de�ned
by an initial state and goal, and it searches for a se-
quence of operators that can be applied to the initial
state to achieve the goal. A hierarchical problem solver

employs a hierarchy of abstract problem spaces, called
abstraction spaces, to focus this search process. In-
stead of attempting to solve a problem in the origi-
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Figure 1: Hierarchical Problem Solving in the Tower of Hanoi

nal problem space, called the ground space, a hierar-
chical problem solver �rst searches for a solution in
the most abstract problem space to produce a skeletal
plan. This plan is then re�ned at successive levels in
the hierarchy by inserting additional operators to pro-
duce a complete sequence of ground-level operators.
This problem-solving technique was �rst used in gps

[Newell and Simon, 1972] and abstrips [Sacerdoti,
1974] and has since been used in a number of prob-
lem solvers, including noah [Sacerdoti, 1977], molgen
[Ste�k, 1981], nonlin [Tate, 1977], and sipe [Wilkins,
1984].

Hierarchical problem solvers represent abstraction
spaces in various ways and employ a variety of tech-
niques for re�ning an abstract plan. In this paper, the
language of each successive abstraction space is a sub-
set of the previous problem spaces and the operators
and states in an abstraction space correspond to one or
more operators or states in the more detailed problem
spaces. Given a hierarchy of abstraction spaces, hi-
erarchical problem solving proceeds as follows. First,
the problem solver maps the given problem into the
most abstract space by deleting literals from the ini-
tial state and goal that are not relevant to the abstract
space. Next, the problem solver �nds a solution that
solves the abstract problem. Each of the intermediate
states in the abstract plan serve as goals for the sub-
problems at the next level in the abstraction hierarchy.
The problem solver then solves each of the intermediate
subproblems using the �nal state of one subproblem as
the initial state for the next subproblem. The interme-
diate states of the plan at this new level then serve as
goals for the subproblems at the next level, and the
process is repeated until the plan is re�ned into the
ground space. This approach to hierarchical problem
solving is formally de�ned in [Knoblock, 1991].

Consider an abstraction hierarchy for the three-disk
Tower of Hanoi, where the most abstract space con-
tains only the largest disk, the next abstraction space
contains the largest and medium-sized disk, and the
ground space contains all three disks. This hierarchy
can be used for problem solving as shown in Figure 1.
First, the initial and goal states are mapped into the
abstract space by dropping the smaller disks. Next,

the problem is solved in the most abstract space, which
simply requires a one step plan that moves the largest
disk (diskL) from peg1 to peg3. This creates two sub-
problems at the next level of abstraction, where the
�rst subproblem is to reach the state where the ab-
stract operator can be applied, and the second sub-
problem is to reach the goal state. After solving these
subproblems, the problem solver repeats the process
at the next level and produces a plan that solves the
original problem.

Analysis of the Search Reduction

This section presents a complexity analysis of hierar-
chical problem solving, which shows that, under an
ideal decomposition of a problem, hierarchical problem
solving reduces the worst-case complexity of the search
from exponential to linear in the solution length. Since
the size of the search spaces are potentially in�nite,
the analysis assumes the use of an admissible search
procedure (e.g., depth-�rst iterative-deepening [Korf,
1985]), which is bounded by the length of the shortest
solution.

The analysis is similar to the analysis of abstraction
planning with macros by Korf [1987]. Korf showed
that using a hierarchy of macros can reduce an expo-
nential search to a linear one. However, Korf's anal-
ysis applies to abstraction planning with macros and
not to hierarchical problem solving because it makes
several assumptions that do not hold for the latter.
The most signi�cant assumption of the analysis is that
when the abstract problem is solved, the original prob-
lem is solved. Using hierarchical problem solving, once
a problem has been solved in the abstract space, the
abstract solution must still be re�ned into a solution
in the ground space.

Single-Level Problem Solving

For single-level problem solving, if a problem has a so-
lution of length l and the search space has a branching
factor b, then in the worst-case the size of the search

space is
Pl

i=1 b
i. Thus, the worst-case complexity of

this problem is O(bl).



Two-Level Problem Solving

Let k be the ratio of the solution length in the ground
space to the solution length in the abstract space.
Thus, l

k
is the solution length in the abstract space.

Since each operator in the abstract space corresponds
to one or more operators in the ground space, the
branching factor of the abstract space is bounded by
the branching factor of the ground space, b. The size of

the search tree in the abstract space is
Pl=k

i=1 b
i, which

isO(b
l
k ). In addition, the analysis must include the use

of this abstract solution to solve the original problem.
The abstract solution de�nes l

k
subproblems. The

size of each problem is the number of steps (solution
length) in the ground space required to transform an
initial state Si into a goal state Si+1, which is repre-
sented as d(Si; Si+1).

d(S0;S1)X

i=1

bi +

d(S1;S2)X

i=1

bi + � � �+

d(S l
k
�1

;S l
k

)

X

i=1

bi (1)

which is O( l
k
bdmax), where

dmax � max
0 � i � l

k
�1

d(Si; Si+1) (2)

In the ideal case, the abstract solution will divide the
problem into subproblems of equal size, and the length
of the �nal solution using abstraction will equal the
length of the solution without abstraction. In this case,
the abstract solution divides the problem into l

k
sub-

problems of length k.

bdmax = b
l

l=k = bk (3)

Assuming that the planner can �rst solve the abstract
problem and then solve each of the problems in the
ground space without backtracking across problems,
then the size of the space searched in the worst case is
the sum of the search spaces for each of the problems.

l
kX

i=1

bi +
l

k

kX

i=1

bi (4)

The complexity of this search is: O(b
l
k + l

k
bk). The

high-order term is minimized when l
k
= k, which oc-

curs when k =
p
l. Thus, when k =

p
l, the complexity

is O(
p
l b
p
l), compared to the original complexity of

O(bl).

Multi-Level Problem Solving

Korf [1987] showed that a hierarchy of macro spaces
can reduce the expected search time from O(s) to
O(log s), where s is the size of the search space. This
section proves an analogous result { that multi-level
hierarchical problem solving can reduce the size of the
search space for a problem of length l from O(bl) to
O(l).

In general, the size of the search space with n levels
(where the ratio between the levels is k) is:

l

kn�1X

i=1

bi+
l

kn�1

kX

i=1

bi+
l

kn�2

kX

i=1

bi+ � � �+
l

k

kX

i=1

bi (5)

The �rst term in the formula accounts for the search
in the most abstract space. Each successive term ac-
counts for the search in successive abstraction spaces.
Thus, after solving the �rst problem, there are l=kn�1

subproblems that will have to be solved at the next
level. Each of these problems are of size k, since k
is the ratio of the solution lengths between adjacent
abstraction levels. At the next level there are l=kn�2

subproblems (k� l=kn�1) each of size k, and so on. In

the �nal level there are l
k
subproblems each of size k.

The �nal solution will therefore be of length l
k
k = l.

The maximum reduction in search can be obtained
by setting the number of levels n to logk(l), where the
base of the logarithm is the ratio between levels. Sub-
stituting logk(l) for n in Formula 5 above produces the
following formula:

kX

i=1

bi+ k

kX

i=1

bi+ k2
kX

i=1

bi+ � � �+ klogk(l)�1
kX

i=1

bi (6)

From Formula 6, it follows that the complexity of the
search is:

O((1 + k + k2 + � � �+ klogk(l)�1)bk): (7)

The standard summation formula for a �nite geometric
series with n terms, where each term increases by a
factor of k, is:

1 + k + k2 + � � �+ kn =
kn+1 � 1

k � 1
: (8)

Using this equation to simplify Formula 7, it follows
that the complexity is:

O(
klogk(l) � 1

k � 1
bk) = O(

l � 1

k � 1
bk): (9)

Since b and k are assumed to be constant for a given
problem space and abstraction hierarchy, the complex-
ity of the entire search space is O(l).

Assumptions of the Analysis

The analysis above makes the following assumptions:

1. The number of abstraction levels is logk of the solu-

tion length. Thus, the number of abstraction levels
must increase with the size of the problems.

2. The ratio between levels is the base of the logarithm,
k.

3. The problem is decomposed into subproblems that are

all of equal size. If all the other assumptions hold,
the complexity of the search will be the complexity
of the largest subproblem in the search.



4. The hierarchical planner produces the shortest solu-
tion. The analysis holds as long as the length of the
�nal solution is linear in the length of the optimal
solution.

5. There is only backtracking within a subproblem. This
requires that a problem can be decomposed such
that there is no backtracking across abstraction lev-
els or across subproblems within an abstraction level.

The assumptions above are su�cient to produce an
exponential-to-linear reduction in the size of the search
space. The essence of the assumptions is that the ab-
straction divides the problem into O(l) constant size
subproblems that can be solved in order.
Consider the abstraction of the Tower of Hanoi de-

scribed in the previous section. It is ideal in the sense
that it meets all of the assumptions listed above. First,
the number of abstraction levels is O(log2(l)). For an
n-disk problem the solution length l is 2n� 1, and the
number of abstraction levels is n, which is O(log

2
(l)).

Second, the ratio between the levels is the base of the
logarithm, which is 2. Third, these subproblems are ef-
fectively all of size one, since each subproblem requires
inserting one additional step to move the disk added
at that abstraction level. Fourth, using an admissible
search strategy, the hierarchical problem solver pro-
duces the shortest solution. Fifth, the only backtrack-
ing necessary to solve the problem is within a subprob-
lem.
Since these assumptions are su�cient to reduce the

size of the search space from exponential to linear in
the length of the solution, it follows that hierarchi-
cal problem solving produces such a reduction for the
Tower of Hanoi. While these assumptions hold in this
domain, they will not hold in all problem domains.
Yet, hierarchical problem solving can still provide sig-
ni�cant reductions in search. The next section explores
the search reduction in the Tower of Hanoi in practice,
and the section following that explores the search re-
duction in more complex domains where many of the
assumptions do not strictly hold.

Search Reduction: Theory vs. Practice

The previous section showed analytically that hierar-
chical problem solving can produce an exponential-to-
linear reduction in the size of the search space. This
section provides empirical con�rmation of this result
and then explores the conditions under which hierar-
chical problem solving will be e�ective in practice. The
experiments were run on the Tower of Hanoi both with
and without using the abstraction hierarchy described
in the preceding sections. The abstractions were auto-
matically generated by the alpine system [Knoblock,
1990] and then used in a hierarchical version of the
prodigy problem solver [Minton et al., 1989].
To evaluate empirically the use of hierarchical prob-

lem solving in the Tower of Hanoi, prodigy was run
both with and without the abstractions using a depth-

�rst iterative-deepening search, a depth-�rst search,
and a depth-�rst search on a slightly modi�ed version
of the problem. The experiments compare the CPU
time required to solve problems that range from one
to seven disks. The graphs below measure the prob-
lem size in terms of the optimal solution length, not
the number of disks, since the solution to a problem
with n disks is twice as long as the solution to a prob-
lem with n� 1 disks. For example, the solution to the
six-disk problem requires 63 steps and the solution to
the seven-disk problem requires 127 steps.
Figure 2 compares prodigy with and without hi-

erarchical problem solving using depth-�rst iterative-
deepening to solve the problems and subproblems. As
the analytical results predict, the use of abstraction
with an admissible search procedure produces an ex-
ponential reduction in the amount of search. The re-
sults are plotted with the problem size along the x-axis
and the number of nodes searched along the y-axis.
With abstraction the search is linear in the problem
size and without abstraction the search is exponential.
In the Tower of Hanoi, the use of an admissible search
produces optimal (shortest) solutions both with and
without abstraction.
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Figure 2: Comparison using depth-�rst iterative-
deepening in the Tower of Hanoi.

Admissible search procedures such as breadth-�rst
search or depth-�rst iterative-deepening are guaran-
teed to produce the shortest solution1 and to do so
usually requires searching most of the search space.
However, these methods are impractical in more com-
plex problems, so this section also examines the use
of hierarchical problem solving with a nonadmissible
search procedure. Figure 3 compares the CPU time
for problem solving with and without abstraction using
depth-�rst search. As the graph shows, the use of ab-
straction produces only a modest reduction in search.
This is because, using depth-�rst search, neither con-
�guration is performing much search. When the prob-
lem solver makes a mistake it simply proceeds adding
steps to undo the mistakes. Thus, the number of nodes
searched by each con�guration is roughly linear in the

1Due to the decomposition of a problem, an admissible
search is not guaranteed to produce the optimal solutions
for hierarchical problem solving.



length of the solutions found. Problem solving with
abstraction performed better because the abstraction
provides some guidance on which goals to work on �rst
and thus produces shorter solutions by avoiding some
unnecessary steps.
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Figure 3: Comparison using depth-�rst search in the
Tower of Hanoi.

The small di�erence between depth-�rst search with
and without using abstraction is largely due to the fact
that the problems can be solved with relatively little
backtracking. To illustrate this point, consider a vari-
ant of the Tower of Hanoi problem that has the addi-
tional restriction that no disk can be moved twice in a
row [Anzai and Simon, 1979]. By imposing additional
structure on the domain, the problem solver is forced
to do more backtracking. Figure 4 compares the CPU
time used by the two con�gurations on this variant
of the domain. This small amount of additional struc-
ture enables the hierarchical problem solver to produce
optimal solutions in linear time, while prodigy pro-
duces suboptimal solutions that requires signi�cantly
more problem-solving time.
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Figure 4: Comparison using depth-�rst search in a
variant of the Tower of Hanoi.

The use of abstraction produces large search reduc-
tions over problem solving without abstraction only
when a large portion of the search space must be ex-
plored to �nd a solution. In addition, the problem
solver can sometimes trade o� solution quality for so-
lution time by producing longer solutions rather than
searching for better ones. The Tower of Hanoi is per-
haps a bit unusual in that the structure of the search

space allows the problem solver to undo its mistakes by
simply inserting additional steps. In domains that are
more constrained, the problem solver would be forced
to backtrack and search a fairly large portion of the
search space to �nd a solution. To demonstrate this
claim, the next section presents results in two more
complex problem-solving domains, where it would be
infeasible to use an admissible search.

Experimental Results

This section describes the results of hierarchical prob-
lem solving in prodigy in two problem-solving do-
mains: an extended version of the strips robot-
planning domain and a machine-shop scheduling do-
main. These domains were described in [Minton, 1988],
where they were used to evaluate the e�ectiveness of
the explanation-based learning module in prodigy.
The abstraction hierarchies used in these experiments
were automatically generated by alpine and are fully
described in [Knoblock, 1991].
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Figure 5: Comparison in the robot-planning domain.

Figures 5 and 6 compare the average CPU time on
problems of increasing size both with and without us-
ing hierarchical problem solving. Both problem do-
mains were tested on large sets of randomly generated
problems (between 250 and 400 problems). Some of
the problems could not be solved by prodigy within
10 minutes of CPU time. These problems are included
in the graphs since including problems that exceed
the time bound underestimates the average, but pro-
vides a better indication of overall performance. The
graphs show that on simple problems prodigy per-
forms about the same as hierarchical prodigy, but
as the problems become harder the use of hierarchical
problem solving clearly pays o�. In addition, hierarchi-
cal problem solving produces solutions that are about
10% shorter than prodigy.
Unlike the Tower of Hanoi, these two problem-

solving domains do not satisfy the assumptions de-
scribed in the analysis. There is backtracking both
across subproblems and across abstraction levels, the
solutions are sometimes suboptimal, and the problems
are not partitioned into equal size subproblems. De-
spite this, the use of hierarchical problem solving in
these domains still produces signi�cant reductions in
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Figure 6: Comparison in the machine-shop domain.

search. On the harder sets of problems, the graphs
show that even the hierarchical problem solver begins
to search more. In these domains, this can be at-
tributed to the fact that alpine does not currently
�nd the best abstraction hierarchies for these prob-
lems, but this is a limitation of alpine and not of the
hierarchical problem solver.

Conclusion

While hierarchical problem solving has long been
claimed to be an e�ective technique for reducing
search, there has been no detailed analysis and few
empirical results. This paper presented a method for
hierarchical problem solving, showed that this method
can produce an exponential-to-linear reduction in the
search space, and identi�ed the assumptions under
which such a reduction is possible. In addition, the pa-
per provided empirical results that show that hierarchi-
cal problem solving can reduce search in practice, even
when the set of assumptions does not strictly hold.
There are several interesting conclusions that one

can draw from the experiments. First, the degree to
which abstraction reduces search depends on the por-
tion of the ground-level search space that is explored
without using hierarchical problem solving. Thus, the
more backtracking in a problem, the more bene�t pro-
vided by the use of abstraction. Second, with a non-
admissible search procedure the use of abstraction will
tend to produce shorter solutions since the abstractions
focus the problem solver on the parts of the problem
that should be solved �rst. Third, although many do-
mains lack the highly regular structure of the Tower
of Hanoi, hierarchical problem solving can still provide
signi�cant reductions in search.
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