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Abstract

A major source of ine�ciency in automated problem solvers is their inability to de-

compose problems and work on the more di�cult parts �rst. This issue can be

addressed by employing a hierarchy of abstract problem spaces to focus the search.

Instead of solving a problem in the original problem space, a problem is �rst solved

in an abstract space, and the abstract solution is then re�ned at successive levels in

the hierarchy. While this use of abstraction can signi�cantly reduce search, it is often

di�cult to �nd good abstractions, and the abstractions must be manually engineered

by the designer of a problem domain.

This thesis presents a completely automated approach to generating abstractions

for problem solving. The abstractions are generated using a tractable, domain-

independent algorithm whose only inputs are the de�nition of a problem space and

the problem to be solved and whose output is an abstraction hierarchy that is tai-

lored to the particular problem. The algorithm generates abstraction hierarchies that

satisfy the \ordered monotonicity" property, which guarantees that the structure of

an abstract solution is not changed in the process of re�ning it. An abstraction hier-

archy with this property allows a problem to be decomposed such that the solution

in an abstract space can be held invariant while the remaining parts of a problem are

solved.

The algorithm for generating abstractions is implemented in a system called

alpine, which generates abstractions for a hierarchical version of the prodigy prob-

lem solver. The thesis formally de�nes this hierarchical problem solving method,

shows that under certain assumptions this method can reduce the size of a search

space from exponential to linear in the solution size, and describes the implementa-

tion of this method in prodigy. The abstractions generated by alpine are tested

in multiple domains on large problem sets and are shown to produce shorter solu-

tions with signi�cantly less search than problem solving without using abstraction.

alpine's automatically generated abstractions produce an 85% reduction in search

time on the hardest problem sets in two di�erent test domains, including the time to

generate the abstractions.
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Chapter 1

Introduction

Given a complex problem, automated problem solvers usually forge ahead, blindly

addressing central and peripheral issues alike, without any understanding of which

parts of a problem are more di�cult and should therefore be solved �rst. This can

result in a signi�cant amount of wasted e�ort since a problem solver will spend time

solving the details only to have to discard the solutions in the process of solving

the more di�cult aspects. Even for simple tasks, like building a stack of blocks or

�nding a path for a robot through a con�guration of rooms, brute-force search can be

ine�ective since the search spaces can be quite large. As problem solvers are applied

to increasingly complex problems, the ability to decompose a problem and solve the

more di�cult parts �rst becomes even more critical.

An e�ective approach to building more intelligent problem solvers is to use ab-

straction in order to help focus the search. Abstraction has been used successfully to

reduce search in a number of problem solvers including gps [Newell and Simon, 1972],

abstrips [Sacerdoti, 1974], noah [Sacerdoti, 1977], nonlin [Tate, 1976] molgen
[Ste�k, 1981] and sipe [Wilkins, 1984]. These systems use abstraction to focus at-

tention on the di�cult parts of the problem, leaving the details or less critical parts

of a problem to be �lled in later. This is usually done by �rst solving a problem in

an abstract space and then using the abstract solution to guide the problem solving

of the original more complex problem.

While abstraction has been widely used in problem solving, the problem of �nding

good abstractions has not been carefully studied, and has not been automated. In

most problem solvers that use abstraction, the designer of a problem space must

manually engineer the appropriate abstractions. This process is largely a black art

since it is not even well-understood what makes a good abstraction. In addition,

most existing hierarchical problem solvers employ a single, �xed abstraction hierarchy

for all problems in a given domain, but in many cases the best abstraction for a

problem is speci�c to the particular problem at hand. Automatically constructing

1



2 CHAPTER 1. INTRODUCTION

abstractions for problem solving frees the designer of a problem space from concerns

about e�ciency and it makes it practical to construct abstractions that are tailored

to individual problems or classes of problems.

This dissertation develops a theory of what makes a good abstraction for prob-

lem solving, presents an approach to generating abstractions automatically using the

theory, and investigates the use of these abstractions for problem solving. To demon-

strate these ideas, the thesis describes the design, implementation, and evaluation of

an abstraction learner and hierarchical problem solver. The implemented system pro-

duces abstractions in a variety of problem spaces and the experiments show that these

abstractions provide signi�cant reductions in search over problem solving without the

use of abstraction.

1.1 Problem Solving

Problem solving involves �nding a sequence of actions (operators) that solve some

problem. A problem is de�ned in terms of an initial state and a set of goal condi-

tions. The legal operators are de�ned in terms of preconditions and e�ects, where

the preconditions must be satis�ed before the action can be applied, and the e�ects

describe the changes to the state in which the action is applied. A solution to a

problem consists of a sequence of operators that transform the given initial state into

some �nal state that satis�es the goals. The terms \problem solving" and \planning"

have both been used to describe this process, although problem solving is sometimes

considered to subsume planning. This thesis uses the terms interchangeably.

The problem-solving framework is su�ciently general to represent tasks in a large

variety of domains, ranging from simple block stacking to more complex process

planning and scheduling tasks. While problem solvers di�er in the languages they

use to express actions, and thus in the types of problems they can represent, they all

share the problem of how to control search. Even the simplest problems can be hard

to solve due to the large search spaces.

This thesis builds on the prodigy problem solver [Minton et al., 1989a, Minton

et al., 1989b, Carbonell et al., 1991]. prodigy is a means-ends analysis problem

solver that was designed as a testbed for learning in the context of problem solving.

The idea is to start with a simple and elegant problem solver that has a su�ciently

expressive language to represent interesting problems. The problem solver is given a

speci�cation of the problem space and is expected to become pro�cient in the given

space by forming its own control knowledge through both analysis of the problem

space and problem-solving experience.

In addition to the basic problem solver, prodigy consists of a number of learn-

ing modules, including modules for explanation-based learning [Minton, 1988a], static
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learning [Etzioni, 1990], learning by analogy [Veloso and Carbonell, 1990], learning by

experimentation [Carbonell and Gil, 1990], graphical knowledge acquisition [Joseph,

1989], and abstraction generation. While this thesis describes only the problem solv-

ing and abstraction generation components of prodigy, it does provide comparisons

with the explanation-based and static learning modules. Since the same basic problem

solver serves as the underlying performance engine for the various learning modules,

it facilitates both the comparison and integration of various approaches to reduc-

ing search in problem solving and enables the evaluation of the abstraction learning

component on problem spaces that were previously developed in prodigy. As such,

prodigy provides an ideal testbed for the work in this thesis.

1.2 Hierarchical Problem Solving

Hierarchical problem solvers employ one or more abstractions of a problem space to

reduce the search in problem solving. Instead of attempting to solve problems in

the original problem space by plowing through the morass of details associated with

a problem, a hierarchical problem solver �rst solves a problem in a simpler abstract

space where the problem solver can focus on the \real" problem and ignore the details.

There are several ways to form an abstraction of a problem space. The approach

used in this thesis is to remove properties (literals) from the problem space. This has

the e�ect of forming a reduced model of the original space in which a single abstract

state corresponds to one or more states in the original problem space. In this thesis,

the language of a reduced model is a subset of the language of the original problem

space. An alternative approach to constructing abstraction spaces is to form a relaxed

model by weakening the applicability conditions of the operators in a problem space.

This was the approach taken in abstrips [Sacerdoti, 1974], where the preconditions

of the operators were assigned criticality values and all preconditions with criticality

values below a certain threshold were ignored.

A hierarchical problem solver is given a problem to be solved, a ground-level

problem space, and one or more abstractions of that problem space. As illustrated

in Figure 1.1, the abstractions are arranged in a hierarchy, where a problem is �rst

mapped into the most abstract space in the hierarchy, solved in that space, and then

the abstract solution is re�ned through successively more detailed spaces until the

original problem is solved. An abstract solution is re�ned at each level by inserting

operators to achieve the conditions that were ignored at the more abstract spaces.

An example problem domain in which hierarchical problem solving can signi�-

cantly reduce search is a process planning and scheduling domain. The problem is to

make a set of parts, which requires determining the particular machining operations

needed to construct the parts and scheduling the operations on the available ma-



4 CHAPTER 1. INTRODUCTION

Initial
 State

Goal

Abstract Space

Abstract Space

Ground Space

Figure 1.1: Hierarchical Problem Solving

chines. A natural abstraction of this problem, and one that is used in practice, is to

separate the selection and ordering of the operations from the actual scheduling of the

operations on the machines. This abstraction eliminates wasted e�ort by detecting

interactions caused by the ordering of the operators before the scheduling has even

been considered.

Hierarchical problem solving can reduce the size of the search space from expo-

nential to linear in the size of the solution under certain assumptions. For single-level

problem solving the size of the search space is exponential in the solution length. Hi-

erarchical problem solving reduces this complexity by taking a large complex problem

and decomposing it into a number of smaller subproblems. This thesis formally de�nes

hierarchical problem solving, provides a theoretical analysis of the search reduction

and identi�es the conditions under which the technique can produce an exponential

reduction in the size of the search space.

The hierarchical problem-solving method described in the thesis is implemented

as an extension to the prodigy problem solver. The system was extended by adding

a module to perform the hierarchical control, while employing the basic prodigy

system to solve the subproblems that arise at each abstraction level. This approach

maintains both the problem space and control languages of prodigy, with the added

functionality of hierarchical problem solving.
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1.3 Generating Abstraction Hierarchies

While it has been shown that using abstractions for hierarchical problem solving

can reduce search, a question that previously has not been addressed is how to �nd

an e�ective set of abstractions for use in problem solving. In most of the existing

hierarchical problem solvers, the abstractions are constructed by the designer of the

problem space. While this is possible in some cases, it is often di�cult to �nd good

abstractions and impractical to tailor them to individual problems.

A good abstraction is one that separates out those parts of the problem that can

be solved �rst and then held invariant while other parts of a problem are solved. To

capture this idea, the thesis identi�es two properties of an abstraction hierarchy { the

monotonicity and ordered monotonicity properties.

Monotonicity Property: the existence of a ground-level solution implies the exis-

tence of an abstract-level solution that can be re�ned into a ground solution

while leaving the literals established in the abstract plan unchanged.

The monotonicity property holds for all abstraction hierarchies and guarantees that if

a solution exists it can be found without modifying the abstract plans. This property

is useful because it provides a criterion for backtracking that preserves completeness.

Whenever a problem solver would undo a literal established in an abstract plan while

re�ning the plan, the system can backtrack instead. Yang and Tenenberg [1990] devel-

oped a complete nonlinear, least-commitment problem solver using the monotonicity

property to constrain the search for a re�nement of an abstract plan. While the

property is useful for constraining the re�nement process, it is not restrictive enough

to provide a criterion for generating abstractions.

A restriction of the monotonicity property, called the ordered monotonicity prop-

erty, does provide a useful criterion for generating abstraction spaces. This property

is de�ned as follows:

Ordered Monotonicity Property: every re�nement of an abstract plan leaves all

the literals that comprise the abstract space unchanged.

The ordered monotonicity property is more restrictive than the monotonicity because

it not only requires that there exists a re�nement of an abstract plan that leaves the

literals in the abstract plan unchanged, but that every re�nement of an abstract plan

leaves all the literals in the abstract space unchanged. This property can be used as

the basis of an algorithm for constructing hierarchies of abstraction spaces.

This thesis presents a tractable algorithm for automatically generating abstrac-

tion hierarchies from only the initial problem space de�nition and a problem to be

solved. Using the de�nition of a problem space, the algorithm determines the possible
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interactions between literals, which de�ne a set of constraints on the �nal abstraction

hierarchy. The algorithm partitions the literals of a problem space into levels such

that the literals in one level do not interact with literals in a more abstract level. The

resulting abstraction hierarchies are guaranteed to satisfy the ordered monotonicity

property.

In the previous work on hierarchical problem solving, the problem solver was

provided with a single, �xed abstraction hierarchy. However, what makes a good

abstraction for one problem may make a bad abstraction for another. Thus, the

algorithm presented in the thesis generates abstraction hierarchies that are tailored

to the individual problems. For example, the strips robot planning domain [Fikes

and Nilsson, 1971] involves using a robot to move boxes among rooms and opening and

closing doors as necessary. For problems that simply involve moving boxes between

rooms, doors are a detail that can be ignored since the robot can simply open the

doors as needed. However, for problems that require opening or closing a door as

a top-level goal, whether a door is open or closed is no longer a detail since it may

require planning a path to get to the door.

The algorithm for generating abstractions is implemented in the alpine system.

Given a problem space and problem, alpine generates an abstraction hierarchy for

the hierarchical version of prodigy. The system has been successfully tested on

a number of problem-solving domains including the original strips domain [Fikes

and Nilsson, 1971], a more complex robot planning domain [Minton, 1988a], and a

machine-shop planning and scheduling domain [Minton, 1988a]. In all these domains,

the system e�ciently generates problem-speci�c abstraction hierarchies that provide

signi�cant reductions in search.

1.4 Closely Related Work

This section briey describes the most closely related work on both generating and

using abstractions for problem solving. Chapter 6 provides a more comprehensive

discussion of the work related to this thesis.

The �rst hierarchical problem solver was implemented as a planning method in

gps [Newell and Simon, 1972]. Given a problem space and an abstraction of that

problem space, gps maps the problem into the abstract space, solves the abstract

problem and then uses the solution to guide the problem solving in the original

space. The system was tested in the domain of propositional logic, where in the

abstract space the di�erences between the connectives is ignored. gps provided the

�rst automated use of abstraction for problem solving, but did not automate the

construction of the abstractions.

abstrips [Sacerdoti, 1974] employs a similar problem-solving technique to gps
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and was the �rst system to demonstrate empirically that abstraction could be used to

reduce search in problem solving, In addition, the work on abstrips was the earliest

attempt at automating abstraction formation. To form an abstraction hierarchy

the system must be given an initial partial order of the problem space predicates.

abstrips then forms the abstraction hierarchy by placing the static conditions (those

conditions that cannot be changed by any operator) in the most abstract level and

placing the preconditions that cannot be achieved by a \short plan" in the next

level. The remaining levels come from the user-de�ned partial order. As described in

Chapter 5, alpine completely automates the formation of the abstraction hierarchies

in the abstrips's domain and produces abstractions that are considerably more

e�ective at reducing search than the ones generated by abstrips.

Since these early e�orts, there have been a number of systems that use abstractions

for problem solving. These systems include noah [Sacerdoti, 1977], molgen [Ste�k,

1981], nonlin [Tate, 1976], and sipe [Wilkins, 1984]. However, all of these systems

must be provided with abstractions that are hand-crafted for the individual domains.

More recently, Unruh and Rosenbloom [1989] developed a weak method in soar
[Laird et al., 1987] that dynamically forms abstractions for look-ahead search by

ignoring unmatched preconditions. The choices made in the look-ahead search are

stored by soar's chunking mechanism and the chunks are then used to guide the

search in the original space. The system decides which conditions to ignore based on

which conditions hold during problem solving. Since alpine constructs abstractions

by analyzing the problem space and problem, while soar forms the abstractions

based on which conditions did or did not hold in solving a particular problem, the

abstractions produced by alpine are more likely to ignore the appropriate conditions

for a given problems. On the other hand, the more stringent requirements on the

abstractions formed by alpine prevent it from �nding abstractions in problem spaces

in which soar can produce abstractions (e.g., the eight puzzle).

Christensen [1990] also built a hierarchical planner, called pablo, that also forms

its own abstraction hierarchies. pablo partially evaluates the operators before prob-

lem solving to determine the number of steps required to achieve a given goal. The

system then uses this information to re�ne a plan by always focusing on the part of

the problem that requires the greatest number of steps. This approach is a general-

ization of the abstrips approach, where abstrips forms the abstractions based on

whether a short plan exists, and pablo forms the abstractions based on the length

of the plan. A di�culty with the approach implemented in pablo is that it may

be expensive to partially evaluate the operators in more complex problem spaces. In

contrast, alpine constructs abstractions based on the interactions between literals,

which can be determined without requiring any partial evaluation.

Korf [1987] developed an alternative method for using abstractions for problem

solving. Instead of dropping conditions to form an abstract problem space, an abstract
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space is constructed by replacing the original set of operators by a set of macro

operators. This di�ers from hierarchical problem solving because once the problem

is solved in the macro space the problem is completely solved. Korf shows that

this approach can reduce the average search time from O(n) to O(log n), but the

disadvantage of this approach is that it may be di�cult or impossible to de�ne a set

of macros that adequately cover the given problem space.

1.5 Contributions

The primary contributions of the thesis are the discovery and formalization of the

properties that can be used to produce e�ective abstraction hierarchies, the approach

to generating abstractions automatically, the de�nition and analysis of hierarchical

problem solving, and the implementation and empirical demonstration of both the

automatic abstraction generation and hierarchical problem solving. This section de-

scribes each of these contributions.

First, the thesis identi�es the monotonicity property and a re�nement of this

property, called the ordered monotonicity property, which capture the critical features

of an abstraction that determine its utility in problem solving. The monotonicity

property is based on the idea that the basic structure of an abstract plan should not

be changed in the process of re�ning the plan. This property provides a criterion for

pruning the search for a re�nement of an abstract plan since a problem solver only

needs to consider re�nements that do not violate the abstract plan structure. The

ordered monotonicity property, in addition to pruning the search space, also provides

an e�ective criterion for generating useful abstraction hierarchies. This property

requires that the literals in an abstraction hierarchy are ordered such that achieving

literals at one level will not interact with literals at a more abstract level.

Second, the thesis provides a completely automated approach to generating ab-

straction hierarchies based on the ordered monotonicity property. The algorithm

described in the thesis is given a problem space and problem as input and, by analyz-

ing the potential interactions, it �nds a set of constraints on the possible abstractions

hierarchies that are su�cient to guarantee the ordered monotonicity property. Be-

cause the best abstraction hierarchy varies from problem to problem, the algorithm

generates abstraction hierarchies that are tailored to the individual problems. The

resulting abstraction hierarchies de�ne a set of abstract problem spaces that are each

a reduced model of the original problem space. These abstract spaces can then be

used for hierarchical problem solving, as well as learning control knowledge.

Third, the thesis presents a precise de�nition and analysis of hierarchical problem

solving. Previous work on hierarchical problem solving provided only vague descrip-

tions of the problem-solving method with little or no analysis of the potential search
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reduction. The hierarchical problem-solving method described in this thesis uses the

solutions at each abstract level to divide up a problem into a number of simpler sub-

problems. The thesis analyzes the potential search reduction of this method, shows

that this problem-solving method can provide an exponential-to-linear reduction in

the size of the search space, and identi�es the conditions under which such reductions

are possible.

Fourth, the thesis provides an implementation and empirical demonstration of

both the abstraction learner and hierarchical problem solver. The abstractions are

generated by a system called alpine and then used in a hierarchical version of the

prodigy problem solver. The thesis presents results on both generating and us-

ing abstractions on large sets of problems in multiple problem spaces that had been

previously de�ned in prodigy. The use of abstraction is compared in prodigy

to single-level problem solving, as well as problem solving with hand-coded control

knowledge and control knowledge learned by ebl [Minton, 1988a] and static [Et-

zioni, 1990]. The results show that the abstractions provide signi�cant reductions in

search and improvements in solution quality.

1.6 A Reader's Guide to the Thesis

The thesis is divided into seven chapters, which describe problem solving, hierarchical

problem solving, automatically generating abstractions, results, related work, and

limitations and future work. The chapters of the thesis are organized as follows.

Chapter 2 presents the basic problem-solving model. This chapter de�nes a prob-

lem space and the corresponding problem solving terminology, and then describes the

prodigy problem solver, which forms the underlying system for the implementation

and evaluation of the ideas in the thesis. Chapters 2, 3, and 4 all have the same in-

ternal organization. They �rst present the basic ideas of the chapter, then illustrate

these ideas using the Tower of Hanoi domain, and lastly, describe the implementation

of the ideas.

Chapter 3 describes how the abstractions are used for hierarchical problem solving.

This chapter de�nes an abstraction space, presents a method for hierarchical problem

solving, shows that this method can produce an exponential-to-linear reduction in the

size of the search space, and identi�es the conditions under which such a reduction is

possible. The last section of this chapter describes the implementation of hierarchical

problem solving in prodigy.

Chapter 4 presents an approach to automatically generating abstraction hierar-

chies for problem solving. This chapter explores the relationships between a problem

space and abstractions of a problem space, de�nes the monotonicity and ordered

monotonicity properties, and then describes an algorithm for generating abstractions
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based on the ordered monotonicity property. Lastly this chapter describes an imple-

mented system called alpine that produces problem-speci�c abstraction hierarchies

using this algorithm.

Chapter 5 presents the empirical results for both generating and using the abstrac-

tions for problem solving. This chapter is divided into four sections. The �rst section

explores the a�ect of the problem-solving search strategy on the search reduction in

hierarchical problem solving. The second section presents empirical results for both

generating and using abstractions in alpine. The third section compares the use of

the abstractions generated by alpine to the use of control knowledge generated using

explanation-based learning. The last section compares the abstractions generated by

alpine to those generated by abstrips.

Chapter 6 compares and contrasts the work in this thesis with other work related

to generating and using abstractions for problem solving.

The �nal chapter, Chapter 7, describes the limitations of this work, presents a

number of directions for future work, and attempts to characterize where this thesis

leaves o� and what remains to be done.

There are four appendices to the thesis, which contain the problem space de�ni-

tions, example problems, and experimental results for the four di�erent domains used

in this thesis. Appendix A presents the Tower of Hanoi, Appendix B presents the

extended robot-planning domain, Appendix C presents the machine-shop planning

and scheduling domain, and Appendix D presents the original strips domain as it

is encoded in prodigy.

There are several ways one can approach this thesis besides reading the entire

document from cover to cover. For a glimpse at the content of the thesis, read the

example sections on the Tower of Hanoi { Sections 2.2, 3.4, and 4.3. These sections

illustrate the basic ideas using the Tower of Hanoi puzzle. All the chapters of the thesis

are fairly self-contained, and the reader should be able to skip around by reading the

de�nitions at the beginning of the preceding chapters. On a �rst reading, the reader

may want to skim the formal de�nitions and proofs.



Chapter 2

Problem Solving

Problem solving is a process that has been widely studied in AI from the early days

of gps [Newell et al., 1962, Ernst and Newell, 1969] and strips [Fikes and Nilsson,

1971] to more recent planners such as sipe [Wilkins, 1984], soar [Laird et al., 1987]

and prodigy [Minton et al., 1989b, Minton et al., 1989a, Carbonell et al., 1991]. A

problem solver is a given a problem space de�nition and a problem and is asked to

�nd a solution to the problem. A problem space is de�ned by the legal operators and

states. Operators are composed of a set of conditions, called preconditions, that must

be true in order to apply an operator and a set of e�ects that describe the changes

to the state that result from applying an operator. States are composed of a set of

conditions that describe the relevant features of a model of the world. A problem

consists of an initial state, which describes the initial con�guration of the world, and a

goal, which describes the desired con�guration. To solve a problem, a problem solver

must �nd a sequence of operators that transform the initial state into a state that

satis�es the goal.

This chapter contains three parts { a formal de�nition of problem solving, an

example problem solving task, and a description of the prodigy problem solver.

The formal de�nition of problem solving provides a precise de�nition of the task

and the corresponding terminology, which is in turn used in the de�nitions in the

following chapters. The second part provides an example from the Tower of Hanoi

domain. This example is used throughout the thesis to illustrate the basic ideas. The

last section describes the prodigy problem solver, which provides the foundation for

the implementation of the ideas in the thesis.

11
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2.1 De�nition of Problem Solving

A problem space � is a triple (L;S;O), where L is a �rst-order language, S is a set of

states, and O is a set of operators.1 Each state Si 2 S is a �nite and consistent set of

atomic sentences in L. Each operator � 2 O is de�ned by a triple (P�,D�, A�), where

P�, the preconditions, are a set of literals (positive or negative atomic sentences) in

L, and both the deletes D� and adds A� are �nite sets of atomic sentences in L. The

combination of the adds and deletes comprise the e�ects of an operator E�, such that

if p 2 A� then p 2 E� and if p 2 D� then (:p) 2 E�.

A problem � consists of two components:

� An initial state S0 2 S, where S0 is a description of an initial state of the world.

� A goal state Sg 2 S, where Sg is a partial description of a desired state.

The solution (or plan) � to a problem is a sequence of operators that transforms the

initial state S0 into some �nal state Sn that satis�es the goal state Sg. A plan is

composed of the concatenation of operators or subplans. (The `k' symbol is used to

represent the concatenation of operators or sequences of operators.)

Let A : O � S ! S be an application procedure that applies an operator to a

state to produce a new state by removing the deleted literals, and inserting the added

literals. For any state Si (where `n' represents set di�erence),

A(�; Si) = (Si nD�) [ A�:

The application procedure can be extended to apply to plans in the obvious way,

where each operator applies to each of the resulting states in sequence. Thus, given

the initial state S0, a plan � � �1k . . . k�n de�nes a sequence of states S1; . . . ; Sn,

where

Si = A(�1k . . . k�i; S0) = A(�i; Si�1) 1 � i � n

A plan � is correct whenever the preconditions of each operator are satis�ed in the

state in which the operator is applied:

P�i � Si�1 1 � i � n

� solves a problem � = (S0; Sg) whenever � is correct and the goal Sg is satis�ed in

the �nal state: Sg � A(�; S0).
1The formalization of problem solving presented in this section is loosely based on Lifschitz's

formalization of strips [Lifschitz, 1986].



2.2. TOWER OF HANOI EXAMPLE 13

Let P : � � S � S ! � be a problem solving procedure that is given a problem

space �, an initial state S0, and a goal state Sg and produces a plan � with the

operators in � that solves the goal.

� = P(�; S0; Sg)

The procedure P is not guaranteed to produce a plan, since there may be goals that

are not solvable from a given initial state and goals that are not solvable from any

initial state.

There are a variety of approaches to problem solving, which range from sim-

ple forward-chaining or backward chaining to more sophisticated goal-directed ap-

proaches, such as means-ends analysis and least-commitment planning.

Means-ends analysis, which was developed in gps [Newell et al., 1962], integrates

the forward- and backward-chaining approaches. A means-ends analysis problem

solver identi�es the di�erences between the goal and the current state and then se-

lects an operator that reduces these di�erences. If the selected operator is directly

applicable in the current state then it is applied to produce a new state. Otherwise

the problem solver attempts to reduce the di�erences between the current state and

the state in which the selected operator can be applied. This process is repeated

until the initial state is transformed into a state that satis�es the goal. Other means-

ends analysis problem solvers include strips [Fikes and Nilsson, 1971] and prodigy
[Carbonell et al., 1991].

A least-commitment problem solver, which was �rst implemented in noah [Sac-

erdoti, 1977], searches through the space of plan re�nements, instead of searching the

state space, in order to build a partially ordered sequence of operators that solves

a given problem. The plan re�nement space consists of a set of plan modi�cation

operators that construct and re�ne a partially ordered plan. For example, an estab-

lishment operator inserts an operator into the partial plan to achieve a goal and a

promotion operator orders one operator before another in the plan. Chapman [1987]

identi�ed a complete set of plan modi�cation operators and implemented them in

a planner called tweak. Other least-commitment problem solvers include nonlin
[Tate, 1976], molgen [Ste�k, 1981], and sipe [Wilkins, 1984].

2.2 Tower of Hanoi Example

This section presents an example of problem solving in the Tower of Hanoi puzzle,

which is then used in the following chapters to illustrate the techniques for both

hierarchical problem solving and generating abstractions. The puzzle requires moving

a pile of various-sized disks from one peg to another with the use of an intermediate

peg. The constraints are that only one disk at a time can be moved, a disk can only
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be moved if it is the top disk on a pile, and a larger disk can never be placed on

a smaller one. Figure 2.1 shows the initial and goal states of a three-disk Tower of

Hanoi problem.

21 3

A

B

C

21 3

A

B

C

Initial State Goal State

Figure 2.1: Initial and Goal States in the Tower of Hanoi

There are a variety of ways to express the legal operators of the Tower of Hanoi for

problem solving. The usual approach is to express the operators as a set of operator

schemata, where each schema is parameterized over one or more arguments of the

operator. Thus, each operator schema corresponds to one or more fully-instantiated

operators. Using operator schemata the three-disk Tower of Hanoi can be axiomatized

in three operators, where there is one schema for moving each disk. Table 2.1 shows

the schema for moving the largest disk, diskC from a source peg to a destination peg.

The Tower of Hanoi can also be axiomatized as a single-operator that is parameterized

over both the pegs and the disks. The single-operator representation is described in

Section 7.2.1.

(Move DiskC

(preconds (and (on diskC source-peg)

(not (equal source-peg dest-peg))

(not (on diskB source-peg))

(not (on diskA source-peg))

(not (on diskB dest-peg))

(not (on diskA dest-peg))))

(effects ((del (on diskC source-peg))

(add (on diskC dest-peg)))))

Table 2.1: Operator Schema in the Tower of Hanoi

To simplify the exposition, a fully-instantiated representation of the Tower of

Hanoi example will be used throughout the thesis, where there is an operator for

moving each disk between each pair of pegs. For the three-disk problem, this axiom-

atization requires 18 operators (6 for each disk). Table 2.2 shows the operator for

moving disk C, the largest disk, from peg 1 to 3. The preconditions require that disk

C is initially on peg 1 and that neither disk A nor B are on peg 1 or 3.
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(Move DiskC From Peg1 to Peg3

(preconds (and (on diskC peg1)

(not (on diskB peg1))

(not (on diskA peg1))

(not (on diskB peg3))

(not (on diskA peg3))))

(effects ((del (on diskC peg1))

(add (on diskC peg3)))))

Table 2.2: Instantiated Operator in the Tower of Hanoi

The di�culty of the Tower of Hanoi puzzle increases with the number of disks in

the problem. The number of possible states for a given puzzle with n disks and p pegs

is pn since each disk can be on one of the p pegs. The state space, which is the set

of states reachable from the initial state using the given operators, for the three-disk

puzzle is shown in Figure 2.2 [Nilsson, 1971]. Each node represents a state and is

labeled with a picture of that state, and each arrow represents an operator that can

be applied to reach the adjacent state.

A solution to the three-disk problem given above consists of any path through

the state space that starts at the initial state and terminates at the goal state. The

shortest solution follows the path along the straight line between the initial and goal

states. Means-ends analysis can be used to solve the Tower of Hanoi problem as

follows. First, the goal is compared to the initial state and one of the di�erences

is selected. There are three possible di�erences to consider: (on diskA peg3), (on

diskB peg3), and (on diskC peg3). Assume the problem solver selects the last

one. Next an operator is selected that reduces this di�erence. There are two possible

operators, one for moving diskC from peg 1 to 3 and the other for moving the disk

from peg 2 to 3. If it selects the former, then it would subgoal on moving the smaller

disks so that this operator could be applied. This process continues until the initial

state has been transformed into the goal state. If the problem solver reaches a dead

end or encounters a cycle, it backtracks to one of the previous choice points in the

search.

2.3 Problem Solving in PRODIGY

The prodigy problem solver [Minton et al., 1989b, Minton et al., 1989a, Carbonell

et al., 1991] serves as the foundation for the implementation of the work in this thesis.

prodigy is a general-purpose, means-ends analysis problem solver coupled with a va-



16 CHAPTER 2. PROBLEM SOLVING

Goal
State

Move DiskC
From Peg1 
To Peg3

Initial
 State

Figure 2.2: State Space of the Three-Disk Tower of Hanoi

riety of learning mechanisms. In addition to the automatic generation of abstractions

described in this thesis, prodigy includes modules for explanation-based learning
[Minton, 1988a], static learning [Etzioni, 1990], learning by analogy [Veloso and Car-

bonell, 1990], learning by experimentation [Carbonell and Gil, 1990], and graphical

knowledge acquisition [Joseph, 1989]. prodigy has been applied to a variety of

domains including the blocks world [Nilsson, 1980], the strips domain [Fikes and

Nilsson, 1971], an augmented version of the strips domain [Minton, 1988a], discrete

machine-shop planning and scheduling domain [Minton, 1988a], a brewery scheduling

domain [Wilkins, 1989], and a computer con�guration domain [McDermott, 1982,

Rosenbloom et al., 1985].

The section below presents an overview of the basic prodigy problem solver.

It describes prodigy's problem space and problem de�nitions, describes how the

problem solver searches this space, and explains prodigy's use of control rules to

guide this search. A complete description of the prodigy problem solver is presented

in [Minton et al., 1989b], and the extensions to prodigy for hierarchical problem

solving are described in the next chapter.

The description of prodigy that follows draws on an example from a machine-

shop planning and scheduling domain. This example was previously described in
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[Minton et al., 1989a]. The machine-shop domain contains a variety of machines,

such as a lathe, mill, drill, punch, spray painter, etc, which are used to perform

various operations to produce the desired parts. Given a set of parts to be drilled,

polished, reshaped, etc., and a �xed amount of time, the task is to �nd a plan to

both create and schedule the parts that meets the given requirements. A complete

de�nition of the problem space can be found in Appendix C.

2.3.1 Problem Space De�nition

A problem space in prodigy is de�ned by a set of operators and inference rules. The

operators describe the legal transformations between states and the inference rules

describe the properties that can be derived from a state.

A state is represented by a database containing a set of ground atomic formulas.

There are two types of relations used in the system { primitive relations and de�ned

relations. Primitive relations are directly observable or \closed-world". This means

that the truth value of these relations can be immediately determined in a given

state. Primitive relations may be added to or deleted from a state by the operators.

In contrast, de�ned relations are inferred on demand using the inference rules. The

purpose of de�ned relations is to avoid explicitly maintaining information that can

be derived from the primitive relations.

An operator is composed of a precondition expression and a list of e�ects. The

precondition expression describes the conditions that must be satis�ed before the

operator can be applied. The expressions are well-formed formulas in the prodigy

description language (PDL) [Minton et al., 1989b], a language based on predicate

logic that includes negation, conjunction, disjunction, existential quanti�cation, and

universal quanti�cation over sets. The list of e�ects describe how the application of

the operator changes the world. The e�ects are a list of atomic formulas that describe

primitive relations to be added or deleted from the current state when the operator

is applied.

An example operator schema from the machine-shop problem space is shown in

Table 2.3. This operator is used to schedule a turn operation on a part, which makes

a part cylindrical by turning it on a lathe. The precondition requires that the lathe is

idle and the part has not been scheduled on any machines at the same or later time

(parts are scheduled starting at the beginning of the schedule). The e�ects of this

operator are that the part has the desired cylindrical shape, it is scheduled on the

machine, and it is now last-scheduled at the given time. There are also a number of

side-e�ects from the turning operation, which include removing any paint and making

the surface condition rough.

Inference rules have the same syntax as operators, but are used to infer de�ned

relations. As such, an inference rule can only add de�ned relations, which are not
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(TURN (part time)

(preconditions

(and

(is-part part)

(last-scheduled part prev-time)

(later time prev-time)

(idle lathe time)))

(effects (

(delete (shape part old-shape))

(delete (surface-condition part old-condition))

(delete (painted part old-paint))

(delete (last-scheduled part prev-time))

(add (surface-condition part rough))

(add (shape part cylindrical))

(add (last-scheduled part time))

(add (scheduled part lathe time)))))

Table 2.3: Operator in the Machine-Shop Domain

found in the e�ects of an operator. For example, Table 2.4 provides an inference

rule from the machine-shop problem space. This rule de�nes the predicate idle by

specifying that a machine is idle during a time period if no part is scheduled for that

machine during that time period.

(IS-IDLE (machine time)

(preconditions

(not (exists part (scheduled part machine time))))

(effects

((add (idle machine time)))))

Table 2.4: Inference Rule in the Machine-Shop Domain

Because inference rules are encoded and applied in a manner similar to operators,

prodigy can employ a homogeneous control structure, enabling the search-control

rules to guide the application of operators and inference rules alike.
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2.3.2 Problem De�nition

As described earlier, a problem consists of an initial state and goal. An initial state

is speci�ed as a conjunction of literals. The initial state for the example, illustrated

in Figure 2.3, contains part-b and part-c already scheduled, and part-a which has

yet to be scheduled. The schedule consists of 20 time slots, and part-a is initially

unpolished, oblong-shaped, and cool.

 PART-B

 PART-C

 PART-B

ROLLER

POLISHER

LATHE

TIME-1 TIME-20TIME-2 TIME-3 TIME-4....

Figure 2.3: Initial State in the Machine-Shop Domain

A goal is any legal PDL expression. An example goal expression for the machine-

shop problem space is shown below, where the goal is satis�ed if the part named

part-a is polished and has a cylindrical shape.

(and (shape part-a cylindrical)

(surface-condition part-a polished))

2.3.3 Searching the Problem Space

prodigy begins with a search tree containing a single node representing the initial

state and the desired goals. The tree is expanded as follows:

1. Decision phase: There are four types of decisions that prodigymakes during

problem solving. First, it must decide what node in the search tree to expand

next, where each node consists of a set of goals and a state describing the

world. After selecting a node, prodigy chooses a goal, an operator relevant to

achieving the goal, and an appropriate set of bindings for the operator. Each

choice point in the decision phase can be mediated by a set of control rules,

which are described in the next section.

2. Expansion phase: If the instantiated operator's preconditions are satis�ed,

the operator is applied. Otherwise, prodigy subgoals on the unmatched pre-

conditions. In either case, a new node is created.

These steps are repeated until prodigy generates a node whose state satis�es the

top-level goal expression or all possible search paths have been exhausted.
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The search tree for the example problem described above is shown in Figure 2.4.

The left side of each node shows the goal stack and the pending operators at that

point. The right side shows the relevant subset of the state. For example, at Node 3,

the current goal is to clamp the part. This is a precondition of the polish operator,

which is being considered to achieve the goal of being polished. The predicates like

cylindrical and hot in the �gure are shorthand for the actual formulas, such as

(shape part-a cylindrical) and (temperature part-a hot).

In the search tree, the �rst top-level goal (shape part-a cylindrical) is not

satis�ed in the initial state. To achieve this goal, prodigy considers the operators

turn and mill. Both operators have e�ects that unify with the goal, so either opera-

tors can be used to make a part cylindrical, but they have di�erent side-e�ects. Since

there are no control rules to guide this decision, prodigy arbitrarily decides to try

mill �rst. In order to satisfy the preconditions of mill, prodigy must infer that

part-a is available and the milling machine is idle at the desired time. Assume that

previously acquired control knowledge indicates a preference for the earliest possible

time slot, time-2. After milling the part at time-2, prodigy attempts to polish

the part, but the preconditions of polish specify that the part must either be rect-

angular, or clamped to the polisher. Unfortunately, clamping fails, because milling

the part has raised its temperature so that it is too hot to clamp without deforming

the part or clamp. Since there is no operation to cool the part or make the part

rectangular, the attempt to apply polish fails at that node.

Backtracking chronologically, prodigy then tries milling the part at time-3, and

then time-4, and so on, until the end of the schedule is reached at time-20. Each

of these attempts fails to produce a solution because the part remains hot and is

therefore unclampable. (In practice, a part would cool down over time, but this

process is not modeled in the axiomatization of the domain.) In any event, the

problem solver �nally succeeds when it eventually backs up and tries turning rather

than milling.

2.3.4 Controlling the Search

As prodigy attempts to solve a problem, it must make decisions about the selection

of which node to expand, of which goal to work on, of which operator to apply, and

which bindings of the operator to use. To make these decisions, prodigy uses search

control rules, which may be general or problem-space speci�c, hand-coded or auto-

matically acquired, and may consist of heuristic preferences or de�nitive selections.

In the absence of any search control, prodigy defaults to depth-�rst search with

chronological backtracking.

Control rules can be employed to guide the search at the four decisions points

described above (nodes, goals, operators, and bindings). Each control rule has an \if"
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Figure 2.4: Search Tree in the Machine-Shop Domain
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condition testing applicability and a \then" condition indicating whether to select,

reject, or prefer a particular candidate. Given the alternatives at each decision

point, prodigy �rst applies the applicable selection rules to select a subset of the

alternatives. If no selection rules are applicable, all the alternatives are included. Next

rejection rules further �lter this set by explicitly eliminating some of the alternatives.

Last, preference rules are used to order the remaining alternatives.

For example, the control rule depicted in Table 2.5 is an operator rejection rule

that states that if the current goal at a node is to reshape a part and the part must

subsequently be polished, then reject the mill operator. The example problem from

(DONT-MILL-BEFORE-POLISHING

(if (and (current-node node)

(current-goal node (shape part shape))

(candidate-operator node mill)

(is-top-level-goal node

(surface-condition part polished))))

(then (reject operator mill)))

Table 2.5: Operator Rejection Rule in the Machine-Shop Domain

the previous section illustrates why this rule is appropriate: polishing part-a after

milling it turned out to be impossible. Had the system previously learned this rule, the

problem would have been solved directly, without the costly backtracking at Node 1.

Notice that the \if" condition of the control rule is written in PDL, the same lan-

guage that is used for the preconditions of operators and inference rules, though di�er-

ent predicates are used. Meta-level predicates such as current-node and candidate-

operator are used in control rules, whereas the predicates used in operators and

inference rules are predicates of a problem-space de�nition, such as shape and idle.

prodigy has a set of prede�ned meta-level predicates.

prodigy's reliance on explicit control knowledge distinguishes it from other do-

main-independent problem solvers. Instead of using a least-commitment search strat-

egy, as in noah or sipe, or a look-ahead search strategy, as in soar, prodigy ex-

pects that important decisions will be guided by the presence of appropriate control

knowledge. This control knowledge can take the form of control rules, abstractions,

or stored plans, all of which can be used to guide the search. If there is no control

knowledge to guide a particular control decision, then prodigy makes the control

choice arbitrarily. This is referred to as a casual commitment strategy. The ratio-

nale for this strategy is that for any decision with signi�cant rami�cations, control

knowledge should be present; if it is not, the problem solver should not attempt to
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be clever without knowledge, rather, the cleverness should come about as a result of

learning. Thus, the emphasis is on an elegant and simple problem solving architec-

ture that can produce sophisticated behavior by learning control knowledge speci�c

to a problem space. Control knowledge is acquired through experience as in EBL
[Minton, 1988a] and derivational analogy [Veloso and Carbonell, 1990] or through

problem-space analysis as in static [Etzioni, 1990] and alpine (described in the

following chapters).
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Chapter 3

Hierarchical Problem Solving

Abstraction has been used to reduce search in a variety of problem solvers. It reduces

search by both focusing the problem solver on the more di�cult aspects of a prob-

lem �rst. Most of these problem solvers employ one of three types of abstractions:

abstract problem spaces, abstract operators, and macro problem spaces. These three

approaches are briey described below and then compared in more detail in Chapter 6.

The �rst approach, hierarchical problem solving using abstract problem spaces,

employs a hierarchy of abstract problem spaces to �rst solve a problem in an abstract

space and then re�ne the abstract solution into successively more detailed spaces until

it reaches the ground space. This type of hierarchical problem solving is sometimes

called length-�rst hierarchical problem solving since a problem is solved at one level

of abstraction before moving to the next level. The technique was �rst used in gps

[Newell et al., 1962] and abstrips [Sacerdoti, 1974].

The second approach, hierarchical problem solving using abstract operators, uses

a prede�ned set of abstractions of the operators and expands each operator in the

abstract plan to varying levels of detail. Instead of re�ning the entire plan at one

level of detail, the problem solver re�nes the plan by selectively re�ning the individ-

ual operators in the plan. An operator is re�ned by replacing an abstract operator

with a more detailed operator and achieving the unsatis�ed preconditions of the new

operator. This approach allows one part of the abstract plan to be expanded while

another part is ignored, but eventually the entire plan will be expanded in the ground

space. Unlike the length-�rst model, the abstractions need not be a set of well-de�ned

abstract problem spaces. Instead the problem solver �rst selects abstract operators

that directly achieve the goals and then re�nes the abstract operators by inserting

preconditions of the operators that must hold before operators can be applied in the

ground space. This approach, which requires a least-commitment problem solver, was

developed in noah [Sacerdoti, 1977] and later used in nonlin [Tate, 1976], molgen
[Ste�k, 1981], and sipe [Wilkins, 1984].

25
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The third approach, abstract problem solving using macros, takes a problem and

maps it into an abstract space de�ned by a set of macro operators and then solves the

problem in the macro space. Unlike the �rst two approaches, once a problem is solved

in the macro space, the problem is completely solved since the macros are de�ned by

operators in the original problem space. Korf [1987] presented the idea of replacing

the original problem space by a macro space. Other people have explored the use

of macros in problem solving [Fikes et al., 1972, Minton, 1985, Laird et al., 1986,

Shell and Carbonell, 1989], but in most cases the macros are simply added to the

original problem space, which may or may not reduce search [Minton, 1985].

The work in this thesis builds on the �rst approach { problem solving using ab-

stract problem spaces. Before describing this approach to hierarchical problem solving

in detail, the �rst section compares two models of abstraction spaces and describes

the one used in this thesis. The second section provides a precise de�nition of hier-

archical problem solving. The third section shows that hierarchical problem solving

can provide an exponential reduction in the size of the search space and identi�es the

assumptions under which this reduction is possible. The fourth section illustrates the

use of hierarchical problem solving in the Tower of Hanoi puzzle. The last section

describes the implementation of hierarchical problem solving in prodigy.

3.1 Abstraction Hierarchies

An abstraction hierarchy consists of a hierarchy of abstract problem spaces. This sec-

tion �rst de�nes an abstract problem space and then de�nes a hierarchy of abstraction

spaces.

3.1.1 Models of Abstraction Spaces

As described in the previous chapter, a problem space is composed of the legal states

and operators. An abstract problem space is formed by simplifying a problem space.

One approach is to drop the applicability conditions of the operators to form a relaxed

model, and another approach is to completely remove certain conditions from the

problem space to form a reduced model. This section de�nes relaxed and reduced

models and describes the advantages of reduced models over relaxed models.

Given an initial problem-solving domain, a problem space or model of that domain

is de�ned by the states and operators. Figure 3.1 shows a picture of a simple robot-

planning domain and the corresponding models of this domain. The initial model is

shown at the top of the �gure and consists of four states and four di�erent operators.

The robot can move back and forth between the two rooms and the door between

the rooms can be opened and closed. In the initial model, the robot can only change
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(InRoom RoomA)
(Open DoorAB)

(InRoom RoomB)
(Closed DoorAB)

(InRoom RoomB)
(Open DoorAB)

(InRoom RoomA)
(Closed DoorAB)

(InRoom RoomA) (InRoom RoomB)

Relaxed Model

(InRoom RoomA)
(Open DoorAB)

(InRoom RoomB)
(Closed DoorAB)

(InRoom RoomB)
(Open DoorAB)

(InRoom RoomA)
(Closed DoorAB)

Initial Model

Reduced Model

Room A Room B

Door AB

Robot

Problem Domain

Figure 3.1: Comparison of Relaxed and Reduced Models

rooms if the door between the rooms is open, and the robot can open or close the

door from either room.

Relaxed models [Pearl, 1984] are constructed by removing preconditions of op-

erators. This is the approach taken in abstrips, where the preconditions of the

operators are assigned criticality values and all preconditions with criticality values

below a certain threshold are ignored. Viewed in terms of a state-space graph, the

number of states in a relaxed model is the same as the initial model, but the possible

transitions between the states is increased. In the example shown in Figure 3.1, a

relaxed model can be constructed by dropping the precondition that the door must be

open before the robot can move between rooms. In the resulting model, the operators

for moving between rooms are applicable even when the door is closed.

Reduced models are constructed by removing properties (literals) from the original

problem space. Thus, an abstract space is formed by dropping every instance of a

particular set of literals from both the states and the operators. Also, operators that

only achieve literals dropped from the abstract space are removed from the abstract

space. In a reduced model of a problem space, a single abstract state corresponds to

one or more states in the original problem space. For any pair of states in the original

space, if there is an operator that transforms one state into another, there exists an

abstract operator that provides a transformation between the corresponding abstract
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states. In the case of the reduced model shown in Figure 3.1, ignoring the `open' and

`closed' conditions involves dropping these conditions from both the operators and

states. Thus the `open' and `closed' door properties are completely removed from the

model, reducing the four original states to the two states shown in the �gure and

eliminating the operators for opening and closing doors.

Reduced models have a number of advantages over relaxed models. First, in a re-

duced model conditions are dropped from the states, which can decompose the goal of

a problem since di�erent goal conditions may occur at di�erent levels in the hierarchy.

Second, since operators are dropped in a reduced model, the branching factor of the

abstract search is reduced. Third, a reduced model is a smaller problem space with

fewer literals and operators, which can be more concisely represented and reasoned

about. This makes it easier to combine the use of abstraction with other types of

problem-space learning such as explanation-based learning [Minton, 1988b], macro-

operator learning [Korf, 1985b], or learning by analogy [Carbonell, 1986]. Fourth,

creating a reduced model allows operators and objects that are indistinguishable at

an abstract level to be combined into abstract operators or objects. For example,

if there are two operators for moving an object between rooms, where one opera-

tor involves carrying the object and the other involves pushing the object, and the

distinctions between these operators are ignored, then they can be combined into a

single abstract operator for moving an object between rooms. Fifth, as pointed out by

Tenenberg [1988], performing any inferencing or theorem proving in a relaxed model

may result in inconsistencies. The problem is that by ignoring only applicability con-

ditions, operators can be applied in situations for which they were not intended and

produce contradictory states. Reduced models avoid this problem by removing the

operators and conditions that are not relevant to the current model.

While there are advantages of reduced models over relaxed models, they are sim-

ilar in that the same basic techniques for generating and using abstractions apply to

either model. Relaxed and reduced models are both homomorphisms [Korf, 1980] of a

problem space, which means that information is discarded in the process of construct-

ing these models. As such, after a problem is solved in either type of abstract space,

the abstract solution must be re�ned in the original space in order to ensure that

the solution applies to the original problem. The remainder of this thesis assumes

that the abstraction spaces are reduced models where the language of the abstrac-

tion space is a subset of the language of the original problem space. However, the

abstraction properties and the algorithms for both generating and using abstractions

apply directly to relaxed models.
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3.1.2 Hierarchies of Abstraction Spaces

An ordered sequence of abstraction spaces de�nes an abstraction hierarchy, where

each successive abstraction space is an abstraction of the previous one. Since an

abstraction space is formed by removing literals from the original problem space, an

abstraction hierarchy can be represented by assigning each literal in the domain a

number to indicate the abstraction level of the literal. The level i abstraction space

is identical to the original problem space, except operators and states will only refer

to literals that have an abstraction level of i and higher. Level 0 is the original

problem space, also called the ground space or base space. The hierarchy is ordered

such that the most abstract space (i.e., problem space with the fewest literals) is

placed at the top of the hierarchy, and the ground space is placed at the bottom of

the hierarchy. For any su�ciently rich problem space, there can be many di�erent

abstraction hierarchies, some more useful than others.

Formally, a k-level abstraction hierarchy is de�ned by the initial problem space

� = (L;S;O), where L, S, and O are just as in the problem-space de�nition in

Chapter 2, and a function Level which assigns one of the �rst k non-negative integers

to each literal in L.

8l 2 L Level (l) = i; where i 2 f0; 1; . . . ; k � 1g

The function Level de�nes an abstract problem space for each level i, where all condi-

tions assigned to a level below i are removed from the language, states, and operators:

�i = (Li
; S

i
; O

i):

Given the function Level an abstraction space �i is constructed from a problem

space � as follows. The language L
i contains the literals in L that are in level i or

greater.

L

i = flj(l 2 L) ^ (Level (l) � i)g
Let Mi

s : S ! S
i be a state mapping function that maps a base-level state into an

abstract state by removing literals that are not in the abstract language L
i. Thus,

s
i =Mi

s(s) if and only if

s

i = fxj(x 2 s) ^ (x 2 L

i)g:

Given the function Mi
s, the states in S

i are the abstract states that corresponds to

the states in S.

S

i = fsij(s 2 S) ^ (si =Mi
s(s))g

Let Mi
o : O ! O

i be a operator mapping function that maps a base-level operator

into an abstract operator by removing the literals in the preconditions, deletes, and
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adds that are not in the abstract language Li. Thus, �i =Mi
o(�) if and only if

�

i = (P�i;D�i; A�i) ^
P�i = fxj(x 2 P�) ^ (x 2 L

i)g ^
D�i = fxj(x 2 D�) ^ (x 2 L

i)g ^
A�i = fxj(x 2 A�) ^ (x 2 L

i)g:
Given the functionMi

o, the operators inO
i are the abstract operators that correspond

to the operators in O that have nonempty e�ects in the abstract space.

O

i = f�ij(� 2 O) ^ (�i =Mo(�)) ^ (A�i 6= fg _D�i 6= fg)g
Consider the example robot-planning problem space and an abstraction of that

problem space, which were described in Section 3.1.1. The de�nition of the ground-

level problem space �0 is shown in Table 3.1. L de�nes the language, S de�nes the four

possible states, and O de�nes the three operator schemas for the problem space. An

abstraction of this problem space is formed by dropping all of the conditions involving

door status. This corresponds to the following de�nition of the Level function:

level((inroom roomA)) = 1,

level((inroom roomB)) = 1,

level((door roomA doorAB)) = 1,

level((door roomB doorAB)) = 1,

level((open doorAB)) = 0,

level((closed doorAB)) = 0.

The resulting abstraction space �1 is shown in Table 3.2. In the abstract space, the

abstract language L1 consists of only inroom and door conditions, the abstract states

S
1 consists of the two states that correspond to the possible rooms the robot could

be in, and the abstract operators O1 consists of the operators for moving between

the two rooms. In practice, a problem space is usually de�ned by specifying only the

operators, and an abstraction hierarchy is de�ned by assigning levels to each of the

literals in the problem-space language. The language and states of a problem space

are de�ned implicitly by the operators and problems to be solved.

3.2 Hierarchical Problem Solving

This section de�nes a hierarchical problem-solving method, building on the problem-

solving de�nition in Section 2.2. First two-level hierarchical problem solving is de-

�ned, and then this de�nition is extended to multi-level hierarchical problem solving.

This section also analyzes the completeness and correctness of this problem solving

method.



3.2. HIERARCHICAL PROBLEM SOLVING 31

�0 = (L; S;O)

L = f(inroom roomA)(inroom roomB)

(door roomA doorAB)(door roomB doorAB)

(open doorAB)(closed doorAB)g

S = f((inroom roomA)(open doorAB)(door roomA doorAB)(door roomB doorAB))

((inroom roomA)(closed doorAB)(door roomA doorAB)(door roomB doorAB))

((inroom roomB)(open doorAB)(door roomA doorAB)(door roomB doorAB))

((inroom roomB)(closed doorAB)(door roomA doorAB)(door roomB doorAB))g

O = f(Move Thru Door (room-x room-y)

(preconds (and (inroom room-x)

(door room-x door-xy)

(door room-y door-xy)

(open door-xy)))

(effects ((delete (inroom room-x))

(add (inroom room-y)))))

(Open Door (door-xy)

(preconds (and (door room-x door-xy)

(inroom room-x)

(closed door-xy)))

(effects ((delete (closed door-xy))

(add (open door-xy)))))

(Close Door (door-xy)

(preconds (and (door room-x door-xy)

(inroom room-x)

(open door-xy)))

(effects ((delete (open door-xy))

(add (closed door-xy)))))g

Table 3.1: De�nition of an Example Problem Space

3.2.1 Two-level Hierarchical Problem Solving

A hierarchical problem solver is given a problem space, a problem to be solved in that

space, and an abstraction hierarchy. In two-level problem solving there are only two

levels to the hierarchy: the ground space and an abstraction space. The problem solver

maps the given problem into the abstraction space (by deleting literals that are not
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�1 = (L1; S1; O1)

L1 = f(inroom roomA)(inroom roomB)

(door roomA doorAB)(door roomB doorAB)g

S1 = f((inroom roomA)(door roomA doorAB)(door roomB doorAB))

((inroom roomB)(door roomA doorAB)(door roomB doorAB))g

O1 = f(Move Thru Door (room-x room-y)

(preconds (and (inroom room-x)

(door room-x door-xy)

(door room-y door-xy)))

(effects ((delete (inroom room-x))

(add (inroom room-y)))))g

Table 3.2: De�nition of an Example Abstraction Space

part of the abstraction space), solves the abstract problem, uses the abstract solution

to form subproblems that are then solved in the ground space (by reintroducing the

deleted literals).

Given an abstraction space �A, the �rst step is to map the original problem into

an abstract problem. (Note that since there are only two levels in the abstraction

hierarchy the superscript A is used to refer to terms in the abstract space.) The

function MA
s , which was de�ned in the previous section, is used to map the initial

and goal states S0 and Sg into abstract states S
A
0 and S

A
g .

S
A
0 =MA

s (S0)

S

A
g =MA

s (Sg)

The relationship between the states or operators in the ground space and states or

operators in the abstract space is a many-to-one mapping since states or operators

that di�er in the base space may be indistinguishable in the abstract space. Figure 3.2

shows the mapping of the initial and goal states into the corresponding abstract states,

and the mapping of the base-level operators into the corresponding abstract operators.

The next step is to use the problem-solving procedure P, as de�ned in Chapter 2,

to �nd a plan �A in the abstract space that transforms the initial state SA
0 into �nal

state SA
n that satis�es the goal SA

g .

�A = P(�A
; S

A
0 ; S

A
g )
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S0 Sg

S0
A Sg

A

O

α
1 α

2 αnα
3

αn
Aα2/3

Aα1
A

O
A

MO MO MO
MOMSMS

Initial
 State

Goal
State

Operators

Figure 3.2: Mapping a Problem into an Abstract Problem

The solution to the abstract problem de�nes a set of intermediate abstract states.

The intermediate states can be found by decomposing the abstract plan �A into its

component operators and using the application function A to apply each of these

operators to successive states starting with the initial abstract state SA
0 .

�A � �

A
1 k � � � k�A

n

S

A
i = A(�A

i ; S
A
i�1) ; 1 � i � n

Since the language of the abstract space is a subset of the language of the base

space, the intermediate abstract states can be used directly as intermediate goals in

the base space (recall that a goal is a partial speci�cation of a state). These goals

de�ne a set of subproblems that can be solved sequentially. Figure 3.3 shows the

abstract solution and the intermediate goal states formed from the solution.

A problem solver would then solve each of the intermediate subproblems in the

following order. First, a problem solver searches for a plan �1 that transforms the

Sn
A

S 1
AS

S0
A

S 1
A Sn

A

Sg

αn
Aα 1

A

0

Figure 3.3: Using an Abstract Solution to Form Subproblems
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initial state into the �rst intermediate goal state S
A
1 . This is shown in Figure 3.4,

where the specialization of the abstract state SA
1 is S1. State S1 then serves as the

initial state for the next subproblem. Next, a problem solver searches for a plan

that transforms the resulting state S1 into the next intermediate goal state SA
2 . This

process is repeated for each of the intermediate states in the abstract space up to SA
n .

�i = P(�; Si�1; S
A
i ) ; 1 � i � n

Si = A(�i; Si�1) ; 1 � i � n

The �nal step to produce a solution in the base space requires mapping the state Sn,

which only satis�es the abstract goal SA
g , into a state that satis�es the original goal

Sg.

�g = P(�; Sn; Sg)

Sn
A

S 1
A

S0
A

S 1
A Sn

A

Sg

αnα1

α n
Aα 1

A

S0 SnS1

Figure 3.4: Solving the Subproblems in the Ground Space

In solving each of the subproblems, the abstract solution constrains the possible

operators for the �nal operator in each of the subproblem solutions. In particular,

since each operator in the abstract space is an abstraction of one or more base-space

operators, the �nal operator in the solution sequence of each subproblem will be a

specialization of the corresponding abstract operator. For example, in the diagram in

Figure 3.4, �1 must be a specialization of �A
1 and �n must be a specialization of �A

n .

In general, given an abstract plan �A � �
A
1 k � � � k�A

n , then the following condition

must hold for each ground-level subplan �i � �1k � � � k�n that achieves the abstract

intermediate state SA
i :

�

A
i =MA

o (�n):

Since the mapping of the operators in the abstract space to operators in the base

space is a one-to-many mapping, there may be several ways to specialize the abstract

operators.
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The �nal solution to the original problem is simply the concatenation of the solu-

tions to all of the subproblems.

� = �1k�2k � � � k�nk�g

Figure 3.4 shows the �nal solution where the intermediate states in the plan must

satisfy the intermediate abstract states, and the operators applied to reach these

states are specializations of the intermediate abstract operators.

Hierarchical problem solving divides a problem into subproblems to reduce the

size of the search spaces, but it does not completely eliminate the search. To solve a

problem in the most abstract space will require searching for a sequence of operators in

that space. The resulting abstract solution then de�nes a set of subproblems. Each of

these subproblems will require an additional search. As shown in Figure 3.5, solving

each of these subproblems involves both selecting a specialization of the abstract

operator and then searching for a state in which this operator can be applied. The

general idea is to replace the initial, potentially enormous search space with many

smaller, more constrained search spaces, as described in Section 3.3.

S
A

K

α A

S
K+1

S
K

S
A

K+1

α
1α

2
α
3

α A

α
2

α
1

α
3

   Operator
Specialization Subproblem Search

Figure 3.5: Search Space of a Subproblem

If the problem solver is unable to solve one of the subproblems, then it must

backtrack to consider other ways of solving previous subproblems as well as other

ways of solving the subproblems in more abstract spaces. During problem solving,

there will be choices of which goal to work on next, which operator to use to achieve

the goal, and which bindings of the operator to use. Each of these choices must

be recorded during problem solving and upon failure the problem solver will need to

return to these choices to try the alternatives. Thus, it may be necessary to backtrack

within a particular subproblem, across subproblems, and across abstraction levels.
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3.2.2 Multi-Level Hierarchical Problem Solving

Two-level hierarchical problem solving is easily extended to multiple levels. As shown

in Figure 3.6, instead of a single abstraction space, there is a hierarchy of abstraction

spaces. Problem solving using a hierarchy of abstraction spaces proceeds as follows.

First, given a problem to solve in the ground space, the problem is mapped into the

most abstract space in the hierarchy and solved in that space. Next, as in the two-

level problem solving, the intermediate states are used to form the subproblems at

the next level in the hierarchy. Each of these subproblems are solved and the solution

to all of the subproblems are concatenated together to form the abstract plan at that

level. Each of the intermediate states of the resulting abstract plan are then used to

form subproblems at the next level. This process continues until the plan is re�ned

all the way back to the ground space.

Abstrat Space
   Level N

Ground Space
   Level 0

Abstract Space
  Level N-1

Figure 3.6: Multi-Level Hierarchical Problem Solving

3.2.3 Correctness and Completeness

A problem solver P is correct if every plan produced by P is correct, and P is complete

if, given a problem that has a solution, P is guaranteed to terminate with the solution.

Given a correct and complete nonhierarchical problem solver P, the hierarchical
problem solver H described in the previous section is correct, but it is only complete

for a certain class of problems and abstraction hierarchies. This section proves the

correctness of H, describes the class of problems for which H is complete, proves this
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restricted completeness, and describes the tradeo�s in building a complete hierarchical

problem solver.

Theorem 3.1 (Correctness) Given a correct problem solver P, any plan H pro-

duces will solve the problem.

Proof: Every plan produced by H consists of the concatenation of solutions to

all of the subproblems in the ground space. Since the solution to each of these

subproblems is produced by P, and P is assumed to be correct, the plans to solve the

individual subproblems must be correct. The subproblems are concatenated together

to produce the �nal plan. This resulting plan is a legal plan since the �nal state in the

solution to each subproblem is used as the initial state for the following subproblem.

The resulting plan correctly solves the given problem since the initial state of the

�rst subproblem is the initial state of the given problem and the goal state of the last

subproblem is the goal state of the given problem. 2

Given a problem that is solvable, the hierarchical problem solver H is guaranteed

to terminate with a solution if the problem is both decomposable and linearizable

relative to the abstraction hierarchy.

A problem is decomposable relative to the abstraction hierarchy if it can be solved

without interleaving the goals that arise in separate subproblems during hierarchical

problem solving. This restriction stems from the fact that the hierarchical problem

solver takes the abstract solution and partitions it into subproblems that are solved

separately. There is no facility for interleaving the goals that arise in the various

subproblems. If a problem is linear, which means it can be solved without interleaving

any of the subgoals of a problem, it is su�cient to guarantee that the problem is

decomposable relative any abstraction hierarchy. However, this is not a necessary

condition since a nonlinear subproblem can be solved by the nonhierarchical problem

solver P, which is assumed to be complete. (See [Joslin and Roach, 1989] for a precise

characterization of linear and nonlinear problems.)

A problem is linearizable relative to an abstraction hierarchy if every conjunctive

set of goals that arises while solving the problem can be solved in the order that

the goals appear in the levels of the hierarchy. (The hierarchy orders the goals from

most abstract to least abstract.) This restriction arises because for any conjunction

of goals, the hierarchical problem solver �rst solves those goals in the most abstract

space, and then those in the next space, and so on without considering all possible

orderings of those goals. Note that this restriction only applies to those goals that

arise as a conjunctive set of goals, either as a conjunction of top-level goals or as a

conjunctive set of preconditions to an operator.

Consider an example from the strips robot planning domain [Fikes and Nilsson,

1971]. In this domain a robot can move between rooms, pushing boxes and opening
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and closing doors. An abstraction hierarchy in this domain might consist of two levels,

where conditions dealing with the locations of boxes are dealt with at one level, and

conditions dealing with door status are dealt with at the next level. A problem is

decomposable relative to this abstraction hierarchy if all the door-status goals can be

solved independently. A problem is linearizable relative to this abstraction hierarchy

if a set of goals can be solved by �rst solving the goals involving box location and then

solving the goals involving door status. If the problem solver was given a problem

consisting of four goals, two goals involving box location and two goals involving door

status, it would solve the box location goals �rst, considering either ordering of these

two goals, and then solve the door status goals next, considering any order of these

two goals.

Theorem 3.2 (Completeness) Given a complete problem solver P, the hierarchi-

cal problem solver H is complete for any problem that is both decomposable and lin-

earizable relative to the given abstraction hierarchy,

Proof: Since a complete problem solver P is used to solve any subproblem within

an abstraction level, any incompleteness in H could only be due to the partitioning

and ordering of the subproblems that arise during problem solving. Given that a

problem is decomposable, the partitioning of a problem into subproblems would not

prevent the problem from being solved. Similarly, since the problem is linearizable,

then any conjunction of goals can be solved in the order imposed by the hierarchy.

Thus, the partitioning and ordering imposed by H could not prevent a problem from

being solved. 2

The decomposability restriction on a problem is no stronger than the usual as-

sumptions that are made to show that the complexity of a problem can be reduced by

identifying intermediate states [Minsky, 1963, Simon, 1977]. These analyses always

assume that the problem can be divided into a number of smaller subproblems. As

shown in the next section, dividing up the problem into independent subproblems is

central to reducing the complexity of a problem. In addition, the decomposability

restriction is not an issue if the single-level problem solver P is linear. A linear prob-

lem solver can only solve the class of linear problems. In this case, the only added

restriction imposed by the hierarchical problem solver H is that the problems are

linearizable relative to the abstraction hierarchy. This simply follows from the fact

that if a problem is linear then it is decomposable.

The linearizability restriction on problems is also a fairly weak restriction. The

next chapter describes an algorithm for generating abstractions, and the algorithm

guarantees that the goals at one level in the hierarchy could not possibly violate

the conditions at a more abstract level. The only cases where a problem might not

be linearizable results from indirect goal interactions, where a goal for achieving a
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condition at one level in the hierarchy deletes some condition needed to achieve a

goal at a lower level in the hierarchy, and this needed condition cannot be reachieved.

While this type of interaction can arise in practice, it did not prevent any problems

from being solved in any of the domains explored in this thesis.

The hierarchical problem solver described in this chapter could be made com-

plete. This would require a more exible re�nement mechanism that allowed the

steps needed to re�ne a plan to be inserted anywhere in the abstract plan. Given this

more general re�nement mechanism, a problem could no longer be decomposed into

subproblems, but the use of abstraction could still focus the problem solver on the

more di�cult aspects of a problem �rst. The disadvantage of this approach is that

the worst-case complexity of hierarchical problem solver will be increased because the

problems can no longer be decomposed into smaller independent subproblems.

3.3 Analysis of the Search Reduction

This section presents a complexity analysis of single-level problem solving, two-level

hierarchical problem solving, and multi-level hierarchical problem solving [Knoblock,

1991]. The last part of this section identi�es under precisely what assumptions hi-

erarchical problem solving can reduce an exponential search to a linear one. Since

the size of the search spaces are potentially in�nite, the analysis assumes the use of

a brute-force search procedure that is bounded by the length of the solution (e.g.,

depth-�rst iterative-deepening [Korf, 1985a]).

The analysis is similar to the analysis of abstraction planning with macros by Korf
[1987]. Korf showed that the use of a hierarchy of macros can reduce an exponen-

tial search to a linear one. However, Korf's analysis applies to abstraction planning

with macros and not to hierarchical problem solving because it makes a number of

assumptions that do not hold for hierarchical problem solving. The most signi�cant

assumption that prevents Korf's analysis from applying to hierarchical problem solv-

ing is that it assumes that when the abstract problem is solved, the original problem

is solved. The di�cult part of solving a problem using macros is �nding a path from

a state in the base space to a state in the abstract space. Once a path to the abstract

states has been found, the problem can be completely solved in the macro space. In

contrast, using hierarchical problem solving it is straightforward to map from a state

in the base space to a state in the abstract space. However, once the problem has

been solved in the abstract space, the abstract solution must be re�ned into a solution

in the base space.
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3.3.1 Single-Level Problem Solving

For single-level problem solving, if a problem has a solution of length l and the search

space has a branching factor b, then in the worst-case the size of the search space isPl
i=1 b

i. Thus, the worst-case complexity of this problem is O(bl).

3.3.2 Two-Level Hierarchical Problem Solving

Let k be the ratio of the solution length in the base space to the solution length in

the abstract space. Thus, l
k
is the solution length in the abstract space. Since each

operator in the abstract space corresponds to one or more operators in the ground

space, the branching factor of the abstract space is bounded by the branching factor

of the ground space, b. To simplify the analysis, b is used as the branching factor

throughout. The size of the search tree in the abstract space is
Pl=k

i=1 b
i, which is

O(b
l
k ). In addition, the analysis must include the use of this abstract solution to

solve the original problem.

The abstract solution de�nes l
k
subproblems. The size of each problem is the

number of steps (solution length) in the base space required to transform an initial

state Si into a goal state Si+1, which is represented as d(Si; Si+1). Thus, the search

in the base space is:

d(S0;S1)X

i=1

b
i +

d(S1;S2)X

i=1

b
i + � � �+

d(S l
k
�1

;S l
k
)

X

i=1

b
i
; (3:1)

which is O( l
k
b
dmax), where

dmax � max
0 � i � l

k
�1
d(Si; Si+1): (3:2)

In the ideal case, the abstract solution will divide the problem into subproblems of

equal size, and the length of the �nal solution using abstraction will equal the length

of the solution without abstraction. In this case, the abstract solution divides the

problem into l
k
subproblems of length k.

b

dmax = b

l
l=k = b

k (3:3)

Assuming that the planner can �rst solve the abstract problem and then solve each of

the problems in the base space without backtracking across problems, then the size

of the space searched in the worst case is the sum of the search spaces for each of the

problems.
l
kX

i=1

b

i +
l

k

kX

i=1

b

i (3:4)
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The complexity of this search is: O(b
l
k + l

k
b
k). The high-order term is minimized

when l
k
= k, which occurs when k =

p
l. Thus, when k =

p
l, the complexity is

O(
p
l b

p
l), compared to the original complexity of O(bl).

3.3.3 Multi-Level Hierarchical Problem Solving

Korf [1987] showed that a hierarchy of macro spaces can reduce the expected search

time fromO(s) to O(log s), where s is the size of the search space. This section proves

an analogous result { that multi-level hierarchical problem solving can reduce the size

of the search space for a problem of length l from O(bl) to O(l), where bl is the size

of the search space.

In general, the size of the search space with n levels (where the ratio between the

levels is k) is:

l

kn�1X

i=1

b

i +
l

k
n�1

kX

i=1

b

i +
l

k
n�2

kX

i=1

b

i +
l

k
n�3

kX

i=1

b

i + � � �+ l

k

kX

i=1

b

i (3:5)

The �rst term in the formula accounts for the search in the most abstract space.

Each successive term accounts for the search in successive abstraction spaces. Thus,

after solving the �rst problem, there are l
kn�1

subproblems that will have to be solved

at the next level. Each of these problems are of size k since k is the ratio of the

solution lengths between adjacent abstraction levels. At the next level there are
l

kn�2
subproblems (k l

kn�1
) each of size k, and so on. In the �nal level there are l

k

subproblems each of size k. The �nal solution will therefore be of length l
k
k = l.

The maximum reduction in search can be obtained by setting the number of levels

n to logk(l), where the base of the logarithm is the ratio between levels k. Substituting

logk(l) for n in Formula 3.5 produces the following formula:

kX

i=1

b

i + k

kX

i=1

b

i + k

2
kX

i=1

b

i + k

3
kX

i=1

b

i + � � �+ k

logk(l)�1
kX

i=1

b

i (3:6)

From Formula 3.6, it follows that the complexity of the search is:

O((1 + k + k

2 + � � �+ k

logk(l)�1)bk): (3:7)

The standard summation formula for a �nite geometric series with n terms, where

each term increases by a factor of k, is:

1 + k + k
2 + � � �+ k

n =
k
n+1 � 1

k � 1
: (3:8)
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Given Formula 3.8, it follows that the complexity of Formula 3.7 is O( l�1
k�1b

k):

(1 + k + k

2 + � � �+ k

logk(l)�1)bk =
k
logk(l) � 1

k � 1
b

k =
l � 1

k � 1
b

k
: (3:9)

Since b and k are assumed to be constant for a given problem space and abstraction

hierarchy, the complexity of the entire search space is O(l).

The analysis above shows that hierarchical problem solving can reduce the size

of the search space from O(bl) to O(l). This analysis assumes the best-case for the

distribution and independence of problems in the hierarchy, but assumes the worst-

case for search in each of the subproblems. The best-case assumptions are reviewed

below. In practice, the size of the actual search space is between the two extremes.

3.3.4 Assumptions of the Analysis

1. The number of abstraction levels is logk of the solution length. This assumption

argues for problem-speci�c abstraction hierarchies over domain-speci�c hierar-

chies since the solution length of problems within a given domain can vary

greatly from problem to problem.

2. The ratio between the levels is the base of the logarithm, k. A problem should

be divided such that the length of the solution at each level increases linearly.

3. Problems are decomposed into subproblems that are all of equal size. The analy-

sis assumes that the size of all the subproblems is the same in order to minimize

b
dmax. If all the other assumptions hold, the complexity of the search will be

the complexity of the largest subproblem in the search. For example, if b is

constant and the largest subproblem is b
l
2 , hierarchical problem solving would

still reduce the search from O(bl) to O(b
l
2 ).

4. The solutions produced by the hierarchical problem solver are the shortest ones

possible. If a problem has a solution of length l, then the length of the solution

produced using hierarchical problem solving must also be l, or at least within

a constant of l.

5. There is only backtracking within subproblems. This requires that an abstraction

level can be re�ned into a solution at lower levels and that the solution to

each of the subproblems within an abstraction level will not prevent any of the

remaining subproblems at the same level from being solved.

The assumptions above are su�cient to produce an exponential-to-linear reduction

in the size of the search space. The essence of the assumptions is that the abstraction
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divides the problem into O(l) constant size subproblems that can be solved serially.

Of course, these assumptions are unlikely to hold in many domains and, if they do

hold, it may not be possible to determine that fact a priori. For example, determining

whether an abstract solution can be re�ned without backtracking requires determining

whether plans exist to solve the subproblems, which in general will require solving

the subproblems.

Consider the e�ect of weakening the various assumptions above. Assumptions 1,

2, and 3 divide up the problem into the optimal number of optimal size subproblems

to reduce the complexity of the search. If any of these assumptions are weakened,

the resulting complexity will depend on the complexity of the largest subproblem

and the total number of subproblems. Thus, if the number of subproblems and the

complexity of the largest subproblem are not much smaller than the complexity of

the original problem, the abstractions will not provide a signi�cant bene�t.

Assumption 4 requires that the �nal solution is the shortest one. This assumption

is needed to bound the potentially in�nite search spaces. Producing optimal solu-

tions usually requires an admissible search (e.g., breadth-�rst or depth-�rst iterative

deepening) and with hierarchical problem solving there is no guarantee that the �nal

solution will be optimal, only that the solution to the individual subproblems are

optimal. The analysis holds as long as the �nal solution is within a constant of the

optimal solution.

Assumption 5 requires that the problem can be broken up into subproblems that

can be solved in order without backtracking. If this assumption does not hold, then

some or all of the bene�t of the abstraction could be lost since the worst-case com-

plexity is no longer the sum of the subproblems, but the product. Note, however,

that the structure of hierarchical problem solving can minimize the impact of back-

tracking in several ways. First, on backtracking across abstraction levels, it is not

necessary to backtrack through every choice point in an abstract plan, but only those

choice points in an abstract plan that preceded the failure point in the re�nement of

the abstract plan. Second, when re�ning the abstract plan after backtracking across

levels, the detailed solution to the parts of the problem that precede the modi�cation

to the abstract plan remain valid and do not need to be replanned. Section 3.5.5

provides a detailed description of these two techniques.

3.4 Tower of Hanoi Example

This section describes an abstraction hierarchy for the Tower of Hanoi, explains how

hierarchical problem solving can be used to solve this problem, and then shows that

this approach reduces the size of the search space from exponential to linear in the

solution length for this problem.
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Consider the three-disk Tower of Hanoi puzzle, which was described in Section 2.2.

A good abstraction of the problem, which was �rst identi�ed by Korf [1980], is to

separate the disks into di�erent abstraction levels. The resulting abstraction hierarchy

is shown in Figure 3.7, where the most abstract space contains only the largest disk,

the next abstraction space contains the largest and medium size disk, and the ground

space contains all three disks.

(on diskC peg1)

(on diskC peg2)

(on diskC peg3)

(on diskC peg1)

(on diskC peg2)

(on diskC peg3)

(on diskB peg1)

(on diskB peg2)

(on diskB peg3)

(on diskA peg1)

(on diskA peg2)

(on diskA peg3)

(on diskB peg1)

(on diskB peg2)

(on diskB peg3)

(on diskC peg1)

(on diskC peg2)

(on diskC peg3)

Level 0

Level 1

Level 2

Figure 3.7: Abstraction Hierarchy for the Tower of Hanoi

Each abstraction space is formed by dropping all the literals that are not in the

given level of the hierarchy from the initial state, goal, and operators. Table 3.3

shows, for an example initial state, goal, and operator, the conditions at each level

of abstraction. Level 0 shows the initial speci�cation, level 1 shows the conditions

remaining after removing the smallest disk, and level 2 shows the conditions after

removing both the smallest and medium-sized disks.

The abstraction hierarchy for the Tower of Hanoi can be used for hierarchical

Move DiskC From Peg1 to Peg3

Initial State Goal State Preconds E�ects

Level 2 (on diskC peg1) (on diskC peg3) (on diskC peg1) :(on diskC peg1)

(on diskC peg3)

Level 1 (on diskC peg1) (on diskC peg3) (on diskC peg1) :(on diskC peg1)

(on diskB peg1) (on diskB peg3) :(on diskB peg1) (on diskC peg3)

:(on diskB peg3)

Level 0 (on diskC peg1) (on diskC peg3) (on diskC peg1) :(on diskC peg1)

(on diskB peg1) (on diskB peg3) :(on diskB peg1) (on diskC peg3)

(on diskA peg1) (on diskA peg3) :(on diskB peg3)

:(on diskA peg1)

:(on diskA peg3)

Table 3.3: Abstractions of an Initial State, Goal, and Operator
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problem solving. The �rst step is to map the initial problem into the corresponding

abstract problems. This is show in Figure 3.8, where the initial and goal states

are mapped into initial and goal states at each level of abstraction. In addition,

the operators of the initial problem space are mapped into abstract operators at each

level. In the Tower of Hanoi the abstraction of the operators is a one-to-one mapping,

where some of the operators are simply not relevant to a given abstraction level.

Figure 3.8: Mapping a Problem into an Abstract Problem

The next step is to solve the problem in the most abstract space. This is shown in

Figure 3.9, where there is simply a one step plan that moves the largest disk (diskC)

from peg1 to peg3. As shown in the �gure this creates two new subproblems at

the next level, where the �rst subproblem is to reach the state where the abstract

operator can be applied, and the second subproblem is to reach the goal state.

MoveC-1-3

Figure 3.9: Solving an Abstract Problem

This process is continued by solving each of the subproblems at the second level

and using the solutions to the subproblems to guide the search in the base level.

Figure 3.10 shows the resulting three-step plan at the second level. For each operator

in the abstract plan, a specialization of that operator must be used in any re�nement

of that abstract plan. In this case, MoveC-1-3 is used in the second step since it is the

only specialization of the corresponding abstract operator. Thus, only two additional

steps were inserted at this abstraction level.

The �nal step in the hierarchical problem solving is to solve each of the subprob-

lems in the base space. This produces the seven-step solution shown in Figure 3.11,

where four additional steps were inserted at this level.
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MoveC-1-3

MoveB-2-3MoveC-1-3MoveB-1-2

Figure 3.10: Solving the Subproblems at the Next Abstraction Level

Figure 3.11: Solving the Subproblems in the Ground Space

This abstraction of the Tower of Hanoi is ideal in the sense that it produces a set

of abstraction spaces that meet all of the assumptions listed in Section 3.3.4.

1. The number of abstraction levels is log2(l), where l is the length of the solu-

tion. For a n-disk problem the solution length l is 2n � 1, and the number of

abstraction levels is n, which is O(log2(l)).

2. The ratio between the levels is the base of the logarithm.. If the number of

steps at a given level is n, then the number of steps at the next level is 2n+ 1.

Thus, the base of the logarithm is 2, and the ratio between the levels is O(2).

3. The problem is decomposed into subproblems that are all of equal size. These

subproblems are e�ectively all of size one, since each subproblem requires in-

serting one additional step.

4. Using an admissible search strategy, the hierarchical problem solver produces

the shortest solution.

5. There is only backtracking within a subproblem. The subproblems is this do-

main can always be solved in order without backtracking across subproblems or

across abstraction levels.
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Since these assumptions are su�cient to reduce the size of the search space from

exponential to linear in the length of the solution, it follows that the hierarchical

problem solving produces such a reduction for the Tower of Hanoi.

An more intuitive explanation for this search reduction is as follows. In the original

problem the size of the search space is O(bl), where b is the branching factor, and l

is the length of the solution. The abstraction hierarchy divides up the problem into l

subproblems of equal size that can be solved serially. Each step in the �nal solution

will correspond to a subproblem in hierarchical problem solving, so the number of

subproblems is l. Using an admissible search procedure, each subproblem will be

solved in one or two steps. In those subproblems that require two steps, the second

step is simply a specialization of the corresponding abstract step. Since each disk

can be moved from one of two places, the branching factor is two. Thus, the size

of each subproblem is 21 = 2, so the entire search is bounded by 2l, which is O(l).

Consequently, hierarchical problem solving reduces the search space in this domain

from O(bl) to O(l).

3.5 Hierarchical Problem Solving in PRODIGY

This section describes an extended version of prodigy that performs hierarchical

problem solving. The extensions to prodigy are straightforward and are based on

the formalization of hierarchical problem solving described earlier in this chapter.

3.5.1 Architecture

The hierarchical problem solver, which will be referred to as Hierarchical prodigy,

is shown in Figure 3.12. The problem solver is given the operators that de�ne a

problem space, a problem in that problem space, and an abstraction hierarchy to

be used to solve the problem. The nonhierarchical version of prodigy is employed

as a subroutine, where the hierarchical problem solver selects problem spaces and

problems for prodigy to solve.

Hierarchical prodigy uses the abstraction hierarchy to form the problem spaces

for each level of problem solving. The system �rst maps the given problem into the

most abstract space and then gives this problem to prodigy to solve. If the problem

is solvable, prodigy returns a solution, which is then used to construct a number of

subproblems to be solved at the next level in the abstraction hierarchy. prodigy is

given each of these subproblems to solve and this process is repeated until the plan is

re�ned into the ground space. If prodigy fails to �nd a solution to any subproblem,

the hierarchical problem solver backtracks through the relevant unexplored search

paths (e.g., alternative solutions to the abstract problem).
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PRODIGY

HIERARCHICAL PRODIGY

Problem
Space

Problem

Abstract
Problem
Space

Subproblem

Problem
Solution

Subproblem
Solution

Abstraction
Hierarchy

Figure 3.12: Hierarchical Problem-Solving Architecture

3.5.2 Representing Abstraction Spaces

To solve a problem in an abstract space requires mapping both the original problem

and problem space into a corresponding abstract problem and abstract problem space.

As described earlier, a problem is de�ned by the initial and goal states, and a problem

space is de�ned by the operators for a domain. Given the abstraction hierarchy, which

speci�es the set of literals that comprise each abstract space, a given problem can

be mapped into any level of the hierarchy simply by dropping all of the conditions

from the initial state and goal that are not part of that level. Similarly, an abstract

problem space can be constructed for each level of the hierarchy by dropping the

literals not in the given abstract level from the preconditions and e�ects of all the

operators.

Consider an example from the machine-shop process planning and scheduling do-

main described in Section 2.3. One possible abstraction of this domain is to separate

the process planning from the scheduling by considering only the conditions relevant

to planning the operations and ignore the conditions related to scheduling. In the

case of the scheduling example, the abstract problem is shown in Table 3.4, where the

boxed conditions are dropped in the abstract space. The abstract goal is the same as

the original goal since the scheduling is an implicit part of performing an operation.

However, the initial state would be simpli�ed as shown, where conditions related to

the scheduling are removed.

To form an abstract problem space, all the conditions related to scheduling would

be removed from the set of operators. Table 3.5 shows the resulting turn operator,

where the boxed conditions would be dropped from the operator in the abstract space.

Since the number of abstraction levels can be quite large and it may be neces-

sary to backtrack across abstraction levels, it may be necessary to switch problem

spaces frequently. To make this e�cient, Hierarchical prodigy does not construct

an explicit set of abstract operators. Instead, the system dynamically abstracts the
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Goal: (and (shape part-a cylindrical)

(surface-condition part-a polished))

Initial State: ((shape part-a undetermined)

(temperature part-a cold)

(is-part part-a)

(is-part part-b)

(is-part part-c)

(last-scheduled part-a time0)

(scheduled part-b lathe time1)

(scheduled part-b polisher time2)

(scheduled part-c roller time1) )

Table 3.4: Abstract Problem in the Machine-Shop Domain

(TURN (part time)

(preconditions

(and (is-part part)

(last-scheduled part prev-time)

(later time prev-time)

(idle lathe time) ))

(effects

(delete (shape part old-shape))

(delete (surface-condition part old-condition))

(delete (painted part old-paint))

(delete (last-scheduled part prev-time))

(add (surface-condition part rough))

(add (shape part cylindrical))

(add (last-scheduled part time))

(add (scheduled part lathe time)) ))

Table 3.5: Abstract Operator in the Machine-Shop Domain

operators during problem solving. At any given time, the system has a list of the

literals that are relevant to the given abstraction level. When the system attempts
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to match the preconditions of an operator, it only considers those preconditions that

are relevant to the given level. Similarly, when the system applies an operator, only

those e�ects that are relevant are applied to the state. This eliminates the need to

maintain an explicit set of abstract operators for each abstraction level.

As described in Section 2.3.4, prodigy employs a set of control rules to guide

the search process. Mapping control rules into an abstract space cannot be done by

simply dropping the conditions that are not relevant in that space. The problem is

that the selection and rejection control rules are assumed to be correct and, unlike

operators, the problem solver does not backtrack over the decisions made by these

control rules.1 Simply dropping conditions from the control rules could result in overly

general rules that apply in situations for which they were not intended.

To maintain the correctness of the control rules, they are only applied at a level

in the abstraction hierarchy in which all the conditions of the original control rule

are contained within the given problem space. The control rules are partitioned into

separate abstraction spaces such that each rule is only applied in the most abstract

space in which all the conditions of the rule are relevant. Once a rule is applied at

a given level, it need not be considered at any lower levels since the abstractions

used by the problem solver have the ordered monotonicity property and this property

guarantees that a goal that arises at one level cannot arise at a lower level. If a control

rule is not speci�c to a particular goal condition, it is applied at every abstraction

level. The partitioning of the control rules is done before problem solving begins,

where each control rule is associated with a particular abstraction level (unless the

given rule should be applied at every level).

By representing the abstract operators and control knowledge implicitly, Hierar-

chical prodigy makes the switching of abstraction levels a no-cost operation. The

system can change to a new level or backtrack across levels frequently without the

overhead of constructing a new set of operators and control rules.

3.5.3 Producing an Abstract Plan

The �rst step in hierarchical problem solving is to produce an abstract plan. To do

so Hierarchical prodigy forms the abstract initial and goal states, sets the current

abstraction level to the most abstract level in the hierarchy, and then hands the

abstract problem o� to prodigy to solve. prodigy �nds a solution to this problem

and returns both the solution and the complete problem-solving trace, which can

later be used to backtrack e�ciently.

1Since the problem solver does backtrack over preference rules, the selection and rejection control

rules could be changed to preferences rules, allowing the control rules to serve as heuristics in the

more abstract levels. This is not done in the current implementation.
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Consider the e�ect of abstraction on the example problem shown in Figure 2.4.

The problem is to produce a plan to make a part cylindrical and polished. In the

original search space, the mill operation, which makes an part cylindrical, is consid-

ered �rst at time-2, but this prevents the part from being polished at a later time.

The system then considered milling the part at later times, but of course they fail

for the same reason. Using the abstraction of the problem space that ignores the

scheduling of the parts, there are no times, so prodigy will �rst try mill, �nd that it

fails because the part cannot be polished, and then try turning the part on the lathe.

The system produces the abstract plan shown in Figure 3.13, which consists of a turn

operation, a check to make sure the part can be clamped to the polisher, and then a

polish operation. The use of the abstraction separates the process planning from the

scheduling task, and thus gains e�ciency by eliminating unnecessary backtracking in

the ground space.

S0
A turn is-clampable polish

Sg
A

Figure 3.13: Abstract Solution in the Machine-Shop Domain

3.5.4 Re�ning an Abstract Plan

Once the system �nds an abstract solution, that solution must then be re�ned through

each of the successivelymore detailed abstraction levels. The abstract solution de�nes

a sequence of subproblems, where each pair of adjacent intermediate states from the

abstract solution forms the initial and goal states for a subproblem at the next level.

The problems are solved in order since the �nal state that satis�es the goal of each

subproblem becomes the initial state for the next problem. In addition, the choice of

operators used to achieve each intermediate state in the abstract level constrains the

choice of operators used to achieve the corresponding goal at the next level.

Returning to the example above, the problem is to take the abstract plan in

Figure 3.13 and turn it into a plan that solves the problem in the ground space.

Since there are three operations in that plan, Hierarchical prodigy generates three

subproblems that are handed o� to prodigy to solve. Each subproblem simply

requires determining when to schedule the turn, is-clampable, and polish operations

and checking that the required machines and parts are available at the selected times.

The resulting re�nement of the abstract plan is shown in Figure 3.14.
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S0
A

S0

turn is-clampable polish
Sg

A

is-clampable

Sg

time3
turn

time3
is-idle
time2

polishis-idle

time3time2

Figure 3.14: Re�nement of an Abstract Solution

3.5.5 Hierarchical Backtracking

In addition to backtracking within a subproblem, which is taken care of by the back-

tracking mechanism within prodigy, it may also be necessary to backtrack across

subproblems and across abstraction levels. The backtracking across subproblems and

across abstraction levels, which I call hierarchical backtracking, exploits the structure

of hierarchical problem solving to implement a simple form of dependency-directed

backtracking [Stallman and Sussman, 1977] and to avoid replanning when possible.

Hierarchical backtracking avoids backtracking to choices in the search space that

could not be relevant to a problem solving failure. Given an abstract plan, a hierar-

chical problem solver re�nes this plan by expanding each of the steps in the abstract

plan. If a step in this abstract plan cannot be re�ned and the problem solver must

backtrack, it can ignore any choice points in the abstract plan that occur later in

the abstract plan than the step that could not be re�ned. Completeness can be

maintained without backtracking to all of these choice points since they occur after

the failure point and could not a�ect the ability of the problem solver to solve the

problem.

In the example shown in Figure 3.14, consider what would happen to the abstract

plan if the turn operator selected in the abstract space could not be re�ned in the

ground space. This might occur if the machine was in use during the entire schedule.

After trying any choice points earlier in the problem-solving trace at the level in which

the failure occurred, the problem solver can backtrack directly to the turn operation

in the abstract plan without considering other ways of polishing the part. This is

illustrated in Figure 3.15, where the choice points beyond the selection of the turn

operation need not be considered for backtracking.

Hierarchical backtracking also avoids unnecessary replanning of the parts of a

problem that have not changed during backtracking. When it is necessary to back-

track across abstraction levels because a particular step in a plan cannot be achieved,
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S0
A

S0

turn is-clampable polish
Sg

A

Sg
A SgFAILURE

Figure 3.15: Hierarchical Backtracking

if steps earlier in the abstract plan have not changed, then any re�nement of those

steps can be retained.

Returning to the example, if the problem solver had found that the polish opera-

tion could not be re�ned, the problem solver would have to backtrack to the selection

of polish in the abstract plan and solve the problem in a di�erent way. For example,

it might be possible to use the grinder instead of the polisher. After this step in the

abstract plan is changed, then the plan must be re�ned. However, it may be possible

to reuse much of the work already done to re�ne the abstract plan. In particular, the

re�nement of the steps before polish can be retained and only the re�nement of the

new grind operator needs to be considered. This is illustrated in Figure 3.16, where

the part of the plan shown in gray can be reused and only the re�nement of the plan

after the change needs to be replanned.

Hierarchical prodigy can backtrack e�ciently when necessary by maintaining the

problem-solving traces from each of the solved subproblems, which contain the choice

S0
A

S0

turn is-clampable grind
Sg

A

is-clampable

Sg

time3
turn

time3
is-idle
time2

grindis-idle

time3time2

Figure 3.16: Hierarchical Re�nement
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points that have not been explored. Each of the individual traces for the subproblems

are connected with the appropriate links so that backtracking and replanning can

be done e�ciently. The amount of space required to maintain these links is small

compared to the size of the overall search tree.

3.6 Discussion

This chapter presented an approach to hierarchical problem solving, showed that this

method could provide an exponential-to-linear reduction in search, and described the

implementation of hierarchical problem solving in prodigy. The chapter de�ned

abstraction spaces and hierarchies, but did not describe what makes one abstraction

better than another. In practice, the choice of an abstraction hierarchy for a problem

is critical in determining the e�ectiveness of hierarchical problem solving. A hierar-

chical problem solver uses plans produced at each level of abstraction to constrain

the search at the next level of detail. However, these constraints only force the �nal

plan to go through certain intermediate states and do not actually constrain how

much work is done between these states. There is nothing in the problem solving

method that prevents the re�nement of one part of the abstract plan from undoing

the conditions that were achieved in another part of the abstract plan. Eventually

these conditions will have to be reachieved, but this could result in more work than if

no abstraction were used. The next chapter addresses the issue of what makes a good

abstraction for problem solving and presents a method for automatically generating

good abstractions.



Chapter 4

Generating Abstractions

The previous chapter described how an abstraction hierarchy can be used for problem

solving and showed that the use of abstraction can provide a signi�cant reduction in

search. However, several important questions have yet to be addressed: What are the

characteristics of a useful abstraction? How do we �nd useful abstraction hierarchies?

This chapter identi�es properties of an e�ective abstraction hierarchy and presents

an approach for automatically generating such hierarchies. The chapter �rst identi-

�es several properties of the relationship between a problem space and one or more

abstractions of a problem space, then it gives the basic algorithms for generating hier-

archies which satisfy these properties, next it uses the Tower of Hanoi as an example

to illustrate the basic approach, and lastly, it describes the implementation of these

algorithms in alpine.

4.1 Properties of Abstraction Hierarchies

In order to generate useful abstraction spaces, it is important to understand how

search at the abstract levels constrains search at the ground level. This section �rst

reviews the upward and downward solution properties [Tenenberg, 1988], which relate

a problem space to the abstractions of the problem space. While both properties are

useful, the downward solution property is too strong to require that it hold for every

abstraction. The section then presents two weaker properties, the monotonicity and

ordered monotonicity properties, which can be required of an abstraction hierarchy.

These properties are �rst described informally and then de�ned formally.1 Along

with these de�nitions, this section provides restrictions on the possible abstraction

1The properties and algorithms described in this section are my own [Knoblock, 1990c, Knoblock,

1990b], but the formal de�nitions in this section were joint work with Josh Tenenberg and Qiang

Yang and are also described in [Knoblock et al., 1990, Knoblock et al., 1991b].

55
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hierarchies that are su�cient to guarantee these properties. These restrictions are

used in the following section as the basis of an algorithm for automatically generating

abstraction hierarchies that satisfy the properties.

4.1.1 Informal Description

Tenenberg[1988] identi�ed the upward and downward solution properties, which relate

a problem space to an abstract space. The upward solution property is de�ned as

follows:

Upward Solution Property: the existence of a ground-level solution implies the

existence of an abstract-level solution.

Since any solution at the more constrained ground level will also be a solution in any

of the less constrained models, it is clear that an abstraction space will exhibit the

upward solution property. The contrapositive of this property is the downward failure

property [Weld and Addanki, 1990], which states that if there is no solution in the

abstract space, then there is no solution in the ground space. This property is useful

for determining e�ciently that a problem is unsolvable since only the abstract space

needs to be searched to prove unsolvability.

The inverse of the upward solution property is the downward solution property,

which is de�ned as follows:

Downward Solution Property: the existence of an abstract-level solution implies

the existence of a ground-level solution.

Unfortunately, there are few abstraction spaces for which the downward solution

property will hold. Since an abstraction space is formed by dropping conditions from

the problem space, information is lost and operators in an abstract space can apply

in situations in which they would not apply in the original space. In general, using

an abstraction space formed by dropping information it is impossible to guarantee

this property. The same problem arises in the use of abstraction in theorem proving,

where it is called the false proof problem [Plaisted, 1981, Giunchiglia and Walsh,

1990].

Since the downward solution property does not hold in general, there is no guar-

antee that a re�nement of the abstract solution exists. To make matters worse, there

are a potentially in�nite number of possible re�nements of each abstract plan. In

general, a re�nement of an abstract solution simply requires inserting additional op-

erators to achieve the conditions ignored at a more abstract level. There is nothing

to prevent the added operators from undoing the conditions that were achieved in

the abstract level and then reachieving these conditions. The result could be that the
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problem e�ectively gets re-solved at each level of abstraction. As Tenenberg[1988,

p.75] points out, if the operators in a domain are invertible, then there is no clear

criterion for failure in specializing a plan, and a planner could specialize a plan ad

in�nitum simply by inserting increasingly longer solutions between the steps of the

abstract plan.

Since the downward solution property is too strong to guarantee, this section

de�nes a weaker property that constrains the re�nement of an abstract solution.

This property, called the monotonicity property, is de�ned as follows:

Monotonicity Property: the existence of a ground-level solution implies the exis-

tence of an abstract-level solution that can be re�ned into a ground-level solution

while leaving the literals established in the abstract plan unchanged.

The monotonicity property states that if a solution exists it can be found without

modifying an abstract plan in the process of re�ning that plan. This property captures

the idea that an abstract solution should serve as an outline to a ground solution and

thus should not be modi�ed in the re�nement process.

The monotonicity property is useful because it provides a criterion for backtrack-

ing that does not sacri�ce completeness. Whenever a problem solver would undo a

literal established in an abstract plan while re�ning the plan, the system can back-

track to a more abstract level instead since the property states that if a problem

is solvable, an abstract solution exists that can be re�ned leaving the abstract plan

unchanged. This imposes a strong constraint on how an abstract plan is re�ned at a

lower level. Thus, given an abstraction it provides an approach for using the abstrac-

tion space more e�ectively. In fact, Yang and Tenenberg [1990] designed a nonlinear,

least-commitment problem solver that uses the monotonicity property to constrain

the search for a re�nement of an abstract plan. While the property is useful for con-

straining the re�nement process, it is still rather weak. The next section proves that

every abstraction space has this property. As such, it does not provide a criterion for

generating useful abstractions.

A restriction of the monotonicity property, called the ordered monotonicity prop-

erty, does provide a useful criterion for generating abstraction spaces. This property

is de�ned as follows:

Ordered Monotonicity Property: Every re�nement of an abstract plan leaves all

the literals that comprise the abstract space unchanged.

The ordered monotonicity property is more restrictive than the monotonicity property

because it requires that not only does there exist a re�nement of an abstract plan that

leaves the literals in the abstract plan unchanged, but every re�nement of an abstract

plan leaves all the literals in the abstract space unchanged. Thus, the property
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partitions the problem space such that a plan for achieving the literals at one level

will not interact with the literals in a more abstract level. The ordered monotonicity

property is useful because it captures a large class of useful abstractions, and ordered

monotonic abstractions can be generated from just the initial de�nition of a problem

space.

The ordered monotonicity property requires that every re�nement leaves the liter-

als in an abstract space unchanged. One way to construct hierarchies of abstraction

spaces that have this property is to partition the literals of a problem space into levels

such that any plan to achieve a literal at one level will not interact with literals in

a more abstract level. Which literals will potentially interact with other literals can

be determined from the operators that de�ne a problem space. A set of constraints

can be extracted from the operators that require those literals that could possibly

be changed in the process of achieving some other literal to be placed lower or at

the same level in the abstraction hierarchy. This set of constraints is su�cient to

guarantee the ordered monotonicity property.

Since the interactions between literals depend on the problem, the usefulness of

a given abstraction hierarchy not only varies from one domain to another, but also

from one problem to another. Thus, instead of attempting to �nd a single abstraction

hierarchy that can be used for all problems in a domain, an alternative approach is

to select each abstraction hierarchy based on a problem or class of problems to be

solved. As described in the following sections, the ordered monotonicity property can

be used to produce �ner-grained abstraction hierarchies if the property is guaranteed

relative to a given problem instead of for an entire domain.

4.1.2 Re�nement of Abstract Plans

This section de�nes establishment, justi�cation, and re�nement. These de�nitions are

then used to formally de�ne the monotonicity and ordered monotonicity properties.

Establishment

Abstract planning is usually done in a top-down manner. An solution is �rst found

in the most abstract version of the problem space, and then it is re�ned to account

for successive levels of detail. This notion is formalized by �rst de�ning the concept

of \operator establishment." Intuitively, an operator � establishes a precondition

of another operator � in a plan, if it is the last operator before � in the plan that

achieves that precondition.

More precisely, an operator � establishes precondition p of operator � whenever

� precedes �, p is an e�ect of � and a precondition of �, and there are no operators

between � and � that have p as an e�ect. This is formalized as follows, where
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���� means that operator � precedes operator � in plan �, and Ops(�) is the set

of instantiated operators in plan �. Recall from Section 2.1 that P
�
refers to the

preconditions of operator � and E� refers to the e�ects of operator �.

De�nition 4.1 (Establishment) Let � be a correct plan, �; � 2 Ops(�), and p 2
E�;P

�
. Then � establishes p for � in � (Establishes(�; �; p;�)) if and only if

1. ����,

2. 8�0 2 Ops(�), if ����
0���, then p 62 E�

0.

The �rst condition states that � must precede � in the plan. The second condition

states that � must be the last operator that precedes � and adds precondition p.

Since � is a correct plan, this implies that there is additionally no operator between

� and � that undoes p.

Justi�cation

An operator in a plan is justi�ed with respect to a goal if it contributes, directly or

indirectly, to the satisfaction of that goal. This condition holds when an operator

achieves a literal that is either a goal or a precondition of a subsequent justi�ed

operator. Justi�cation is used in the de�nition of a re�nement below.

De�nition 4.2 (Justi�cation) Let � be a correct plan, � 2 Ops(�), and Sg a goal.

� is justi�ed with respect to Sg in � (Justi�ed(�;�; Sg)) if and only if there exists

u 2 E� such that either:

1. u 2 Sg, and 8�0 2 Ops(�), if (����
0) then u 62 E�

0, or

2. 9� 2 Ops(�) such that � is justi�ed with respect to Sg, and

Establishes(�; �; u;�).

The justi�cation de�nition can be extended to plans as follows: Justi�ed (�; Sg) if

and only if for every operator � 2 Ops(�), Justi�ed(�;�; Sg).

Any operator that is not justi�ed is not needed to achieve the goal and can be

removed. Thus, an unjusti�ed plan � (one for which Justi�ed is false) that achieves

Sg can be justi�ed by removing all unjusti�ed operators. JustifyPlan(�; Sg) is used

to denote the justi�ed version of �. Under the above de�nitions, for any correct plan

� that achieves goal Sg, Justi�ed(JustifyPlan(�; Sg); Sg) holds.

Recall from Section 3.1.2,Mi
s(s) is a state mapping function that maps a ground-

level state s to a state at level i, and Mi
o(�) is an operator mapping function that

maps a ground-level operator � to an operator at level i. Both of these functions
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perform the mapping simply by dropping the conditions that are not in abstraction

level i. Similarly, we can de�ne a plan mapping functionMi
p(�) that maps a ground-

level plan � to a plan at level i by replacing each operator � in � by Mi
o(�). We

can also de�ne a problem mapping functionMi
�(�) that maps a problem � = (S0; Sg)

to the corresponding abstract problem � = (Mi
s(S0);Mi

s(Sg)) at level i. In the

remainder of this section, the subscript will be dropped from the mapping functions

since it is clear from the context which mapping function is required.

By the above de�nitions, JustifyPlan(Mi(�);Mi(Sg)) denotes the abstract plan

that corresponds to the ground-level plan � justi�ed at level i with respect to goal

Sg.

The de�nition of justi�cation can now be used to show that for any plan that

achieves a goal in the base space, the abstract version of that plan with all the

unjusti�ed operators removed achieves the goal at the abstract level.

Lemma 4.1 If � is a plan that solves � = (S0; Sg) at the base level of an abstraction

hierarchy, then JustifyPlan(Mi(�);Mi(Sg)) is a plan that solves Mi(�) on level i of

the hierarchy.

The proof of an analogous lemma can be found in [Tenenberg, 1988, pg.69]. The

idea is that since conditions involving certain literals are eliminated in ascending the

abstraction hierarchy, one can eliminate from plans those operators included solely

to satisfy these eliminated conditions. For example, if the OpenDoor condition is

eliminated at level i, then those plan steps from levels below i that achieve OpenDoor

can be removed. Note that the upward solution property holds as a trivial corollary

of this lemma.

Re�nement

With the notion of justi�cation, we can now de�ne the \re�nement" of an abstract

plan. Intuitively, a plan � is a re�nement of an abstract plan �A, if all operators and

their ordering relations in �A are preserved in �, and the new operators have been

inserted for the purpose of satisfying the re-introduced preconditions.

De�nition 4.3 (Re�nement) A plan � at level i�1 is a re�nement of an abstract

plan �A at level i, if

1. � is justi�ed at level i� 1, and

2. there is a 1-1 function c (a correspondence function) mapping each operator of

�A into �, such that

(a) 8� 2 Ops(�A);Mi(c(�)) = �,
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(b) if � ��A �, then c(�) �� c(�),

(c) 8 2 Ops(�);8� 2 Ops(�A); if c(�) 6= ; then 9� 2 Ops(�) with precon-

dition p such that Justi�ed(;�; p) and Level(p) = i� 1.

If � is a re�nement of �A, then we say that �A re�nes to �. This formal de�ni-

tion captures the notion of plan re�nement used in many di�erent planners, includ-

ing abstrips [Sacerdoti, 1974], noah [Sacerdoti, 1977], sipe [Wilkins, 1984], and

abtweak [Yang and Tenenberg, 1990].

4.1.3 Monotonic Abstraction Hierarchies

In Lemma 4.1, the relationship between � and its justi�cations at successive levels

of abstraction reveals that not only are operators being eliminated from a plan in

ascending the abstraction hierarchy, but that for those preconditions still present at

a given level, the establishment relationships from the higher levels are preserved.

Thus, if a planner can �nd this abstract-level plan, this plan could be expanded

at successively lower levels by inserting operators that do not violate the abstract

establishment structure. This section �rst de�nes a monotonic re�nement and then

uses this de�nition to de�ne a monotonic abstraction hierarchy.

A monotonic re�nement of an abstract plan is a re�nement that preserves all of

the establishment relations.

De�nition 4.4 (Monotonic Re�nement) Let �A be an abstract plan that solves

Mi(�) at level i, i > 0 and is justi�ed relative to Mi(Sg). A level i� 1 plan � is a

monotonic re�nement of a level i plan �A if and only if

1. � is a re�nement of �A,

2. � solves Mi�1(�) at level i� 1, and

3. JustifyPlan(Mi(�);Mi(Sg)) = �A.

An abstraction hierarchy is monotonic if every solvable problem has an abstract

solution that has a monotonic re�nement at each lower level.

De�nition 4.5 (Monotonic Abstraction Hierarchy) A k-level abstraction hier-

archy is monotonic, if and only if, for every problem � = (S0; Sg) solvable at the

ground level, there exists a sequence of plans �k�1
; . . . ;�0

such that �k�1
is a justi-

�ed plan for solving Mk�1(�) at level k � 1, and for 0 < i < k, �i�1
is a monotonic

re�nement of �i
.

An important feature of the monotonicity property is its generality:
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Theorem 4.1 Every abstraction hierarchy is monotonic.

Proof: This will be proven for a two-level hierarchy, but can be easily extended

to k levels by induction. Let � be a problem at the ground level, and let � be a

ground-level plan that solves �. By Lemma 4.1, there exists a abstract plan �A =

JustifyPlan(M1(�);M1(Sg)) that solves the abstract problemM1(�). By de�nition,

�A is justi�ed. It follows from De�nition 4.4 that � is a monotonic re�nement of

�A. Thus, for every problem � in the ground space, there exists an abstract plan

that solves � in the abstract space and has a monotonic re�nement. 2

This property is useful because it means that the completeness of a hierarchical

problem solver can be maintained while only considering the monotonic re�nements

of an abstract plan.

4.1.4 Ordered Monotonic Abstraction Hierarchies

This section �rst de�nes a more restrictive re�nement, called an ordered re�nement,

and then uses this de�nition to de�ne an ordered monotonic abstraction hierarchy.

An ordered re�nement of an abstract plan �A is a re�nement� in which no literals

in the abstract level are changed by the operators inserted to re�ne the abstract plan.

De�nition 4.6 (Ordered Re�nement) Let �A be a justi�ed plan that solvesMi(�)

at level i, i > 0. A level i� 1 plan � is an ordered re�nement of a level i plan �A if

and only if

1. � is a monotonic re�nement of �A, and

2. 8� 2 Ops(�), if � adds or deletes a literal l with Level(l) � i, then 9�0 2
Ops(�A) such that � = c(�0).

The �rst condition requires that �A is a monotonic re�nement of �. The second

condition above states that in plan �, the only operators that add or delete literals

at level i or above are re�nements of the operators in �A.

The de�nition of an ordered re�nement is now used to de�ne the ordered mono-

tonicity property.

De�nition 4.7 (Ordered Monotonic Abstraction Hierarchy) An abstraction

hierarchy is ordered monotonic if and only if, for all problems � and for all justi�ed

plans �A that solve Mi(�) at level i, for i > 0, every re�nement of �A at level i� 1

is an ordered re�nement.

This property guarantees that every possible re�nement of an abstract plan will leave

the conditions established in the abstract plan unchanged. In contrast, the mono-

tonicity property requires explicit protection of these conditions. By ensuring that
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every re�nement is ordered, the ordered monotonicity property guarantees that no

violation of the monotonic property will ever occur during plan generation.

Unlike the monotonicity property, not all abstraction hierarchies satisfy the or-

dered monotonicity property. It is therefore important to explore conditions under

which a hierarchy satis�es this property. The following restriction de�nes a set of con-

straints that are su�cient but not necessary to guarantee the ordered monotonicity

property. The constraints specify a partial ordering of the literals in an abstraction

hierarchy.

Restriction 4.1 Let O be the set of operators in a domain. 8� 2 O;8p 2 P� and

8e; e0 2 E�,

1. Level(e) = Level(e0), and

2. Level(e) � Level(p).

The �rst condition constrains all the literals in the e�ects of an operator to be at

the same abstraction level. The second condition constrains the preconditions of an

operator to either be at the same or lower level as the e�ects. As proved below, these

two conditions are su�cient to guarantee the ordered monotonicity property of an

abstraction hierarchy.

Lemma 4.2 If an abstraction hierarchy satis�es Restriction 4.1, then any justi�ed

plan for achieving a literal l does not add or delete any literal whose level is higher

than Level(l).

Proof: Let � be a justi�ed plan at level i that achieves l. Since � is justi�ed, every

operator in � is used either directly or indirectly to achieve l. Thus, the establishment

relations in � form a directed, acyclic proof graph in which l is the root. The operators

form the nodes and the establishment relations form the arcs of the graph. The depth

of a node in the proof graph is the minimal number of arcs to the root l. Below, we

prove by induction on the depth of the proof graph that 8� 2 Ops(�); e 2 E�,

Level (l) � Level (e). This condition will guarantee that no operator in � a�ects any

literal higher than Level (l) in the hierarchy.

For the base case, consider the operator � at depth 1. Since � achieves l and

Justi�ed(�; l), then l 2 E�. From Restriction 4.1, 8e 2 E�, Level (l) = Level (e).

For the inductive case, assume that for each operator � at depth i, 8e 2 E
�
,

Level (l) � Level (e). Let � be an operator at depth i + 1. Since � is justi�ed, there

exists an operator � at depth i with p 2 P
�
, such that p 2 E�. From Restriction 4.1,

8e 2 E
�
, Level (e) � Level (p). From the inductive hypothesis, Level (l) � Level (e).

Therefore, Level (l) � Level (p). From Restriction 4.1, 8e0 2 E�, Level (p) = Level (e0).

Thus, 8e0 2 E�, Level (l) � Level (e0). 2
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Theorem 4.2 Every abstraction hierarchy satisfying Restriction 4.1 is an ordered

monotonic hierarchy.

Proof: From De�nition 4.7 we need to show that every re�nement of a justi�ed plan

�A is an ordered re�nement. By way of contradiction, assume that there exists a plan

� that is a re�nement of �A at level i�1, but is not an ordered re�nement. It follows

from De�nition 4.6 that an operator � in � changes a literal l, with Level(l) � i, but

the corresponding abstract operator Mi(�) is not in �A. Since � is a re�nement, it

follows from De�nition 4.3 that � is justi�ed. Since � is justi�ed and � 2 Ops(�),

� must achieve some condition p and be justi�ed with respect to that condition. In

addition, sinceMi(�) is not in �A, it follows from De�nition 4.3 that Level (p) = i�1.
But � also achieves l, where Level (l) � i, which contradicts lemma 4.2. 2

In general, the ordered monotonicity property is quite restrictive since it requires

that the property hold for every problem in the domain. A natural extension, which

allows �ner-grained abstraction hierarchies, is to only require that an abstraction

hierarchy have the ordered monotonicity property relative to a given problem. This

extension is straightforward and is based on the de�nitions and results in the previous

section. Associated with this property is a restriction on the assignment of literals to

levels that is su�cient to insure this property for a given problem instance.

De�nition 4.8 (Problem-Speci�c Ordered Monotonic Hierarchy)

An abstraction hierarchy is ordered monotonic relative to a speci�c problem �, if and

only if for all justi�ed plans �A that solveMi(�) at level i, for i > 0, every re�nement

of �A at level i� 1 is an ordered re�nement.

A problem-speci�c, ordered monotonic hierarchy can be formed by considering

which operators of a domain could be used to solve a given goal. In particular, only

some of the operators would actually be relevant to achieving a given goal. And, of

those operators, only some of their e�ects would be relevant to achieving the goal.

These are called the \relevant e�ects". The relevant e�ects of an operator � relative

to a goal Sg (denoted Relevant (�; Sg)) are those e�ects of � that are either in Sg, or

are preconditions of operators that have relevant e�ects with respect to Sg.

De�nition 4.9 (Relevant E�ects) Let Sg be a goal state, and O be the set of op-

erators in a domain. Given � 2 O, e 2 E�, e is a relevant e�ect of � with respect to

Sg (or e 2 Relevant(�; Sg)) if and only if

1. e 2 Sg, or

2. 9� 2 O, Relevant(�; Sg) 6= ; and e 2 P
�
.
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The following restriction de�nes a set of constraints on an abstraction hierarchy

that are su�cient to guarantee the ordered monotonicity property of an abstraction

hierarchy for a speci�c problem.

Restriction 4.2 Let � = (S0; Sg) be a problem instance and O be the set of operators.

8� 2 O, 8e; e0 2 E�, p 2 P�, if e 2 Relevant(�; Sg) then

1. Level(e) � Level(e0),

2. Level(e) � Level(p).

The restriction requires that all the relevant e�ects of an operator � to be at the same

or higher levels of abstraction than both the other e�ects and the preconditions of �.

Lemma 4.3 If an abstraction hierarchy satis�es Restriction 4.2, then any justi�ed

plan for achieving a literal l does not add or delete any literal whose level is higher

than Level(l).

Proof: The proof is analogous to the proof of Lemma 4.2. As above, let � be a

justi�ed plan at level i that achieves l, where the establishment relations in � form a

directed, acyclic proof graph in which l is the root. The proof is by induction on the

depth of the proof graph and shows that 8� 2 Ops(�); e 2 E�, Level (l) � Level (e).

For the base case, consider the operator � at depth 1. Since � achieves l and

Justi�ed(�; l), then l 2 E�. From Restriction 4.2, since l 2 Relevant (�; l), 8e 2 E�,

Level (l) � Level (e).

For the inductive case, assume that for each operator � at depth i, 8e 2 E
�
,

Level (l) � Level (e). Let � be an operator at depth i + 1. Since � is justi�ed,

there exists an operator � at depth i with precondition p 2 P
�
, such that p 2

E�. From Restriction 4.2, 8q 2 Relevant (�; Sg), Level(q) � Level (p). From the

inductive hypothesis, Level(l) � Level (q). Therefore, Level (l) � Level (p). Since

p 2 Relevant (�; l), from Restriction 4.2, 8e0 2 E�, Level (p) � Level (e0). Thus,

8e0 2 E�, Level (l) � Level (e0). 2

Theorem 4.3 Every abstraction hierarchy satisfying Restriction 4.2 with respect to

a problem � is a problem-speci�c ordered monotonic hierarchy with respect to �.

Proof: The proof is the same as the proof of Theorem 4.7 with Lemma 4.2 replaced

by Lemma 4.3. 2
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4.2 Generating Abstraction Hierarchies

The restrictions described in the last section can be used as the basis for construct-

ing ordered monotonic abstraction hierarchies. Hierarchies that have this property

are desirable because they partition the literals in a domain such that a condition

at one level in the hierarchy can be achieved without interacting with conditions

higher in the hierarchy. The construction of such a hierarchy requires �nding a su�-

cient set of constraints on the placement of the literals in a hierarchy such that this

property can be guaranteed. This section �rst presents algorithms for �nding both

problem-independent and problem-speci�c constraints that are su�cient to guarantee

the ordered monotonicity property. Then it describes the top-level algorithm for con-

structing an abstraction hierarchy given a set of constraints. To simplify the descrip-

tion of the algorithms, this section assumes that the operators are fully-instantiated.

Section 4.4.2 describes how the algorithms handle operators with variables.

4.2.1 Determining the Constraints on a Hierarchy

This section presents two algorithms for generating ordering constraints on an abstrac-

tion hierarchy. The �rst algorithm produces a set of problem-independent constraints

that guarantee the ordered monotonicity property. The second algorithm produces a

set of problem-speci�c constraints, where the constraints are su�cient to guarantee

the ordered monotonicity property for a given problem. The ordering constraints gen-

erated by the algorithms are placed in a directed graph, where the literals form the

nodes and the constraints form the edges. Each literal at a node represents both that

literal and the negation of the literal since it is not possible to change one without

changing the other. A directed edge between two nodes in the graph indicates that

the literals of the �rst node cannot occur lower in the abstraction hierarchy than the

literals of the second node.

Problem-Independent Constraints

A set of problem-independent constraints can be generated for a problem space based

on Restriction 4.1. This restriction requires that all the e�ects of each operator

must be placed in the same abstraction level and the preconditions of each operator

cannot be placed in a higher level in the abstraction hierarchy than the e�ects of the

same operator. The algorithm in Table 4.1 �nds exactly this set of constraints and

records them in a directed graph. For each operator, the algorithm arbitrary selects

an e�ect and then adds directed edges in both directions between that e�ect and all

the other e�ects. It also adds directed edges between the selected e�ect and all of the

preconditions of the operator.
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Input: The operators that de�ne the problem space.

Output: Su�cient constraints to guarantee ordered monotonicity.

function Find Constraints(graph,operators):

for each op in operators

select lit1 in Effects(op)

begin

for each lit2 in Effects(op)

begin

Add Directed Edge(lit1,lit2,graph);

Add Directed Edge(lit2,lit1,graph)

end;

for each lit2 in Preconditions(op)

Add Directed Edge(lit1,lit2,graph)

end;

return(graph);

Table 4.1: Problem-Independent Algorithm for Determining Constraints

The complexity of this algorithm is O(d), where d is the length of the encoding

of a problem space (i.e., the number of literals in the preconditions and e�ects of

all the operators). To �nd the constraints, the algorithm only scans through the

preconditions and e�ects of each operator once.2

While this algorithm generates a su�cient set of constraints for the ordered mono-

tonicity property, many of the constraints will not be necessary to guarantee the

property. As such, the algorithm will only produce abstractions for a limited class of

problem spaces. The next section describes a problem-speci�c version of this algo-

rithm, which will produce useful abstractions for a wider class of problem spaces.

Problem-Speci�c Constraints

Restriction 4.2 can be used to generate a set of problem-speci�c constraints for a given

problem space and problem. This restriction provides a su�cient set of constraints

to guarantee the ordered monotonicity property for a given problem. An algorithm

that implements this restriction is shown in Table 4.2. The algorithm is similar to

the problem-independent one, but forms the constraints based on a particular set of

goals to solve.

2Thanks to Charles Elkan for pointing out that my original O(d2) algorithm [Knoblock, 1990a]

could be transformed into a linear algorithm.
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The algorithm is given the operators and the goals of the problem to be solved

and it returns a directed graph of the constraints on the abstraction hierarchy. It

scans through each of the goal literals and �rst checks to see if the constraints for

the given literal have already been added to the graph (lines 1-2). If not, it scans

through each of the operators and �nds those operators that could be used to achieve

the given goal (lines 3-4). The algorithm then adds constraints between any e�ect

that matches the goal and the other e�ects and preconditions of the operator (lines

5-9). The algorithm is called recursively on the preconditions of the operator since

these could arise as subgoals during problem solving (line 10). The algorithm will

terminate once it has considered all of the conditions that could arise as goals or

subgoals during problem solving.

Input: The operators of the problem space and the goals of a problem.

Output: Su�cient constraints to guarantee ordered monotonicity for the given problem.

function Find Constraints(graph,operators,goals):

1. for each goal in goals do

2. if Not(Constraints Determined(goal,graph)) then

3. for each op in operators do

4. if goal in Effects(op) do

begin

5. for each effect in Effects(op) do

6. Add Directed Edge(goal,effect,graph);

7. preconds  Preconditions(op);

8. for each precond in preconds do

9. Add Directed Edge(goal,precond,graph);

10. Constraints Determined(goal,graph)  true;

11. graph  Find Constraints(graph,operators,preconds)

end;

11. return(graph)

Table 4.2: Problem-Speci�c Algorithm for Determining Constraints

An important advantage of the problem-speci�c abstractions is that the algo-

rithm only produces the constraints that are relevant to the particular problem to

be solved. Thus, it can produce �ner-grained hierarchies than could be produced for

the entire problem domain. In many cases the abstraction hierarchy produced by the

problem-independent algorithm collapses into a single level, while the problem-speci�c

algorithm produces a useful abstraction hierarchy.

The complexity of determining the constraints, and thus the complexity of creat-

ing the problem-speci�c abstraction hierarchies, is O(n � o � l), where n is the number
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of di�erent literals in the graph, o is the maximum number of operators relevant to

achieving any given literal, and l is the maximum length (total number of precondi-

tions and e�ects) of the relevant operators. In the worst case, the algorithm must

loop through each literal, and for each relevant operator scan through the body of the

operator and add the appropriate constraints. This cost is insigni�cant compared to

problem solving since its complexity is polynomial in the size of the problem space,

while the complexity of problem solving is exponential in the solution length.

4.2.2 Constructing A Hierarchy

This section describes the algorithm for constructing an abstraction hierarchy. The

algorithm is given the operators that de�ne a problem space and, optionally, the

goals of a problem to be solved, and it produces an ordered monotonic abstraction

hierarchy. The algorithm partitions the literals of a domain into classes and orders

them such that the literals at one level will not interact with the literals in a more

abstract level. The �nal hierarchy consists of an ordered set of abstraction spaces,

where the highest level in the hierarchy is the most abstract and the lowest level is

the most detailed.

Table 4.3 de�nes the Create Hierarchy procedure for building ordered mono-

tonic abstraction hierarchies. The procedure is given the domain operators and,

depending on the de�nition of Find Constraints, may also be given the goals of

the problem to be solved. Without using the goals, Create Hierarchy produces a

problem-independent abstraction hierarchy, which can be used for solving any prob-

lem in a domain. Using the goals, the algorithm produces an abstraction hierarchy

that is tailored to the particular problem to be solved.

Input: Operators of a problem space and, optionally, the goals of a problem.

Output: An ordered monotonic abstraction hierarchy.

procedure Create Hierarchy(operators[,goals]):

1. graph  Find Constraints(fg,operators[,goals]);
2. components  Find Strongly Connected Components(graph);

3. partial order  Construct Reduced Graph(graph,components);

4. total order  Topological Sort(partial order);

5. abs hierarchy  Construct Abs Hierarchy(total order);

6. return(abs hierarchy)

Table 4.3: Algorithm for Creating an Abstraction Hierarchy
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� Step 1 of the algorithm produces a set of constraints on the order of the lit-

erals in an abstraction hierarchy using the algorithms in either Table 4.1 or

Table 4.2. By Theorems 4.2 and 4.3, the constraints are su�cient to guarantee

that a hierarchy built from these constraints will have the ordered monotonicity

property.

� Step 2 �nds the strongly connected components of the graph using a depth-�rst

search [Aho et al., 1974]. Two nodes in a directed graph are in the same strongly

connected component if there is a path from one node to the other and back

again. Thus, any node in a strongly connected component can be reached from

any other node within the same component. As such, this step partitions the

graph into classes of literals where all the literals in a class must be placed in

the same abstraction level.

� Step 3 constructs a reduced graph where the nodes that comprise a connected

component in the original graph correspond to a single node in the reduced

graph. There is a constraint between two nodes in the reduced graph if there was

a constraint between the corresponding nodes in the original graph. The literals

within a node in the reduced graph must be placed in the same abstraction

space and the constraints between nodes de�ne a partial order of the possible

abstraction hierarchies.

� Step 4 transforms the partial order into a total order using a topological sort
[Aho et al., 1983]. The total order de�nes a single ordered monotonic abstraction

hierarchy. There may be a number of possible total orders for a given partial

order and one order may be better than another. Section 4.4.4 describes the

set of heuristics used to choose between the possible total orders.

� Step 5 uses the total order to construct an abstraction hierarchy. The most

abstract level in the hierarchy contains only the literals that are �rst in the total

order. Each successive level of the abstraction hierarchy contains the literals

from the previous level combined with the next element of the total order. The

most detailed level in the hierarchy contains all of the literals in the graph.

The complexity of steps 2-5 in the algorithm above is linear in the size of the graph.

The complexity of both �nding the strongly connected components of a directed

graph and performing the topological sort is O(max(e; v)) [Aho et al., 1974], where

e is the number of edges (constraints) and v is the number of vertices (literals).

Creating the reduced graph is also O(max(e; v)) since the new graph can be created

by scanning through each of the vertices and edges once. The complexity of forming

the abstraction hierarchy is O(v) since this step only needs to scan the vertices of
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the sorted graph once to build the hierarchy. Thus, the complexity of steps 2-5 is

O(max(e; v)).

Using the problem-independent algorithm for �nding the constraints, the com-

plexity of building an abstraction hierarchy is linear in the length of the encoding.

Since �nding the constraints is O(d), where d is the length of the encoding, and the

number of possible constraints, e, and the number of possible literals, v, is bounded

by O(d), the complexity of the entire algorithm is O(d).

As described above, the complexity of the problem-speci�c algorithm for �nding

the constraints is O(n � o � l), so the complexity of building a problem-speci�c abstrac-

tion hierarchy is also O(n � o � l) (n is the number of di�erent literals, o is the number

of operators relevant to achieving each literal, and l is the length of each relevant

operator). The complexity of the graph algorithms is bounded by the complexity of

�nding the constraints since the number of vertices, v is the number of literals n, and

the number of edges e must be bounded by n � o � l since this is the complexity of the

algorithm for �nding the constraints, which are the edges in the graph.

4.3 Tower of Hanoi Example

This section applies the approach to generating abstractions described in this chapter

to the Tower of Hanoi puzzle. The algorithms presented in the previous section can

be used to automatically generate the abstraction of the Tower of Hanoi described

in the previous chapter, where the disks are partitioned into separate abstraction

levels. This section describes how the algorithm generates this abstraction, shows

the intermediate results at each step in the algorithm, and then provides an intuitive

explanation for why the ordered monotonicity property provides a good decomposition

of this problem.

Given a three-disk Tower of Hanoi problem in either representation described

in Section 2.2, both the problem-independent and problem-speci�c versions of the

algorithm generate a three-level abstraction hierarchy. The two algorithms di�er

in that for a problem involving only the two smallest disks, the problem-speci�c

algorithm would generate only a two-level hierarchy, while the problem-independent

version would still generate a three-level hierarchy since it does not take the problem

into account.

The �rst step of the algorithm for constructing an abstraction hierarchy is to �nd

a set of constraints that are su�cient to guarantee the ordered monotonicity property.

Both versions of the find-constraints algorithm would produce the directed graph

of constraints shown in Figure 4.1, where diskC is the largest disk and diskA is the

smallest. The problem-independent algorithm would consider each operator and �rst

add constraints that force all the e�ects of each operator to be in the same abstraction
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(on diskC peg2)

(on diskC peg1)

(on diskB peg3)

(on diskB peg2)

(on diskB peg1) (on diskA peg3)

(on diskA peg2)

(on diskA peg1)

(on diskC peg3)

Figure 4.1: Constraints on the Literals in the Tower of Hanoi

level and then add constraints that force the precondition of an operator to be lower

(or at the same level) than the e�ects.

For example, consider the constraints generated by the algorithm from the oper-

ator shown in Table 4.4 (additional constraints would be generated from the other

operators). First, it would add constraints based on the e�ects, which would generate

a constraint between (on diskC peg1) and (on diskC peg3), as well as a constraint

between the same literals in the opposite direction. Then the algorithm would con-

sider the preconditions and add constraints between one of the e�ects and each of the

preconditions of that operator. For example, it would add a constraint that required

(on diskC peg3) to be higher or at the same level as (on diskB peg1). (Note that

a literal and a negation of a literal are considered the same literal for purposes of

abstraction and thus placed at the same level since obviously one cannot be changed

without changing the other.)

(Move DiskC From Peg1 to Peg3

(preconds (and (on diskC peg1)

(not (on diskB peg1))

(not (on diskA peg1))

(not (on diskB peg3))

(not (on diskA peg3))))

(effects ((del (on diskC peg1))

(add (on diskC peg3)))))

Table 4.4: Instantiated Operator in the Tower of Hanoi
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The second step in creating the abstraction hierarchy is to �nd the strongly con-

nected components. Two literals are in the same connected component if and only

if there is a cycle in the directed graph that contains both literals. Figure 4.2 shows

the three connected components in the graph, where the literals involving each disk

form a component. Each of these components contains a set of literals that must be

placed in the same abstraction level.

(on diskC peg2)

(on diskC peg1) (on diskC peg3)

(on diskB peg3)

(on diskB peg2)

(on diskB peg1) (on diskA peg3)

(on diskA peg2)

(on diskA peg1)

Figure 4.2: Connected Components in the Tower of Hanoi

The third step in the algorithm is to combine the literals within each connected

component into a single node to form a reduced graph. The reduced graph for the

Tower of Hanoi, which is shown in Figure 4.3, reduces the original graph to a graph

with three nodes and only a few constraints between the nodes. The arrows between

the nodes in a reduced graph specify the constraints on the order in which the literal

classes can be removed to form an abstraction hierarchy.

The fourth step in the algorithm converts the partially-ordered directed graph

into a total order using a topological sort. In the case of the Tower of Hanoi there

is only one possible order, where the disks are ordered by size. The resulting total

order is shown in Figure 4.4

In the last step, the total order is converted into the abstraction hierarchy shown

previously in Figure 3.7. For the three-disk puzzle, the highest abstraction level

includes literals involving only the largest disk, the next level includes both the largest

and middle size disk, and the third level includes all three disks. It is possible to

divide the disks into separate abstraction levels since the steps necessary to move a

given disk can always be inserted into an abstract plan without interfering with the

position of any larger disks. For an n-disk problem, the algorithm would produce a

n-level abstraction hierarchy. Section 5.1 presents empirical results on using these

abstraction hierarchies for problem solving.
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(on diskC peg2)

(on diskC peg1) (on diskC peg3)

(on diskB peg3)

(on diskB peg2)

(on diskB peg1) (on diskA peg3)

(on diskA peg2)

(on diskA peg1)

Figure 4.3: Reduced Graph in the Tower of Hanoi

In general, abstraction hierarchies are useful because they form reduced state

spaces that can be searchedmore e�ectively than the original state space. The reduced

state spaces for the three-disk puzzle are shown in Figure 4.5. The state space on

the left shows the result of removing the smallest disk. The nodes that di�er only by

the location of the smallest disk are collapsed into a single node, reducing the state

space from 27 states to 9 states. The operators that are not relevant to a given state

(on diskC peg2)

(on diskC peg1) (on diskC peg3)

(on diskB peg2)

(on diskB peg1) (on diskB peg3)

(on diskA peg2)

(on diskA peg1) (on diskA peg3)

Figure 4.4: Total Order in the Tower of Hanoi
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space are replaced with dotted lines. Removing the middle-sized disk, as well as the

smallest disk, produces a state space with only 3 states, which is shown on the right

of Figure 4.5.

Figure 4.5: Reduced State Spaces in the Tower of Hanoi

The abstraction hierarchy for the Tower of Hanoi has the ordered monotonicity

property since it satis�es restriction 4.2. Since this property requires that every

re�nement of an abstract plan leaves the conditions achieved in the abstract space

unchanged, it follows that the work done at each abstraction level is never undone

in the process of re�ning the plan. In the case of the Tower of Hanoi, a solution in

the most abstract space produces a plan that moves the largest disk to the goal peg.

Since the abstraction hierarchy has the ordered monotonicity property, at the next

level only steps for moving the medium disk can be inserted. Thus, the abstraction

hierarchy partitions the state space into 3 smaller spaces and any subproblem must

be solved within one of these smaller state spaces. At the �nal level the hierarchy

partitions the state space into 9 separate state spaces. Each subproblem at the base

level is then solved in one of these 9 spaces.

4.4 Generating Abstractions in ALPINE

alpine is a fully implemented system that generates abstraction hierarchies for

prodigy. As shown in Figure 4.6, alpine is given a problem space speci�cation

and a problem to be solved and it produces a problem-speci�c abstraction hierar-

chy for the given problem. The abstraction hierarchy is then used by prodigy for

hierarchical problem solving.
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Problem
Space

Problem

Reformulated
Problem
Space

Reformulated
Problem

Abstraction
Hierarchy

ALPINE

Figure 4.6: The Input and Output of ALPINE

alpine uses an extended version of the problem-speci�c algorithm described in

Section 4.2 to produce abstraction hierarchies. Since the abstractions are to be used

for the particular hierarchical problem-solving method described in the previous chap-

ter, alpine employs several extensions that allow it to produce �ner-grained abstrac-

tion hierarchies, but still preserve the ordered monotonicity property for the given

problem solving method. Using this extended algorithm, alpine is able to produce

abstraction hierarchies for a variety of domains, including the Tower of Hanoi, the

strips robot planning domain, an extended version of the strips domain, and a

machine-shop scheduling domain. These results are described in Chapter 5.

To illustrate the ideas in this section, examples from the extended robot planning

domain are used. This domain is an augmented version of the original strips robot

planning domain [Fikes and Nilsson, 1971]. In the original domain a robot can move

among rooms, push boxes around, and open and close doors. In the augmented

version, the robot can both push and carry objects and lock and unlock doors. The

robot may have to fetch keys as well as move boxes, and may have to contend with

doors that cannot be opened.

The description of alpine is divided into four sections. The �rst section de-

scribes the problem-space de�nition that serves as the input to alpine. The second

section presents the representation language of the abstraction hierarchies. The third

section describes the reformulation of the problem and problem space that are per-

formed to produce �ner-grained abstraction hierarchies. The last section describes

the prodigy-speci�c extensions to the basic algorithm for generating the abstraction

hierarchies.

4.4.1 Problem Space De�nition

alpine is given a problem-space speci�cation that consists of three components: a

set of prodigy operators, a type hierarchy for the operator representation language,
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and a set of axioms that state invariants about the states of a problem space.3.

Operators

The �rst component of a problem space is a set of prodigy operators. As described

in Section 2.3, each operator is composed of a set of preconditions and e�ects. The

preconditions can include conjunctions, disjunctions, negations, and both universal

and existential quanti�ers. The e�ects can be conditional, which means that whether

or not an e�ect is realized depends on the state in which the operator is applied.

Table 4.5 shows an example operator for pushing a box between rooms in the robot

planning domain.

(Push Box Thru Dr

(preconds

(and (connects door room.x room.y)

(dr-open door)

(next-to box door)

(next-to robot box)

(pushable box)

(inroom box room.y)))

(effects (

(del (inroom robot room.y))

(del (inroom box room.y))

(add (inroom robot room.x))

(add (inroom box room.x)))))

Table 4.5: Example Operator in the Robot Planning Domain

In addition to specifying the preconditions and e�ects of an operator, some of the

e�ects may be designated as primary. The problem solver is only permitted to use

an operator to achieve a goal if the desired e�ect is listed as a primary e�ect. By

default, every e�ect of an operator is considered primary. Thus, unless the primary

e�ects are speci�ed, the push box thru dr operator (Table 4.5) can be used to move

either the robot or a box. In fact, the primary e�ect for this operator is (in-room box

room.x). Thus, the problem solver would not attempt to use the push box thru door

operator to move the robot to another room; it would use it only to move the box.

3A problem space in prodigy can also include a set of control rules, but alpine need not consider

these to create the abstraction hierarchies. The use of control rules in an abstract space is described

in Section 3.5.2
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Of course, when a box is moved, the robot would still be moved as a secondary e�ect.

The primary e�ects are implemented in prodigy by generating a set of control rules

that select only the operators whose primary e�ect matches a goal.

Type Hierarchy

The second component of the problem-space speci�cation is a type hierarchy, which

speci�es the types of all the constants and variables in a problem domain. The

type hierarchy is used to di�erentiate literals with the same predicate but di�erent

argument types. If no type hierarchy is given, then all constants and variables are

considered to be of the same type. In the example operator, the type hierarchy allows

the system to di�erentiate between (inroom robot room) from (inroom box room).

The type hierarchy for the robot planning domain is shown in Figure 4.7. The types,

shown in boldface, are on the interior nodes of the tree and the instances are on the

leaves. This particular hierarchy was implicit in the original de�nition of the problem

space.

Type

Object

Box Key Door

Robot Room

robot

box1 box2 door12 door23

key12 key23

room1

room2

room3

Figure 4.7: Type Hierarchy in the Robot Planning Domain

Axioms

The third component of the problem-space speci�cation is a set of axioms that de-

scribe facts that hold for every state of a problem space. For example, one such axiom

for the robot planning domain states that if a door is open then it must be unlocked.

A list of example axioms for this domain is shown in Table 4.6. These facts cannot

be derived from the operators because they are axioms about conditions that hold in

every state. The operators may make assumptions about these conditions, but these

assumptions are not usually stated explicitly.
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(dr-open door) ! (unlocked door)

(locked door) ! (dr-closed door)

(not (dr-closed door)) ! (and (dr-open door)(unlocked door))

(not (dr-open door)) ! (dr-closed door)

(not (locked door)) ! (unlocked door)

(not (unlocked door)) ! (and (locked door)(dr-closed door))

(not (arm-empty)) ! (holding object)

(not (holding object)) ! (arm-empty)

(next-to box1 box2) ! (and (inroom box1 room)(inroom box2 room))

(next-to robot box) ! (and (inroom box room)(inroom robot room))

Table 4.6: Example Axioms in the Robot Planning Domain

4.4.2 Representation Language of Abstraction Spaces

The algorithms and examples up to this point have implicitly assumed that the literals

in the domain are all represented at the same level of granularity. For example,

in the Tower of Hanoi all the literals were completely instantiated ground literals.

However, the operators of a domain are usually expressed as operator schemas, where

each instantiation of the schema corresponds to an operator. A schema can contain

both instantiated and uninstantiated literals. Since the algorithms for generating the

abstractions are based on analyzing the potential interactions between the literals

used in the operators, the operator representation limits the representation of the

abstractions.

To deal with the problem that some literals may be instantiated while others are

uninstantiated or partly instantiated, alpine associates a type with each literal. It

could assume that two literals with the same predicate are of the same type, but

this would severely restrict the possible abstractions of a domain. In the Tower of

Hanoi, all of the \on" conditions would be forced into the same abstraction level and

there would be no abstraction. Instead the type of each literal is determined by both

the predicate and the argument types. The type of each literal is easily determined

by the type hierarchy described in the last section. Each constant and variable has

an associated type, so from each literal, instantiated or uninstantiated, it is possible

to determine the argument types. Literals of di�erent types are initially placed in

distinct nodes in the graph. For example, in the robot planning domain, (inroom

robot room) and (inroom box room) are of distinct types since they di�er by the

second argument.

Currently only literal types that are immediately above the leaves of the type hi-

erarchy can be used to represent a literal in an abstraction hierarchy. For example, in



80 CHAPTER 4. GENERATING ABSTRACTIONS

the robot planning domain, the type \object" is a type at an interior node in the tree,

so it is not possible to have the literal (inroom object room) in the �nal abstraction

hierarchy, only the �ner-grained conditions that refer to subtypes of object, (inroom

box room) and (inroom key room), can be used in the abstraction hierarchy. There

is no inherent reason for this restriction except that it simpli�ed the implementation.

4.4.3 Problem and Operator Reformulation

The abstraction process described so far involves dropping conditions from a problem

space to form a more abstract problem space. The abstractions that are formed by

this process will depend heavily on the initial formalization of both the problems and

the problem spaces. The original problem space can be reformulated to improve the

likelihood of generating useful abstractions.

A straightforward approach to reformulating a problem space is to augment both

the goals of a problem and the preconditions of the operators with conditions that

will necessarily hold. Since the axioms described above provide invariants that hold

for all states in a problem, they can be used to perform this augmentation. Consider

a problem that requires achieving some goal P . In the problem space that is to be

used for solving this goal, imagine there is an axiom which states that P implies Q.

Using the axiom, the original goal P can be replaced with the goal P ^ Q, since

Q will necessarily hold if P holds. At �rst glance this might appear to make the

problem harder. However, by augmenting the goal, it may now be possible to drop P

from the problem space. Without the reformulation of the problem, it may not have

been possible to drop P and still produce an ordered monotonic abstraction. The

augmentation and subsequent abstraction of the problem has the e�ect of replacing

the problem of achieving P with the more abstract problem of achievingQ. P will still

need to be achieved when the abstract solution is re�ned, but it may be considerable

easier to achieve it once Q has been achieved.

Consider an useful reformulation that occurs in the robot planing domain. The

goal is to get box1 and box2 next to each other and to place box1 in room2:

(and (next-to box1 box2)(inroom box1 room2)).

This problem space has an axiom which states that if two boxes are next to each

other then they must be in the same room:

(next-to box1 box2) ! (and (inroom box1 room)(inroom box2 room)).

Using this axiom, the original goal would be augmented with the condition that box2

must also be in room2:

(and (next-to box1 box2)(inroom box1 room2)(inroom box2 room2)).
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The augmentation is important because it allows the system to transform the problem

into an abstract problem that would not be possible without the augmentation. In this

case, without reformulating the problem alpine would �nd that there is a potential

interaction between the next-to condition and the inroom condition and would not

put the conditions in separate levels. By augmenting the goal, alpine uses the other

goal conditions to show that no interaction is possible. (This process is described

in the next section.) The reformulation allows the original problem of getting the

two boxes next to each other to be replaced by the more abstract problem of getting

the two boxes into the same room. Once the abstract problem has been solved, the

additional steps for moving the two boxes next to each other can be inserted when

the plan is re�ned.

alpine augments the preconditions of operators in exactly the same way. Since

the preconditions of operators arise as goals this also allows the system to produce

�ner-grained abstraction hierarchies that ensure the ordered monotonicity property.

The operator Push Box Thru Dr would be augmented as shown in Table 4.7. The

boxed conditions in the table are the ones added by the axioms. These augmentations

allow alpine to form an abstraction of this problem space by dropping the (dr-open

door) conditions from the problem space. It makes this abstraction possible since

whether the door is open is a detail as long as the door is not locked and the robot

is in the appropriate room to open the door.

(Push Box Thru Dr

(preconds

(and (connects door room.x room.y)

(dr-open door)

(dr-unlocked door)

(next-to box door)

(next-to robot box)

(pushable box)

(inroom box room.y)

(inroom robot room.y) )))

(effects (

(del (inroom robot room))

(del (inroom box room))

(add (inroom robot room.x))

(add (inroom box room.x)))))

Table 4.7: Reformulated Operator in the Robot Planning Domain
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The reformulations of both the problems and the operators are important for two

reasons. First, they allow the system to form abstractions that could not otherwise be

guaranteed to have the ordered monotonicity property. Second, they can transform

a problem into a problem that can be solved more easily.

4.4.4 Abstraction Hierarchy Construction

The algorithm described in Section 4.2 presented a general approach to �nding or-

dered monotonic abstraction hierarchies. This algorithm consists of �ve steps. First,

�nd the constraints that are su�cient to guarantee the ordered monotonicity prop-

erty. Second, combine the strongly connected components of the constraint graph

to form the abstraction spaces. Third, construct a reduced graph by combining the

nodes that comprise the strongly connected components. Fourth, perform the topo-

logical sort to order the abstraction spaces. Fifth, convert the total order into an

abstraction hierarchy. alpine employs this basic algorithm for constructing abstrac-

tion hierarchies, but uses re�nements of the steps for selecting the constraints and

ordering the abstraction spaces to produce better hierarchies.

Constraint Generation

The algorithm presented earlier for �nding a su�cient set of constraints to guarantee

the ordered monotonicity is conservative and will often produce constraints that are

unnecessary to guarantee the property. The unnecessary constraints can lead to

cycles in the constraint graph, which in turn can collapse the graph and reduce the

granularity of the abstraction hierarchies. In addition, the operator language used in

prodigy is more expressive than the language assumed for the algorithm described

earlier. To deal with both of these issues, alpine generates abstraction hierarchies

that are tailored to prodigy and that exploit the particular hierarchical problem

solving method used in prodigy.

alpine's algorithm (Table 4.8) for �nding a su�cient set of constraints to guar-

antee ordered monotonicity exploits two additional sources of knowledge that are

speci�c to the particular problem solving method. First, it uses information about

the primary e�ects of operators to reduce the constraints on the e�ects. Second, it

exploits the fact that although every precondition of an operator can be subgoaled

on, in practice there are situations where the preconditions hold and will not become

subgoals. Recall that the purpose of these constraints is to guarantee that the literals

at one level in a hierarchy will not interact with literals in a more abstract level. The

extensions to the basic algorithm, which are described in detail below, preserve the

ordered monotonicity property for the given problem solving method, but allow the

system to form �ner-grained hierarchies than would otherwise be possible.
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Input: Domain operators and a problem to be solved.

Output: Su�cient constraints to guarantee ordered monotonicity for the given problem.

function Find Constraints(graph,operators,goals):

return Find Graph Constraints(graph,operators,goals,goals);

function Find Graph Constraints(graph,operators,goals,context):

1. for each goal in goals do

3. for each op in operators do

4. if goal in Primary Effects(op) do

begin

5. for each effect in Effects(op) do

6. Add Directed Edge(goal,effect,graph);

7. preconds  Preconds(op);

8. subgoals  Subgoalable Preconds(op,goal,preconds,context);

9. for each precond in subgoals do

10. Add Directed Edge(goal,precond,graph);

11. Find Graph Constraints(graph,operators,subgoals,preconds)

end;

12. return(graph)

Table 4.8: Alpine's Algorithm for Determining Constraints

alpine avoids unnecessary constraints based on the e�ects by using the primary

e�ects to determine which operators can actually be used to achieve a goal. Since

prodigy uses the primary e�ects to determine which operators can be used to achieve

a given goal, it would never consider using an operator that did not have a matching

primary e�ect. Thus, as long as the problem solver only subgoals on operators with

matching primary e�ects, the algorithm will still guarantee the ordered monotonicity

property.

alpine avoids unnecessary constraints based on the preconditions by determining

which preconditions can actually arise as subgoals. In general, if an operator is used

to achieve a given goal, it may be necessary to subgoal on any of the preconditions of

the operator. However, in some cases the preconditions of an operator are guaranteed

to hold and would thus not be subgoaled on. Instead of adding constraints on all of

the preconditions, the extended algorithm only adds constraints on the preconditions

that could actually be subgoaled on in a given context. This extension preserves

the ordered monotonicity property since the purpose of these constraints is to avoid

subgoaling on conditions that are higher in the abstraction hierarchy.
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alpine is conservative and assumes everything can be subgoaled on unless it can

prove otherwise. There are three ways in which the system can show that a given

precondition could not be subgoaled on.

1. If a precondition is static, which means that it cannot be changed by any oper-

ators, then it could never be subgoaled on. In the example operator described

earlier, the condition connects is static since it describes the room connections,

which are invariant for a given problem.

2. If the precondition will necessarily hold in the context in which the operator is

used, then it could not be subgoaled on. There are two situations in which this

can occur:

(a) If a precondition of an operator is also a precondition of the parent oper-

ator, then the precondition must hold at the time the operator is inserted

into the plan. For example, a precondition of the Push Box Thru Dr opera-

tor is that the door is open, and a precondition of the Open Door operator

is that the robot is in the room that is next to the door. This second

precondition is also a precondition of the Push Box Thru Dr operator, so

when the Open Door operator is used in the process of pushing a box thru

a door, then the system can prove that given this context the Open Door

operator will not require getting the robot into the room.

(b) If a precondition of an operator is the negation of the goal the operator is

used to achieve, then it would not be subgoaled on since the negation must

already hold or the operator would not have been considered. For exam-

ple, the Open Door operator has the precondition that the door is closed,

however, this condition would not be subgoaled since if this condition is

false, (i.e, the door is open) there is no point in considering the operator.

All of this analysis is performed in a preprocessing step that only needs to be

done once for a domain. When a hierarchy is created the algorithm calls the function

Subgoalable Preconds, which looks up the potential subgoals in a table given a goal

and context. This function also keeps track of which conditions in which context have

already been considered, so that the algorithm will terminate.

alpine handles the full prodigy language, but does so simply by assuming the

worst case. Disjunctions are treated as conjunctions, conditional e�ects are treated as

unconditional e�ects, and both universal and existential quanti�ers are considered for

every possible binding. In addition, alpine adds constraints to ensure that if a pre-

condition of an operator generates bindings for a variable that are then used by other

preconditions in the same operator, then the precondition literal that generates the

bindings cannot occur lower in the hierarchy than the literals that use the bindings.
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These assumptions and constraints preserve the ordered monotonicity property and

ensure that the abstractions generated by alpine will work correctly in prodigy.

Abstraction Hierarchy Selection

Once alpine builds the directed graph and combines the strongly connected com-

ponents, the next step is to convert the partial order of abstraction spaces into a

total order. The algorithm shown in Table 4.3 uses a topological sort to produce an

abstraction hierarchy. However, in general, the total order produced by the topologi-

cal sort is not necessarily unique, and two abstraction hierarchies that both have the

ordered monotonicity property for a given problem will di�er in their e�ectiveness at

reducing search. This section describes the approach alpine uses in selecting among

the possible ordered monotonic abstraction hierarchies for a problem.

Each potential abstraction space is comprised of a set of literals that have one or

more of the following properties:

Goal Literal A literal that matches one of the top-level goals.

Recursive Literal A literal that could arise as a goal where the plan for achieving

that goal could require achieving a subgoal of the same type.

Static Literal A literal that is not changed by the e�ects of any of the operators.

Binding Literal A literal that serves as a generator and does not occur in the pri-

mary e�ects of any operators. A generator is any literal that generates bindings

for variables in the preconditions of an operator. While a binding literal cannot

be subgoaled on, it can generate a set of possible bindings for an operator.

Plain Literal A literal that does not have any of the properties above.

The types of the literals that comprise an abstraction space are used to determine

the ordering of the levels and which levels should be combined.

alpine employs the following set of heuristics to select the �nal abstraction hier-

archy for problem solving:

1. Place the static literals in the most abstract space. By de�nition there is no

operator that adds or deletes any static literal so they can be placed at any

level in the hierarchy without risk of a monotonicity violation. If a static literal

is false, then it is better to �nd out as early as possible to avoid wasted work.

2. Place levels involving goal literals as high as possible in the abstraction hierar-

chy. Thus, whenever there is a choice of placing one set of literals before another

in the hierarchy and one set matches a goal literal and the other one does not,
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then place the one involving the goal literal above the other. Since goals are

sometimes unachievable, it is better to �nd out as early as possible.

3. Combine levels that involve only plain literals, when the levels could be adjacent

in the �nal hierarchy. Each additional abstraction level in the hierarchy incurs

a cost in the re�nement process and combining them will reduce this cost. In

the domains that have been studied, most of the search occurs in the levels

involving the goal and recursive literals.

4. Place levels involving binding literals as low as possible in the abstraction hier-

archy and combine these levels with the levels directly below that involve only

plain literals. Since the binding literals do not occur in the primary e�ects of

any operators, they cannot be directly achieved. However, they can be used

to generate the bindings of variables. The selection of an appropriate set of

bindings may require some search, so it is better to delay consideration of these

literals as long as possible. In the machine-shop domain, this type of literal is

used to perform the actual scheduling.

Figure 4.8 shows how the heuristics would transform an example partial order

into a total order. This set of heuristics creates abstraction hierarchies where each

separate abstraction level serves some purpose. The goal literals are placed at separate

levels because it both orders the top-level goals and partitions the goals of a problem

into separate levels. The recursive literals, even if they are not top-level goals, can

involve a fair amount of search, and placing them in a separate level can reduce this

search by removing some of the lower level details.4 The levels that contain only plain

literals separate the details from the more important aspects of a problem. The levels

involving binding literals delay the generation of bindings as long as possible, which

can reduce backtracking.

4.5 Discussion

This chapter identi�ed the monotonicity and ordered monotonicity properties and

presented an algorithm for automatically generating ordered monotonic abstraction

hierarchies. The monotonicity property is useful because it provides a criterion for

pruning the search while still maintaining completeness. The ordered monotonicity

property is useful because it captures a large class of interesting abstractions and it

is tractable to �nd abstraction hierarchies that have this property. The algorithm

for generating abstractions is implemented in alpine, which automatically generates

4The idea of separating out the recursive literals was inspired by the work of Etzioni [1990], which

identi�ed the importance of nonrecursive explanations for explanation-based learning.
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Figure 4.8: Selecting a Total Order from a Partial Order

abstractions for Hierarchical prodigy. While the abstractions produced by alpine

are intended to be used by Hierarchical prodigy, the basic approach to generating

abstractions is applicable to any operator-based problem solver.

The next chapter describes results in four problem-solving domains and shows

that alpine produces e�ective abstraction in all four domains. There results serve

to demonstrate both that the ordered monotonicity property does capture a useful

class of abstractions and that these abstractions can produce signi�cant reductions

in search.
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Chapter 5

Empirical Results

This chapter describes the results of both generating and using abstractions for prob-

lem solving. The abstractions are generated by alpine and then used in the hi-

erarchical version of prodigy. The chapter is divided into four sections. The �rst

section demonstrates empirically, in the Tower of Hanoi, that abstraction can produce

an exponential-to-linear reduction in search. The second section describes empirical

results in several more complex domains to show that alpine can generate e�ective

abstraction hierarchies for a variety of problem domains. The third section compares

the performance of alpine's abstractions with both hand-coded and automatically

generated search control knowledge. The last section compares alpine and ab-

strips in the original strips domain and shows that alpine produces abstractions

that have a considerable performance advantage over those generated by abstrips.

5.1 Search Reduction: Theory vs. Practice

As described in Section 4.3, alpine generates a hierarchy of abstraction spaces for the

Tower of Hanoi that separates the various sized disks into separate abstraction levels.

In the most abstract level it plans the moves for the largest disk, at the next level it

adds the moves for the next largest disk, and so on. Section 3.4 showed analytically

that this abstraction produces an exponential-to-linear reduction in the size of the

search space. This section provides empirical con�rmation of this result and then

explores the search reduction when the problem solver uses a \nonadmissible" search

procedure (a search procedure that is not guaranteed to produce shortest solutions).

The degree to which the use of abstraction reduces search depends on the amount

of search required to �nd a solution without using abstraction. Admissible search

procedures such as breadth-�rst search or depth-�rst iterative-deepening are guaran-

teed to produce the shortest solution and to do so will usually search most of the

89
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search space. However, these methods are impractical in more complex problems, so

this section also examines the use of the abstractions with a depth-�rst search. Not

surprisingly, these results show that the actual reduction in search largely depends on

how much of the search space is actually searched by the problem solver without using

abstraction. In addition, the problem solver can sometimes trade o� solution quality

for solution time by producing longer solutions rather than searching for better ones.

To evaluate empirically the use of alpine's abstraction in the Tower of Hanoi,

prodigywas run both with and without the abstractions using a depth-�rst iterative-

deepening search and depth-�rst search. The experiments compare the CPU time

required and the length of the solutions on problems that range from one to seven

disks. In the CPU time comparisons, the time required to create the abstraction

hierarchies is included in the problem-solving time. The graphs below measure the

problem size in terms of the optimal solution length, not the number of disks, since

the solution to a problem with n disks is twice as long as the solution to a problem

with n� 1 disks. For example, the solution to the six-disk problem requires 63 steps

and the solution to the seven-disk problem requires 127 steps.

Figure 5.1 compares prodigy with and without abstraction using a depth-�rst

iterative-deepening search to solve each of the subproblems. As the analytical results

predict, the use of abstraction with an admissible search procedure produces an expo-

nential reduction in the amount of search. Without the use of abstraction, prodigy

was unable to solve the four-disk problem within the 600 CPU second time limit. The

results are plotted with the problem size along the x-axis and the CPU time used to

solve the problem along the y-axis. In the Tower of Hanoi, the use of an admissible

search produces optimal (shortest) solutions both with and without abstraction.

Admissible search procedures such as breadth-�rst search or depth-�rst iterative-

deepening are guaranteed to produce the shortest solution1 and to do so usually

requires searching most of the search space. However, these methods are impractical

in more complex problems, so this section also examines the use of hierarchical prob-

lem solving with a nonadmissible search procedure. Figure 5.2 compares the CPU

times and solution lengths with and without abstraction using depth-�rst search. As

the graphs shows, the use of abstraction produces only modest reductions in search

times and solution lengths. This is because, using depth-�rst search, neither con-

�guration is performing much search. When the problem solver makes a mistake it

simply proceeds adding steps to undo the mistakes. Thus, the amount of search per-

formed by each con�guration is roughly linear in the length of the solutions found.

Problem solving with abstraction performed better because the abstraction provides

some guidance on which goals to work on �rst and thus produces shorter solutions

1If an admissible search procedure is used to solve each of the subproblems in hierarchical problem

solving, then the solution to each subproblem will be the shortest one possible, but the solution to

the entire problem may still be suboptimal.
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Figure 5.1: Depth-First Iterative-Deepening Search in the Tower of Hanoi

alpine reduces search time exponentially.

by avoiding some unnecessary steps.

The small di�erence between depth-�rst search with and without using abstrac-

tion is largely due to the fact that the problems can be solved with relatively little

backtracking. To illustrate this point, consider a variant of the Tower of Hanoi prob-

lem that has the additional restriction that no disk can be moved twice in a row
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Figure 5.2: Depth-First Search in the Tower of Hanoi

alpine produces modest improvements in both search time and solution quality.
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[Anzai and Simon, 1979, Amarel, 1984, VanLehn, 1989]. This constrains the prob-

lem considerably since the suboptimal plans in the previous graph were caused by

moving a disk to the wrong peg and then moving the same disk again. By imposing

additional structure on the problem, the problem solver is forced to search a larger

portion of the search space to �nd a solution and as a result the abstraction will

provide a greater reduction in search. Figure 5.3 compares the CPU time and the

solution lengths for the two con�gurations on this variant of the domain. This small

amount of additional structure enables the abstract problem solver to produce the

optimal solution in linear time, while prodigy produces a suboptimal solution that

requires signi�cantly more problem-solving time.
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Figure 5.3: Depth-First Search in a Variant of the Tower of Hanoi

alpine signi�cantly reduces the search time and produces optimal solutions.

The Tower of Hanoi is perhaps a bit unusual in that the structure of the search

space allows the problem solver to undo its mistakes by simply inserting additional

steps. In domains that are more constrained, the problem solver may be forced to

backtrack and search a fairly large portion of the search space to �nd a solution. In

those domains the use of abstraction will provide more dramatic search reductions

with a depth-�rst search. In the less constrained domains, the problem solver can

simply trade solution quality for search time. Thus, using a depth-�rst search, ab-

straction can reduce both the search and the solution length, and the reduction of

each depends on the structure of the problem domain.
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5.2 Empirical Results for ALPINE

alpine generates abstraction hierarchies for a variety of problem solving domains.

This section describes the abstractions generated by alpine on two problem solving

domains and the use of these abstractions in prodigy to reduce search. These do-

mains were previously described in [Minton, 1988a], where they were used to evaluate

the e�ectiveness of the explanation-based learning (ebl) module in prodigy. The

�rst domain is an extended version of the original strips robot planning domain and

the second domain is the machine-shop planning and scheduling domain that was

described in Section 2.3.

5.2.1 Extended STRIPS Domain

This section describes the abstraction hierarchies generated by alpine for the ex-

tended version of the robot planning domain. This domain is an extended version

of the strips robot planning domain [Fikes and Nilsson, 1971] and includes locks,

keys, and a robot that can both push and carry objects. These extensions make

the domain considerably more complex since there are multiple ways to achieve the

same goals and there are many potential dead-end search paths because of locked

doors and potential unavailability of keys. The version of the domain used for the

experiments di�ers syntactically from the original extended strips domain [Minton,

1988a]. These minor syntactic di�erences allow alpine to produce �ner-grained ab-

straction hierarchies. Appendix B describes the di�erences and provides a complete

speci�cation of the problem space.

The de�nition of the problem space includes some control information that was

not included in the original problem space. As described in Section 4.4.1, the problem

space de�nition includes a speci�cation of the primary e�ects, which alpine uses to

construct the abstraction hierarchies. To avoid an unfair bias in the favor of alpine,

the primary e�ects are translated into control knowledge, which is given to all of

the systems in the comparisons. The inclusion of this control knowledge improves

the problem-solving performance in this domain, allowing the problem solver to solve

considerably more complex problems, even in the absence of abstractions.

alpine produces abstractions in this domain that both reduce search time and

produce shorter solutions. As described earlier, each abstraction hierarchy is auto-

matically tailored to the particular problem based on the parts of the domain that

are relevant to solving the particular problem. For example, an abstraction hierarchy

for a problem that simply involves moving the robot into a particular room can com-

pletely disregard any conditions involving boxes. Similarly, whether a door is open

or closed may or may not be a detail depending on whether or not it occurs in the

goal statement. If it is in the goal, it is no longer a detail since the plan may require
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additional steps to get the robot to a room in which the goal can be achieved.

In constructing the abstraction hierarchies for this domain, alpine uses 33.9

CPU seconds to perform the one-time preprocessing of the domain. To construct the

abstraction hierarchies for each of the test problems requires an average of 1.5 CPU

seconds and ranges from 0.4 to 4.5 CPU seconds. The problem-solving times reported

in this chapter include the time required to construct an abstraction hierarchy, but

not the time required to perform the preprocessing since that only needs to be done

once for the entire domain.

Consider a problem that was taken from the set of randomly generated test prob-

lems for this domain. The problem consists of moving three boxes into a con�guration

that satis�es the following goal:

(and (next-to a d)(in-room b room3)(in-room a room4)).

The randomly generated initial con�guration is shown in Figure 5.4. The complete

speci�cation of this problem (#173) is given in Appendix B. Boxes and keys are

scattered among the set of rooms and the doors between the rooms can be either

open (op), closed (cl), or locked (lo). The names of the keys are based on the

rooms they connect (e.g., K36 is the key to the door connecting room3 and room6).

This particular problem is di�cult for two reasons. First, box A has two constraints

that must be satis�ed in the goal statement: box a must be next to box d and box a

must be in room4. Second, some of the doors in the initial state are locked and the

Figure 5.4: Initial State for the Robot Planning Problem



5.2. EMPIRICAL RESULTS FOR ALPINE 95

robot, which starts out in room5, will need to go through at least two of the locked

doors to solve the problem.

To construct an abstraction hierarchy for this problem, alpine �rst augments the

goal using the axioms described in Section 4.4.1 and then �nds an ordered monotonic

abstraction hierarchy for the augmented problem. The example problem would be

augmented as follows:

(and (next-to a d)(in-room b room3)(in-room a room4)(in-room d room4))

where there is an added condition that box d is in room4. This follows from the axiom

that states that if two boxes are next to each other then they must be in the same

room. The system constructs the abstraction hierarchy using the algorithm described

in the previous chapter. The resulting three-level abstraction hierarchy is shown in

Figure 5.5. The �rst level in the hierarchy deals with getting all of the boxes into

the correct room. The second level considers the location of both the robot and the

keys, whether doors are locked or unlocked, and getting the boxes next to each other.

The third level contains only details involving moving the robot next to things and

opening and closing doors.

(inroom box room)

(next-to robot box) (next-to robot door)

(next-to robot key)

(dr-open door) (dr-closed door)

(inroom robot room) (inroom key room)

(holding box)(holding key) (arm-empty)

(locked door) (unlocked door)

(next-to box door)(next-to box box)

Level 2

Level 1

Level 0

Figure 5.5: Abstraction Hierarchy for the Robot Planning Problem

The abstraction hierarchy for this problem has several important features. First,

the problem of getting the boxes into the �nal rooms is solved before moving the

boxes next to each other. Thus, the planner will not waste time moving two boxes

next to each other only to �nd that one or both of the boxes needs to be placed

in a di�erent room. Second, the conditions at the second level can require a fair

amount of search { doors may need to be unlocked and thus keys must be found {

but achieving these conditions will not interfere with the more abstract space that
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deals with the location of the boxes. Note, however, that it may not be possible to

re�ne the abstract plan because some door cannot be unlocked. This does not violate

the ordered monotonicity property, but may require returning to the abstract space

to formulate a di�erent abstract plan. Third, the conditions at the �nal level in the

hierarchy are details that can be solved independently of the higher level steps and

inserted into the abstract plan. Once conditions like whether doors are locked or

unlocked are considered, it will always be possible to open and close the doors.

Before comparing the overall performance of the hierarchical problem solver using

alpine's abstractions to problem solving without any use of abstraction, consider

the results of using the abstraction hierarchy for this problem. As Table 5.1 shows,

the use of the abstraction hierarchy produces a ten-fold speedup in solution time,

reduces the amount of search by a factor of twenty, and produces a solution that is

almost half the length of the solution produced without abstraction.

System CPU Time (sec.) Nodes Searched Solution Length

Prodigy 194.6 4069 76

Prodigy + Alpine 19.2 194 45

Ratio: 10.1 : 1 21.1 : 1 1.7 : 1

Table 5.1: Performance Comparison for the Robot Planning Problem

Table 5.2 shows the problem-solving search and solution steps at each level in the

abstraction hierarchy. Level two, the most abstract level, produces a �ve-step plan

for moving the boxes into the correct rooms. This level requires little search since

it only requires �nding paths to the destination rooms. Level one requires an addi-

tional twenty-one steps to �nd the keys and unlock the doors, move the robot to the

necessary places for moving the boxes, and move the boxes next to each other. This

level requires the most search because of the di�culty of �nding paths through rooms

while dealing with doors that may be locked. The �nal level inserts an additional

nineteen steps, but e�ectively requires no search (every step in the solution requires

two nodes if there is no search). Note that while these steps are individually easy

Level 2 Level 1 Level 0 Total

Nodes Searched 15 141 38 194

Solution Lengths 5 21 19 45

Table 5.2: Breakdown of the Abstract Search for the Robot Planning Problem
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to achieve, separating them from the level above considerably simpli�es the problem

solving in the more abstract space.

The use of alpine's abstractions does not always improve performance and, in

some cases, can actually degrade the performance compared to problem solving with-

out using abstraction. There are three possible ways in which alpine can degrade

the performance on a particular problem. First, the added cost of constructing and

using the abstraction hierarchy can dominate the problem-solving time on problems

that can be solved easily without using abstraction. Second, since prodigy uses a

depth-�rst search, the use of abstraction could lead the problem solver down a dif-

ferent path than the default path that would have been explored �rst without using

abstraction, which can result in more search to �nd a solution. Third, the use of a

particular abstraction could degrade performance by producing abstract plans that

cannot be re�ned and require backtracking across abstraction levels to �nd alter-

native abstract plans. Despite these problems, the use of abstraction still produces

signi�cant performance improvements overall.

To evaluate the abstraction hierarchies produced by alpine, this section compares

problem solving with alpine's abstractions to problem solving in prodigy with no

control knowledge and problem solving in prodigy with a set of hand-coded control

rules (HCR). The comparison was made on a set of 250 randomly generated problems.

Of these problems, 100 were used in Minton's experiments [Minton, 1988a] to test the

EBL module. The hand-coded control rules correspond to the ones that were used in

the EBL experiments. Because of the additional information about primary e�ects

used in this comparison, these problems proved quite easy for the problem solver

even without the use of abstraction. Thus, an additional set of 150 signi�cantly more

complex randomly generated problems was also used in the comparison. The harder

problems were generated by increasing the number of goal conjuncts. The experiment

compared prodigy running without the use of abstraction to the hierarchical version

of prodigy using an abstraction for each problem generated by alpine. The di�erent

con�gurations were allowed to work on each problem until it was solved or the 600

CPU second time limit was exceeded.

Comparing the results of the di�erent con�gurations on the set of test problems

is complicated by the fact that some of the problems cannot be solved within the

time limit. Similar comparisons in the past have been done using cumulative time

graphs [Minton, 1990], but Segre et al. [1991] argue that such comparisons could

be misleading because changing the time limit can change the results. To avoid this

problem, the total time expended solving all of the problems is graphed against the

CPU time bound. The resulting graph illustrates three things. First, each curve on

the graph shows the total time expended on all the problems as the time bound is

increased. Second, the slope at each point on a curve indicates the relative portion of

the problems that remain unsolved. A slope of zero means that all of the problems
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have been solved (no more time is required to solve any of the problems). Third, the

shape of the curve can be extrapolated to estimate the relative performance of the

systems being compared as the time bound is increased.

Figure 5.6 provides the time-bound graphs for the test problems in the extended

robot planning domain. The graphs separate the solvable problems from the unsolv-

able problems (those problems that have no solution). Unsolvable problems can be

considerably harder since the problem solver may have to explore every possible al-

ternative to prove that a problem has no solution. The graph on the left contains the

206 solvable problems and the one on the right contains the remaining 44 unsolvable

problems. On the solvable problems, prodigy with abstraction can solve all the

solvable problems in less than 200 CPU seconds. In contrast, both prodigy alone

and prodigy with the hand-coded control rules have still not solved some of the

problems after 600 CPU seconds. In addition, the total time spent by prodigy is

over three times that of using abstraction. On the unsolvable problems the di�erence

between the use of abstraction and no abstraction is less dramatic, although alpine

has solved more of the problems in considerably less time than prodigy.
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Figure 5.6: Total CPU Times in the Robot Planning Domain

While the time-bound graph provides a good comparison of the overall perfor-

mance of several con�gurations, it does not provide any comparison of how the con-

�gurations compare on di�erent sized problems or how di�erent con�gurations will

scale as the problems get harder. To provide such a comparison, the average solution

time and average solution length are graphed against increasing solution size. The

actual di�culty of a problem depends on many factors, including the size of the search
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space, the solution length, the number of goal conjuncts, the size of the initial state,

the degree of interaction among the goals, etc, and a more thorough analysis should

probably take into account all of these aspects. However, since there is no widely

accepted measure of problem complexity and there is a reasonably close correspon-

dence between solution length and problem di�culty, these graphs use the average

solution length of the three di�erent con�gurations as the measure of the complexity

of a problem. To reduce the variation in problem di�culty, the problems of di�erent

sizes are partitioned into larger sets. Thus, the problems that have a solution length

between 1 and 20 are grouped into one set, and the problems with solution lengths

between 21 and 40 are grouped into one set, and so on. The average time and solution

length are then computed on these sets of problems.

Figure 5.7 shows the average solution time and average solution length as the

problems increase in complexity. The graph on the left shows the average solution

time on the 206 problems that could be solved by any system, and the graph on the

right shows the average solution length on the 202 problems that could be solved

by all systems. (Including problems that exceeded the time bound in the average

solution time underestimates the average, but provides a better indication of overall

performance than if these problems were excluded.) The average solution-time graph

shows that on simple problems prodigy, both with and without control rules, per-

forms about the same or slightly better than alpine, but as the problems become

harder the use of abstraction clearly pays o�. prodigy's better performance on the

simpler problems is due to the added overhead of selecting and using the abstractions

on problems for which the abstraction provides little bene�t. The average solution-

length graph shows that overall alpine produces solutions that are slightly better

than prodigy (on average up to 10% shorter), but they are quite close and in some

cases the solutions are worse.

5.2.2 Machine-Shop Scheduling Domain

This section describes the abstractions generated by alpine in the machine-shop

process planning and scheduling domain. As described in Section 2.3, the domain

involves planning and scheduling a set of machining operators on a set of parts being

manufactured. The complete speci�cation of this domain can be found in Appendix C.

There are a few minor syntactic di�erence between the problem space used in the

experiments and Minton's original de�nition of the problem space. These di�erences

are described in the appendix.

alpine �nds two useful types of abstraction in this domain. First, in many cases

it can separate the top-level goals into separate abstraction levels, which reduces the

search for a valid ordering of the operations. Second, it separates the process planning

(the selection and ordering of the operations on the parts) from the actual scheduling
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Figure 5.7: Average Solution Times and Lengths in the Robot Planning Domain

of the operations (only one part can be assigned to one machine at a given time).

This allows the problem solver to �nd a legal ordering of the operators before it even

considers placing the operations in the schedule.

In constructing the abstraction hierarchies for this domain, alpine uses 14.9

CPU seconds to perform the one-time preprocessing of the domain. To construct the

abstraction hierarchies for each of the test problems requires an average of 1.4 CPU

seconds and ranges from 0.4 to 3.8 CPU seconds. The problem-solving times reported

in this chapter include the time required to construct an abstraction hierarchy, but

not the time required to perform the preprocessing.

Consider the following problem in the scheduling domain, which involves making

two parts:

(and (has-hole d (4 mm) orientation-4)

(shape d cylindrical)

(surface-condition e smooth)

(painted d (water-res white)))

Part d needs a hole and needs to be made cylindrical and painted white. Part e

simply needs to be made smooth. The complete speci�cation of this problem (#181)

is given in Appendix C. The resulting abstraction hierarchy for this problem is shown

in Figure 5.8. The hierarchy separates the selection and ordering of the various

operations and performs the scheduling last.
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(scheduled object machine time) (last-scheduled object time)

(idle machine time)

(shape object shape)

(has-hole object width orient)

(surface-condition object condition)

(temperature object temp) (clampable object machine)

(painted object color)

Level 4

Level 3

Level 2

Level 1

Level 0

Figure 5.8: Abstraction Hierarchy for the Machine-Shop Problem

This abstraction produces a considerable improvement in problem-solving per-

formance. The results are shown in Table 5.3, where alpine solves the problem

signi�cantly faster with much less search. The problem solving is broken up into �ve

levels, where the distribution of search and solution length is as shown in table 5.4.

System CPU Time (sec.) Nodes Searched Solution Length

Prodigy 164.7 5150 9

Prodigy + Alpine 7.0 39 9

Ratio: 23.4 : 1 132.1 : 1 1 : 1

Table 5.3: Performance Comparison for the Machine-Shop Problem

Level 4 Level 3 Level 2 Level 1 Level 0 Total

Nodes Searched 6 8 12 5 8 39

Solution Lengths 1 1 2 1 4 9

Table 5.4: Breakdown of the Abstract Search for the Machine-Shop Problem

This section provides a comparison analogous to the one for the extended robot

planning domain described in the last section. It compares the performance of alpine

to prodigy with no control knowledge, and prodigy with a set of hand-coded

control rules. The hand-coded rules are the same rules that were used in the original

comparisons with the EBL system [Minton, 1988a]. All the con�gurations were run
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on 250 randomly generated problems including the 100 problems used for testing the

EBL system.

The �rst comparison, shown in Figure 5.9, graphs the total time against an increas-

ing time bound for the solvable and the unsolvable problems. On the 186 solvable

problems, alpine performs better than prodigy both with and without control

knowledge. On the 64 unsolvable problems, alpine performs better than prodigy

without control knowledge. With control knowledge prodigy can quickly show for

most of the problems that the problems have no solution. After 600 CPU seconds

alpine and prodigy with control knowledge have used the same total time, but

the slopes of the lines at 600 seconds show that alpine has completed more of the

problems. This can be explained by the fact that control knowledge can often imme-

diately determine that a problem is unsolvable, while the use of abstraction requires

completely searching at least the most abstract space to determine that a problem

is unsolvable. If there is no control rule to identify an unsolvable problem, then

prodigy without using abstraction would have to search the entire space. Thus, the

control knowledge can determine that a problem is unsolvable quickly, but the use of

abstraction produces better coverage.
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Figure 5.9: Total CPU Times in the Machine-Shop Domain

The second comparison, shown in Figure 5.10, graphs the average solution time

and average solution length against increasing problem size. On the average solution

length for the 163 problems that could be solved by all the con�gurations, alpine pro-

duces slightly shorter solutions than prodigy with and without control knowledge.

On the average solution time for the 186 solvable problems, prodigy does well on
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the easier problems, but performs poorly as the problems get harder. prodigy per-

forms slightly better on the simplest problems because of the overhead of generating

and using the abstraction hierarchies. Using control knowledge improves prodigy's

performance considerably, but alpine still performs better than the other two con-

�gurations. alpine has trouble with a few of the more di�cult problems because

as the problems get larger, there are more constraints on the abstraction hierarchy

and this results in fewer abstraction levels. In many cases the abstraction hierarchy

is overconstrained and there are better ordered monotonic abstraction hierarchies

that alpine does not produce. An extension to alpine that avoids this problem is

described in Section 7.2.1.
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Figure 5.10: Average Solution Times and Lengths in the Machine-Shop Domain

5.3 Comparison of ALPINE and EBL

A signi�cant amount of work in prodigy has focused on learning search control to

reduce search. Minton [1988a] developed a system called prodigy/ebl that learns

search control rules using explanation-based learning. More recently, Etzioni [1990]

developed a system called static that generates control rules using partial evaluation.

This section compares the use of the abstractions generated by alpine to these two

systems for learning search control knowledge.

The learning systems are compared in the machine-shop scheduling domain that

was described in the previous section. The comparisons below mirror the ones de-
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scribed in the last section. In addition to prodigy alone, with the hand-coded control

rules (HCR), and with alpine's abstractions, the graphs also include prodigy with

the control rules produced by ebl, with the control rules produced by static, and

the combination of alpine's abstractions and the hand-coded control rules. A com-

parison in the extended strips domain was not included because of the di�erences

between the original domain and the one used in this thesis. Such a comparison

would require rerunning both ebl and static to learn new sets of control rules for

the modi�ed domain.

The �rst comparison, shown in Figure 5.11, graphs the total time against an in-

creasing time bound for the solvable and unsolvable problems. On the solvable prob-

lems, alpine without any control knowledge performs about the same as static's

control rules and signi�cantly better than the use of ebl's control rules. On the un-

solvable problems, static and ebl perform the same as the hand-coded control rules

and use about the same total amount of time on the unsolvable problems, but alpine

completes more of the problems after 600 CPU seconds than the other con�gurations.

0

2000

4000

6000

8000

10000

12000

14000

T
o

ta
l C

P
U

 T
im

e 
(s

ec
.)

0 100 200 300 400 500 600
Time Bound (sec.)

Solvable Problems

Prodigy + Alpine + HCR
Prodigy + Static
Prodigy + Alpine
Prodigy + HCR
Prodigy + EBL
Prodigy

0

5000

10000

15000

20000

25000

T
o

ta
l C

P
U

 T
im

e 
(s

ec
.)

0 100 200 300 400 500 600
Time Bound (sec.)

Unsolvable Problems

Prodigy + Alpine + HCR
Prodigy + Alpine
Prodigy + Static
Prodigy + HCR
Prodigy + EBL
Prodigy

Figure 5.11: Total CPU Times for the Learning Systems in the Machine-Shop Domain

The second comparison, shown in Figure 5.12, graphs the average solution time

and average solution length against increasing problem size for the solvable prob-

lems. As the problems get harder, alpine performs signi�cantly better than ebl

and slightly worse than static on the average solution time. Both alpine and

static perform well, but have trouble solving some of the harder problems. The

solutions produced by prodigy alone and prodigy with the static control rules

and the hand-coded control rules are slightly longer than the rest, although the di�er-
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Figure 5.12: Average Solution Times and Lengths for the Learning Systems in the Machine-

Shop Domain

ences are small. The obvious next step, which will be discussed in Section 7.3.3, is to

combine these systems in order to learn the control knowledge to use in the abstract

spaces.

The integration of the abstraction and the learning of control knowledge assumes

that these approaches provide complementary sources of knowledge. While these sys-

tems have not yet been fully integrated, the �gures above also graph the combination

of the abstraction with the hand-coded control knowledge to demonstrate that the

integration will provide improved performance. The combination of the abstraction

and control knowledge, as shown in Figure 5.11, produces signi�cantly better perfor-

mance than any system alone on both the solvable and unsolvable problems. For the

solvable problems, Figure 5.12 shows that as the complexity of the problems increase,

the combined system allows the problem solver to solve the problems in time linear to

the problem complexity. This combination improves performance because the control

rules provide search guidance within an abstraction level and the use of abstraction

provides better coverage at a lower cost than just using the control rules.

5.4 Comparison of ALPINE and ABSTRIPS

This section compares the abstractions generated by alpine to those generated by

abstrips and shows that alpine produces better abstractions with less speci�c

domain knowledge than abstrips. abstrips was the �rst system that attempted to
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automate the construction of abstraction hierarchies for problem solving and was only

applied to the strips robot planning domain. The resulting abstraction hierarchies

were then used for problem solving in an extended version of the strips planner
[Fikes and Nilsson, 1971]. This section compares the abstraction hierarchy generated

by abstrips to the dynamically-tailored abstraction hierarchies generated by alpine

in the strips domain. The strips domain is a simpler version of the robot planning

domain described in Section 5.2.1 and consists of a robot that can push boxes around

and between a set of rooms. The abstractions generated by each system are then

tested empirically in the prodigy problem solver.

abstrips is given an initial partial order of the predicates for a domain and then

performs some analysis on the domain to assign criticality values to the preconditions

of each of the operators. The criticalities specify which preconditions of each opera-

tor should be ignored at each abstraction level. Since the abstractions are formed by

dropping preconditions, the resulting abstraction spaces are relaxed models, as de-

scribed in Section 3.1.2. The technique used to construct the abstraction hierarchy is

described in detail in Section 6.2.1. The basic idea is to separate those preconditions

that could not be achieved in isolation by a short plan and then use the given partial

order to assign criticalities to the remaining preconditions.

The abstractions generated by alpine di�er from abstrips in several important

ways. First, alpine completely automates the construction of the abstraction hierar-

chies from only the initial de�nition of the problem space, while abstrips requires an

initial partial order to form the abstractions. Second, alpine forms abstractions that

are tailored to each problem, and abstrips constructs a single abstraction hierarchy

for the entire domain. Third, alpine forms reduced models where each level in the

abstraction hierarchy is an abstraction of the original problem space, while abstrips

forms relaxed models.

The best way to compare the abstractions generated by the two systems is to

consider an example. The example below is taken from one of the 200 randomly

generated test problems used to compare the systems. The goal state consists of �ve

goal conjuncts as follows:

(and (in-room a room1)

(status door56 closed)

(status door12 closed)

(in-room robot room3)

(in-room b room6))

The initial state for the problem is shown in Figure 5.13. The complete speci�cation

of this problem (#88) is given in Appendix D. This problem is di�cult because the

doors must be closed after the boxes have been placed in the correct rooms and the

robot must be on the correct side of the door when it is closed.
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Figure 5.13: Initial State for the strips Problem

The abstraction hierarchies generated by each system are shown in Figure 5.14.

For the entire problem domain, abstrips uses the same four-level abstraction hier-

archy. The most abstract space consists of all the static predicates (the predicates

that cannot be changed), the second level consists of the preconditions that cannot

be achieved by a short plan. This includes all of the in-room preconditions, and

some of the next-to and status preconditions. The third level consists of the re-

maining status preconditions that can be achieved by a short plan, and the fourth

level contains the remaining next-to conditions.

alpine can build �ner-grained hierarchies using the type hierarchy (Section 4.4.1)

(connects door room room)

(pushable box)(inroom box room)

(inroom robot room) (status door status)

(next-to box door) (next-to box box)

(next-to robot door) (next-to robot box)

inroom

next-tostatus

status

next-to

connects

pushable

ABSTRIPS ALPINE

Figure 5.14: Abstraction Hierarchies Generated by abstrips and alpine
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to separate literals with the same predicate but di�erent argument types. The abstrac-

tion hierarchy built by alpine for this problem consists of a three-level abstraction

hierarchy (the abstraction hierarchy selection heuristics described in Section 4.4.4

combine the bottom two levels into a single level). The most abstract space con-

sists of all the static literals and the (in-room box room) literals. The next level

contains both the (in-room robot room) and the (status door status) literals.

These two sets of literals get combined to satisfy the ordered monotonicity property

since it may be necessary to get the robot into a particular room to open or close a

door. Finally, the last level contains the next-to literals for both the robot and the

boxes. alpine uses 12.3 CPU seconds for the one-time preprocessing of this domain.

The time required to construct an abstraction hierarchy for each problem ranges from

0.3 to 2.8 CPU seconds and is 1.2 CPU seconds on average.

The example problem illustrates a problem with the abstraction hierarchies that

are formed by abstrips. Problem solving using this abstraction hierarchy proceeds

as follows. Since abstrips only drops preconditions and not e�ects of operators, all

the goals are considered in the abstract space. The system constructs a plan to move

box a into room1, closes the door to the room, and then moves the robot through

the closed door. When the system is planning at this abstraction level it ignores all

preconditions involving door status, so it does not notice that it will later have to

open this door to make the plan work. When the plan is re�ned to the next level of

detail the steps are added to open the door before moving the robot through the door,

deleting a condition that was achieved in the abstract space (which is a violation of

the monotonicity property). At this point the problem solver would need to either

backtrack or insert additional steps for closing the door again. In fact, the original

abstrips system would not have even noticed that it had violated the precondition,

and would simply produce an incorrect plan [Joslin and Roach, 1989, pg.100].

alpine would �rst solve this problem in the abstract space by generating the plan

for moving the boxes into the appropriate rooms. At the next level it would deal with

both closing the doors and moving the robot. If it closed the door from the wrong

side and then tried to move the robot to another room, it would immediately notice

the interaction since these goals are considered at the same abstraction level. After

producing a plan at the intermediate level it would re�ne this plan into the ground

space by inserting the remaining details, which consists of the conditions involving

next-to.

To illustrate the di�erence between alpine's and abstrips's abstractions, the

use of these abstractions are compared in prodigy. Strictly speaking, this is not a

fair comparison because the abstraction hierarchies generated by abstrips were in-

tended to be used by the strips problem solver. strips employed a best-�rst search

instead of a depth-�rst search, so the problem of expanding an abstract plan that is

then violated during the re�nement of that plan would be less costly. Nevertheless,
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the comparison emphasizes the di�erence between the abstraction hierarchies gener-

ated by alpine and abstrips and demonstrates that a poorly chosen abstraction

hierarchy can degrade performance rather than improve it.

First consider the results on the example problem described above. Table 5.5

shows the CPU time, nodes searched and solution length. alpine produces a small

performance improvement over prodigy and generates shorter solutions. In contrast

abstrips takes almost 6 times longer than prodigy, although it too produces the

same length solution as alpine.

System CPU Time (sec.) Nodes Searched Solution Length

Prodigy 14.5 259 25

Prodigy + Alpine 10.2 114 19

Prodigy + Abstrips 83.0 1,631 19

Table 5.5: Performance Comparison for the strips Problem

Figure 5.15 provides a comparison of the performance of prodigy without using

abstraction, using the abstractions produced by abstrips, and using the abstractions

produced by alpine on 200 randomly generated problems in the robot planning

domain. prodigy was run in each con�guration and given 600 CPU seconds to

solve each of the problems. Out of the 200 problems, 197 of the problems were
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solvable in principle. The graph plots the total time spent on the solvable problems

against increasing time bounds. It is clear from the graph that prodigy performs

quite well on these problems even without abstraction. This is largely due to the

fact that problems in this domain are much like the Tower of Hanoi, in that the

problem solver only needs to search a small portion of the search space since most

mistakes can be undone by adding additional steps. The graphs shows that the

use of abstrips' abstractions signi�cantly degrades performance, while alpine's

abstractions improve performance enough that all 197 solvable problems are solved

within 150 CPU seconds. (After 600 CPU seconds, prodigy has still not solved

two of the problems.) None of the systems were able to determine that the three

unsolvable problems were unsolvable.

Figure 5.16 shows the average solution times for the 197 solvable problems and the

average solution lengths for the 153 problems that were solved by all three con�gu-

rations. These graphs show that alpine produces shorter solutions in less time than

either prodigy or abstrips. It is worth noting that while abstrips' abstractions

signi�cantly increased the problem solving time, they did improve the quality of the

solutions. With respect to problem-solving time prodigy performed quite well, but

as in the Tower of Hanoi, prodigy achieved this performance by trading solution

quality. On the hardest set of problems, prodigy produces solutions that were on

average �fty percent longer than alpine.
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Chapter 6

Related Work

This chapter describes the related work on abstraction in problem solving. The �rst

section compares the approaches to problem solving using abstraction that are most

closely related to the one described in this thesis. The second section compares

the approach implemented in alpine for generating abstractions to other related

techniques. The third section describes the related work on properties of abstractions.

6.1 Using Abstractions for Problem Solving

There are a variety of ways in which abstractions can be used in problem solving.

Chapter 3 described an approach to using abstractions for hierarchical problem solv-

ing. This section compares this technique to the most closely related problem-solving

techniques.

6.1.1 Abstract Problem Spaces

One approach to hierarchical problem solving, which was presented in Chapter 3, is

to employ a set of well-de�ned abstraction spaces to solve problems at di�erent levels

of abstraction. An abstraction space can be either a simpli�cation or reformulation

of the original problem space, such as the relaxed and reduced model described in

Section 3.1.2. A problem is usually solved in an abstract space and then re�ned at

successively more detailed levels.

Planning gps [Newell and Simon, 1972] was the �rst system to employ this ap-

proach to problem solving. The system was applied to the domain of propositional

logic problems. In this logic domain, gps is given an abstract problem space that ig-

nores the logical connectives in the formulas. A problem is �rst solved in this abstract

space and then re�ned into the ground space to replace the abstract operations with

the appropriate operations on the connectives. In contrast to the abstract problem

111
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spaces generated by alpine, the abstraction of the propositional logic problems does

not just ignore conditions, but provides a di�erent representation of the problem.

While gps provided the �rst automated use of abstraction for problem solving, it did

not automate the construction of the abstractions.

abstrips [Sacerdoti, 1974] also employs abstract problem spaces for hierarchical

problem solving. The abstraction spaces for a problem domain are represented by

assigning criticalities, numbers indicating the relative di�culty, to the preconditions

of each operator. The system uses these criticalities to plan abstractly. First, an

abstract plan is found that satis�es only the preconditions of the operators with the

highest criticality values. The abstract plan is then re�ned by considering the pre-

conditions at the next level of criticality and inserting steps into the plan to achieve

these preconditions. The process is repeated until the plan is expanded to the lowest

level of criticality. If a solution to a subproblem cannot be found, the system starts

over and reruns the problem solver to �nd a di�erent abstract solution. Hierarchical

prodigy uses the same basic approach to problem solving, but there are two signi�-

cant di�erences. First, Hierarchical prodigy uses reduced models instead of simply

dropping preconditions, which allows it to simplify the goals of a problem in an ab-

stract space. Second, it maintains the dependency structure of the problem-solving

trace so that the problem solver can e�ciently backtrack across abstraction levels.

The motivation behind this general approach to problem solving is to use the

abstractions to divide up a problem into a number of smaller subproblems. A problem

is �rst solved in a simpler abstraction space and the abstract solutions can then be

used to form a set of subproblems at the next level of abstraction. The subproblems

are then solved at that level and the solutions in turn form subproblems at the next

level. This process is repeated until the problem is solved in the original problem

space. Polya [1945] was one of the �rst to describe this idea of decomposing a problem

into a number of simpler subproblems. Since then several people have shown that

dividing a problem into subproblems can produce signi�cant reductions in search
[Newell et al., 1962, Minsky, 1963]. These analyses implicitly assume a problem

can be divided into small, equal-sized, independent subproblems that can be solved

without backtracking. Section 3.3 both formalizes this analysis and identi�es a set of

su�cient conditions to achieve signi�cant reductions in search.

6.1.2 Abstract Operators

Another approach to hierarchical problem solving is to �rst build a plan out of a

set of abstract operators and then re�ne the plan by selectively expanding individual

operators into successively more detailed ones. The re�nement is done using a set

of action reductions [Yang, 1989], which specify the relationship between an abstract

operator and the re�nements of that operator. This approach di�ers from the previ-
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ous one in that it does not require that a plan is expanded completely at one level

of abstraction before re�ning it to the next level. Instead there are a set of abstrac-

tions for each operator, and each instance of an operator in an abstract plan can be

expanded to a di�erent level of detail. Since these systems do not employ a set of

well-de�ned abstraction spaces, there is no notion of solving a problem at one level

before re�ning the plan to the next level. This approach has been used extensively

in least-commitment problem solvers and the systems that employ this approach in-

clude noah [Sacerdoti, 1977], molgen [Ste�k, 1981], and nonlin [Tate, 1976]. In

all of these problem solvers, the abstractions must be hand-crafted for each problem

domain.

A problem with the use of action reductions for hierarchical problem solving is

that it only provides a heuristic about the order in which preconditions of various

operators should be expanded and does not necessarily provide a coherent abstraction

of a problem. A problem solver may expand one part of the plan down to a given

level and then work on a di�erent part of the plan that then undoes conditions that

were needed in the part of the problem already solved. This is equivalent to violating

the monotonicity property. As Rosenschein [1981] points out, seemingly correct plans

at one level can be expanded into incorrect plans at lower levels. This undermines

the rationale for hierarchical planning of reducing complexity through factorization

since \unexpected global interactions" can arise. noah dealt with this problem by

maintaining a hierarchical kernel, which records for each node the conditions that

were tested in order to apply the operator at that node. Then, before any node is

expanded further, the hierarchical kernel for that node is tested to see if the appro-

priate conditions still hold. In the case where the hierarchical kernel does not hold,

noah had to reachieve the missing conditions or backtrack to the point it undid one

or more of these conditions. In general, reachieving the deleted conditions or �nding

another way to solve the problem that does not violate the conditions is a di�cult

problem.

There is nothing inherent in least-commitment problem solvers that prevents them

from using action reductions to implement abstract problem spaces. sipe [Wilkins,

1984, Wilkins, 1986] uses a more explicit encoding of the abstractions where the

domain is partitioned into literals at di�erent abstraction levels and operators for

achieving those literals. While sipe can still expand the operators in a plan to

di�erent levels of abstraction, the domains in sipe are designed such that it will

never undo some condition in a more abstract space in the process of re�ning some

part of the plan.

However, Wilkins [1986] identi�ed another problem that can arise with least-

commitment problem solvers even when using abstraction spaces as in sipe. The

problem (called hierarchical inaccuracy [Yang, 1990]) is that since the planner can

expand the operators in a plan to di�erent levels of detail, it may expand one part
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of the plan to too detailed a level before another part of the same plan is expanded

at all. The result is that state inconsistencies can arise. For example, in one part of

the plan the system may decide to move a robot from one room to another, while

an earlier part of the plan, which has not been expanded, may also require moving

the robot. Since the earlier part of the plan has not been expanded to the level

of detail before the later part of the plan, the system may plan to move the robot

from a room that the robot will have already left. Wilkins proposed several solutions

to this problem, but they all require noticing when these situations can arise and

annotating the operators in order to prevent the expansion at too detailed a level

before earlier parts of the plan have been expanded to that level. Yang [1990] proposed

an automated approach to avoid this problem that involves preprocessing a domain

to �nd a set of syntactic restrictions on the action reductions. Problem solvers that

employ abstraction problem spaces, such as Hierarchical prodigy and abstrips,

avoid this problem by always expanding the plan at each level in a left-to-right order.

6.1.3 Macro Problem Spaces

Another problem-solving method, similar to the use of abstract problem spaces, is the

use of macro problem spaces. Instead of abstracting operators to form an abstract

problem space, operators are combined into macro operators to form a macro problem

space [Korf, 1987]. This approach is similar to using abstraction spaces in that

a problem is mapped into an abstract space, which is de�ned by a set of macro

operators, and then solved in the abstract space. However, unlike the use of abstract

problem spaces, once a problem is solved in the macro space, the problem is completely

solved since the macros are de�ned by operators in the original problem space.

Korf [Korf, 1987] shows that a single level of abstraction can reduce the total

search time from O(n) to O(
p
n), and he shows that multiple levels of abstraction

can reduce the search time from O(n) to O(logn), where n is the number of states and

the time is proportional to the number of states searched. These results are based on

an average case analysis that assumes the distribution remains constant over di�erent

levels of abstraction and the number and ratio of the sizes of the abstraction spaces

are optimal.

Korf's analysis assumes that the mapping between an abstract plan and a spe-

cialization of the abstract plan is trivially known and a specialization always exists.

In contrast, a hierarchical problem solver may expend a great deal of work searching

for an appropriate specialization and in some cases no corresponding specialization

exists. Consider the route planning domain that Korf describes in [Korf, 1987]. The

problem is to plan a route between any two points where the operators are used to

move between adjacent intersections. By building up a set of macro operators he

creates abstract operators that move between more distant points. Planning involves
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mapping the original problem into an abstract problem and then �nding a route be-

tween the points in the abstract space. Once this abstract solution is found, the

solution is found. Each macro operator is composed of the individual operators that

achieve the macro so there is no additional work to map an abstract solution into a

detailed solution. The di�cultly with this approach is in �nding a good set of macro

operators. For the domains in which a set of macros can be de�ned, this technique

will be useful, but there are few domains that are like the route planning domain and

have a su�ciently regular structure to de�ne a set of macro spaces.

6.2 Generating Abstractions for Problem Solving

This section compares the automated approach to generating abstractions described

in this thesis to other related techniques. The related work is compared along three

dimensions. First, what is the form of the knowledge produced by the technique

(e.g., abstractions, aggregations, problem reductions, goal orderings). Second, how

is this knowledge used for problem solving (e.g., subgoals, control rules, evaluation

functions). Third, what is the approach to producing this knowledge (e.g., analysis

of interactions, partial evaluation). This section is loosely organized by the type of

knowledge produced by the various approaches.

6.2.1 Abstractions

abstrips [Sacerdoti, 1974] was the �rst attempt to automate the formation of ab-

straction hierarchies for hierarchical planning. However, the system only partially

automates this process. The user provides the system with an initial partial order of

predicates, which is used to assign criticalities automatically to the preconditions of

ground-level operators. abstrips places the static literals, literals whose truth value

cannot be changed by an operator, in the highest abstraction space. It places literals

that cannot be achieved with a \short" plan in the next highest abstraction space.

And it places the remaining literals at lower levels corresponding to their place in

the user-de�ned partial order. It determines whether a short plan exists by assuming

that the preconditions higher in the partial order hold and attempts to show the

remaining conditions can then be solved in a few steps. The same literal in the pre-

conditions of two di�erent operators can be placed at two di�erent levels because the

di�culty of achieving a particular precondition depends on the other preconditions

of the operator in which it occurs.

The essence of the approach in abstrips is the short-plan heuristic, which sepa-

rates the details from the important information. The system automatically produces

a three-level abstraction hierarchy, with the static literals at the top of the hierarchy,
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the \important" literals next, and the details at the bottom. Any further re�nement

of levels comes from the user-de�ned abstraction hierarchy. In contrast, alpine can

create a hierarchy of abstractions in which the levels of the hierarchy are successively

more detailed. As shown in Section 5.4, alpine produces more e�ective abstractions

with less knowledge than abstrips.

Christensen [1990] developed a system called pablo that also generates hierarchies

of abstractions for hierarchical problem solving. The system uses a technique called

predicate relaxation, where it determines the number of steps needed to achieve each

predicate by partially evaluating the operators. The problem solver solves a prob-

lem by focusing at each point on the part of the problem that requires the greatest

number of steps. This general approach is similar to abstrips in that the abstrac-

tions are based on the number of steps needed to achieve the di�erent conditions,

but this approach allows successively more detailed abstraction spaces. A potential

limitation, however, is that it may be expensive to partially evaluate the operators in

more complex problem spaces, especially ones that involve recursive operators. While

pablo bases the abstractions on the length of the plan to achieve a goal, alpine

forms abstractions based on partitioning the problem such that the conditions at one

level do not interact with the conditions at a more abstract level.

Unruh and Rosenbloom [1989, 1990] present a weak method for soar [Laird et al.,

1987] that dynamically forms abstractions by dropping applicability conditions of the

operators. If soar is working on a goal and reaches an impasse, a point in the search

where it does not know how to proceed, then it performs a look-ahead search to resolve

this impasse. Since this search can be quite expensive, an alternative is to perform

a look-ahead search that ignores all of the unmatched preconditions. The choices

made in the look-ahead search can then be stored by soar's chunking mechanism

and the chunks are then used to guide the search in the original space. If the look-

ahead search cannot distinguish between two choices, the unmatched conditions are

iteratively expanded. This approach forms abstractions based on the heuristic that

the more operators there are between a condition and the goal, the more likely it is

to be a detail. When a useful abstraction is found it will be stored by the chunking

mechanism. The system dynamically abstracts the operators, not to form abstract

problem spaces, but to learn control heuristics.

A potential problem with the approach implemented in soar is that since the ab-

stractions are formed by ignoring the preconditions that were unmatched in solving

one particular problem, an abstraction that is e�ective in one situation could degrade

performance in other situations. In contrast, since alpine constructs ordered mono-

tonic abstraction hierarchies based on the potential interactions between the literals

in a problem space, alpine's abstractions are more likely to ignore the appropriate

conditions. The more stringent requirements on the abstractions formed by alpine,

however, prevent it from �nding abstractions in problem spaces in which soar can
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produce abstractions (e.g., the eight-puzzle).

Anderson [1988] developed a system called planereus that automatically gen-

erates hierarchies of abstract operators and objects. The system constructs operator

hierarchies by examining the operators that share common e�ects and forming new

abstract operators that contain only the shared preconditions. Similarly, object hier-

archies are formed by adding a new abstract object type when two operators perform

the same operations on di�erent objects. The operator and object hierarchies are then

used to construct abstract macros by generalizing a particular plan as far as possi-

ble without losing the dependency structure of the plan. The resulting macros are

then added to the operator hierarchy as new abstract operators which can be used to

solve analogous problems in the future. The abstract operators, objects, and macros

are then used for least-commitment hierarchical problem solving. planereus di�ers

from alpine in at least two important ways. First, planereus generates operator

and object hierarchies and macro operators, while alpine forms abstract problem

spaces. Second, planereus forms abstract operators by ignoring the di�erences be-

tween operators without regard to the di�culty of achieving those di�erences, while

alpine drops conditions based on an interaction and dependency analysis of the

entire problem space.

absolver [Mostow and Prieditis, 1989] employs a set of abstraction transforma-

tions to create abstractions of a problem. The resulting abstract models are then

tested to see if they provide useful abstractions for use in an admissible search proce-

dure [Pearl, 1984, Kibler, 1985]. The reduced or relaxed models are used to compute

lower bounds and check solvability. The abstraction transformations include dropping

preconditions, dropping goals, and dropping predicates from the problem space. The

abstractions are selected using a generate-and-test procedure. Since alpine employs

a more principled approach in deciding which conditions to ignore, it is more likely to

�nd useful abstractions and could be used to select the abstractions for absolver.

However, the set of abstractions that could be generated by alpine may be more

restrictive than needed for producing admissible search heuristics.

Hansson and Mayer [1989] use relaxed models to �nd intermediate subgoals to

solve problems, such as the eight puzzle. They describe a system that drops conditions

of the operators at random and the resulting relaxed models are then used to create

intermediate subgoals. These subgoals are then used to simplify the original problem

by searching to achieve each of the intermediate subgoals. Assuming that the abstract

plan generated legal intermediate states, this approach reduces the search by replacing

the original problem with a number of smaller ones. In contrast, alpine provides a

more principled approach for determining which conditions should be dropped from

a problem space, but alpine does not �nd a useful abstraction of the eight puzzle.
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6.2.2 Aggregations

An alternative to constructing abstractions for problem solving is to construct aggre-

gations. An aggregation is formed by combining the primitive elements of a problem

space into larger elements. For example, sequences of operators can be combined to

form macro operators and objects can be combined into aggregate objects. Aggrega-

tions provide a di�erent type of abstraction that could be combined with the type of

abstractions produced by alpine.

A number of systems have explored the formation of macro operators for problem

solving [Fikes et al., 1972, Korf, 1985b, Minton, 1985, Laird et al., 1986, Shell and

Carbonell, 1989, Iba, 1989, Riddle, 1990, Guvenir and Ernst, 1990]. A macro operator

is constructed by combining frequently used sequences of operators into a single op-

erator. In most systems, these macro operators are then added to the original space.

Adding macros to the original problem space can reduce the solution depth, but it

has the side-e�ect of increasing the branching factor, which can reduce the overall

performance [Minton, 1985].

There are also systems that construct aggregate objects for problem solving. The

idea is to reduce the complexity of problem solving by reasoning about larger-grained

objects. Benjamin et al. [1990] present an approach to constructing aggregate objects

by identifying equivalence classes over certain features in the state space. The ap-

proach is applied to the Tower of Hanoi puzzle to combine disks into macro objects.

For example, the three-disk problem can be transformed into the two-disk problem

by combining the two smallest disks into a single aggregate disk. This aggregation is

equivalent to the abstraction of the Tower of Hanoi described in Section 3.4, but it is

generated by a very di�erent means.

There has also been work on automatically generating aggregations for chess. One

system, called chunker [Campbell, 1988], groups pawn con�gurations into chunks

and then plans in the abstract space by reasoning about the interactions between

pawn chunks. Another system, called place [Flann, 1989], forms aggregate objects,

operators, and goals using an explanation-based generalization approach.

6.2.3 Problem Reductions

In many systems, abstraction spaces are used to �nd an abstract solution, which can

then be used to divide a problem into a number of subproblems. Problem reduction

is a related technique, where a problem is replaced by a number of easier to solve

subproblems [Amarel, 1968].

Riddle [1990] developed a system that automates this type of problem reformu-

lation by analyzing example solutions and identifying the \critical" subgoals of a

problem, which correspond to the most constrained subgoals. This approach success-
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fully automates some of the reformulations of the Missionaries and Cannibals problem

that were �rst described by Amarel [1968].

Ruby and Kibler [Ruby and Kibler, 1989] developed a system called SteppingStone

that also learns sequences of subgoals. SteppingStone employs the learned subgoal

sequences only when the basic means-ends analysis problem solver fails to �nd a

solution that does not involve undoing a previously achieved goal. If there are no

appropriate subgoals stored in memory, SteppingStone employs a brute-force search

for a solution and uses the solution to learn a new sequence of subgoals.

Both of these systems learn sequences of subproblems through experience and

then apply them to future problem solving episodes. Although the use of problem

reductions avoids the search for an abstract solution, each problem might require

a di�erent set of problem reductions. In fact, hierarchical problem solving can be

viewed as a dynamic method for generating problem reductions.

6.2.4 Goal Ordering

There has been a variety of work on ordering goals for problem solving. This section

reviews only the work that employs techniques for goal ordering that are related to

the abstraction generation techniques described in this thesis.

gps [Ernst and Newell, 1969] is a means-ends analysis problem solver, which em-

ploys a table of di�erences to select relevant operators and thus focus the search. The

problem solving proceeds by attempting to reduce the di�erences between the initial

state and goal. The problem of �nding good orderings of the di�erences has been

extensively explored in gps [Eavarone, 1969, Goldstein, 1978, Ernst and Goldstein,

1982]. The criterion for ordering the di�erences is to attempt to �nd an ordering such

that achieving one di�erence will not a�ect a di�erence reduced by operators selected

earlier in the ordering. This is related to the analysis performed by alpine, except

the ordering of di�erences in gps is based only on the e�ects of operators, while the

construction of abstraction hierarchies in alpine is based on analysis of both the

e�ects and preconditions of the operators. The constraints on a good di�erence or-

dering in gps are necessary, but not su�cient for the ordered monotonicity property.

For example, in the Tower of Hanoi the techniques for producing good di�erence

orders for gps is only able to identify the positions of the di�erent sized disks as

good di�erences, but cannot produce a useful ordering of the disks. [Eavarone, 1969]

presents a program that produces 24 possible di�erence orderings for the four-disk

problem without any preferences among them. In contrast, alpine produces a single

hierarchy for the four-disk problem, which orders the disks from largest to smallest.

Irani and Cheng [Irani and Cheng, 1987, Cheng and Irani, 1989] present an ap-

proach to both ordering goals and augmenting the goals with additional information.

The goal orderings are based on necessary interactions determined statically from the
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operator de�nitions. For each problem the goal orderings are determined by back-

propagating the goals through the operators to determine which of the other goals

must already hold to apply the relevant operators. The goal conditions are �rst aug-

mented with additional conditions that must also hold when the goal conditions are

achieved. The augmented and ordered goals are then used in an admissible heuristic

evaluation function. The augmentation of the goals is similar to the goal augmenta-

tion performed in alpine (Section 4.4.3), but the approach to ordering the goals is

much more similar to the analysis in pablo [Christensen, 1990]. In addition, the use

of the goal orderings is more similar to the way abstractions are used in absolver

[Mostow and Prieditis, 1989].

Etzioni [Etzioni, 1990] developed a system called static, which statically ana-

lyzes the problem space de�nition to identify potential interactions. Based on these

interactions, static generates a set of search control rules for prodigy to guide the

problem solving. The analysis is done by proving that a particular condition will nec-

essarily interact with another condition and then constructing a control rule to avoid

such an interaction. This analysis di�ers from the analysis performed by alpine,

since the control rules are based on necessary interactions, while the abstractions are

based on possible interactions. Also, the control rules are used to guide the search in

the original space, while the abstractions are used for hierarchical problem solving.

6.3 Properties of Abstractions

Banerji and Ernst [1977a, 1977b] compared three similar problem solvers, gps [Ernst,

1969], Planning gps [Newell and Simon, 1972], and abstrips [Sacerdoti, 1974]. They

developed a formal model of these systems that makes some additional assumptions

not actually present in the three problem solvers. It is interesting to note that the

additional assumptions correspond to enforcing the ordered monotonicity property. In

the case of gps, this means that after a given di�erence is solved, the problem solver

is prevented from reintroducing that di�erence. In the case of abstrips, states are

abstracted in the same way as the preconditions of operators, and when solving a

problem at criticality level i, the problem solver rejects any problem with criticality

level greater than i.

Using the formal models of these problem solvers, Banerji and Ernst then showed

that all three of these systems can solve the same class of problems { those that are

well-strati�ed. A well-strati�ed problem is one that, for a given abstraction hierarchy,

can be divided up into subproblems and solved strictly in the order imposed by the

hierarchy. They go on to show that if a problem is well-strati�ed, then it has a totally

ordered solution [Ernst, 1969], which requires that once a di�erence is reduced it need

not be reintroduced to solve the problem. Ernst [1969] showed that the combination of
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a good di�erence ordering and the existence of a totally ordered solution are su�cient

for gps to solve a problem. Since the constraints on a good di�erence ordering are

subsumed by the constraints on the ordered monotonicity property (Section 6.2.4), it

follows that the ordered monotonicity and the existence of a totally ordered solution

are su�cient for Hierarchical prodigy to solve a problem. This is not surprising since

the restrictions on a problem that are needed to guarantee completeness (Section 3.2)

are equivalent to requiring that a problem is well-strati�ed.

In Korf's work on generating macros [Korf, 1985b], he identi�ed a property called

serial decomposability, which is su�cient to guarantee that a set of macros can serialize

a problem. A problem is said to be serializable if there exists an ordering among the

goals, such that once a goal is satis�ed, it need never be violated in order to satisfy the

remaining goals. A problem space is serially decomposable if there exists an ordering

of the operators such that the e�ect of each operator only depends on the state

variables (e.g., location of a tile in the eight puzzle) that precede it in the ordering.

If a problem space is serially decomposable, then there exists a set of macros that

can make any problem serializable. Serializability is a property of goals, while the

ordered monotonicity property is a property of an abstraction hierarchy. However,

serializability is related to ordered monotonicity in that if a set of goals is serializable,

then there exists a corresponding ordered monotonic abstraction hierarchy. But the

ordered monotonicity is weaker than serializability since the converse does not hold.

The ordered monotonicity property does not guarantee that once a goal is satis�ed,

it need never be violated. It only guarantees that once a goal is satis�ed at one level,

it will not be violated while re�ning a plan at a lower level, but it may be necessary

to backtrack to the more abstract level if it cannot be re�ned.
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Chapter 7

Conclusion

This thesis identi�ed several useful properties of abstraction hierarchies, presented

a completely automated approach to generating abstractions based on these proper-

ties, and described how the abstractions can be used for problem solving. The thesis

showed analytically that under an ideal decomposition of a problem the use of hierar-

chical problem solving can produce an exponential-to-linear reduction in search, and

it provided comprehensive empirical results which demonstrate that the generated

abstractions produce better solutions with signi�cantly less search in several di�erent

problem domains.

While the techniques are e�ective in generating useful abstractions for a variety

of problem solving domains, they are not without their limitations. This chapter

describes some of the limitations of both the theory and approach for generating

abstractions, presents some ideas about how to produce better abstraction hierarchies

automatically, and describes how the abstractions could be used for learning as well as

planning. The chapter is divided into four sections. The �rst three sections describe

the limitations and extensions of the theory, the generation of better abstractions, and

the use of abstraction hierarchies in problem solving and learning. The last section

concludes with a discussion of where this thesis leaves o� and what remains to be

done.

7.1 Theory of Abstraction

The theory presents two properties of abstraction hierarchies that relate a problem

space to the possible abstractions of that problem space. The �rst property, mono-

tonicity, captures the idea that the structure of the abstract solution should be pre-

served as it is re�ned. The second property, ordered monotonicity, is a restriction of

the �rst and requires not only that the structure is preserved, but also that the space

123
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is partitioned and ordered such that achieving the literals at one level does not inter-

act with the literals in a more abstract level. The algorithm presented in this thesis

generates abstraction hierarchies that satisfy the ordered monotonicity property.

While the ordered monotonicity property is quite general and captures a variety

of interesting abstractions, it overconstrains the possible abstractions in some cases

and underconstrains them in others. The property overconstrains the abstractions

in the sense that there are useful abstractions that it does not capture. In general,

the notion of preserving the structure of the abstract plan is important, but there

are exceptions where a useful abstract plan may require violating the structure of the

abstract plan in a constrained or localized fashion, where a condition is temporarily

violated to achieve some other condition and then reachieved.

The ordered monotonicity property also underconstrains the possible abstraction

hierarchies in that an abstraction hierarchy is not necessarily useful if it has this

property. Because an abstract space is a simpli�cation of the original problem space

there may exist plans in that abstract space that are not realizable, which means

that there is no way to re�ne the abstract plan to a plan in the original problem

space. If the ratio of unrealizable to realizable abstract plans is too large, the use of

a particular abstract space could prove to be more expensive than no abstraction at

all. The problem arises because the properties on which the abstractions are based

do not take into account the di�culty of achieving the conditions that are ignored.

They only consider whether the achievement of the conditions can be delayed without

interfering with those parts of the problem that have already been solved.

The properties described in the thesis provide only an initial approximation of

what makes a good abstraction, although a formalizable and tractable approxima-

tion. A more comprehensive theory would need to deal with the problems mentioned

above. To address the problem of overconstraining the hierarchies, the theory could

be weakened such that an abstraction hierarchy does not need to be strictly mono-

tonic, but nearly monotonic, where those conditions that could be easily reachieved

are allowed to be undone when necessary to achieve some other conditions. To address

the problem of underconstraining the hierarchies, the theory would need to consider

not only whether the ordered monotonicity property could be ensured, but also the

di�culty of achieving those conditions that are ignored. This could be dealt with

empirically by maintaining statistics on the costs and bene�ts of each abstraction

and eliminating those abstractions whose cost outweigh their bene�t.

7.2 Generating Abstractions

alpine generates abstraction hierarchies that have the ordered monotonicity prop-

erty. The algorithm used in alpine guarantees that any abstraction it �nds will have
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this property, but it does not guarantee that all ordered monotonic abstractions will

be found. If alpine cannot �nd an abstraction then the directed graph of literals will

collapse into a single strongly connected component. There are two limitations of the

current approach that can prevent alpine from generating an abstraction for a given

problem space and problem. First, the representation of the operators may limit the

granularity of the abstractions. Second, the algorithm may generate constraints that

are unnecessary to ensure the ordered monotonicity property.

7.2.1 Representing the Abstraction Hierarchies

The granularity of the abstraction hierarchies is determined by the language used to

express the preconditions and e�ects of the operators. If an operator uses a literal

with variables to express a precondition or e�ect, then alpine cannot place two

instances of this literal at di�erent levels in the hierarchy. The reason for this is that

the algorithm determines the interactions between literals based on the preconditions

and e�ects of the operators.

Consider how di�erent representations of the Tower of Hanoi problem impose

di�erent constraints on the abstraction language. The completely instantiated repre-

sentation, shown in Table 2.2, does not impose any constraints on the abstraction lan-

guage (although the potential interactions of the preconditions and e�ects of operators

still impose some constraints) because the operators are de�ned by fully-instantiated

literals. In contrast, the representation consisting of one operator for moving each

disk, shown in Table 2.1 in Chapter 2, constrains the literals for each di�erent size

disk to be in the same abstraction level. For example, (on diskC peg1), (on diskC

peg2), and (on diskC peg3) are forced into the same abstraction level regardless

of the interactions between these literals. This is because the operators have precon-

ditions and e�ects such as (on diskC peg), where peg is a variable, which prevents

the system from distinguishing between di�erent instances of the same literal. In

this particular case, alpine would generate the same abstraction hierarchy for either

representation.

Another possible representation of the Tower of Hanoi consists of a single operator

for moving any disk. This operator is shown in Table 7.1. In the other two represen-

tations the conditions referring to di�erent size disks were explicitly represented, so

it was clear which disks would interact with which other disks. In this representation

there is only the condition (on disk peg), so the potential interactions are not made

explicit in the operator representation. Instead the interactions of the di�erent condi-

tions are implicitly determined by the smaller relation. That is, moving a particular

disk will only interact with smaller disks, but this is determined when the operator is

matched during planning. Thus, the algorithm for generating abstractions does not

�nd any abstractions given this representation of the problem.
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(Move Disk

(preconds

(and (is-peg source-peg)

(is-peg dest-peg)

(not (equal source-peg dest-peg))

(on disk source-peg)

(forall (smaller-disk)(smaller smaller-disk disk)

(and (not (on smaller-disk source-peg))

(not (on smaller-disk dest-peg))))))

(effects ((del (on disk source-peg))

(add (on disk dest-peg)))))

Table 7.1: Single Operator Version of the Tower of Hanoi

One way to avoid this problem is to partially evaluate the operators in order to

determine the precise interactions for any given literal in a domain. Thus, instead

of grouping literals together based on the granularity of the literals in the operators,

each operator is partially evaluated to determine both the potential e�ects and poten-

tial preconditions when the operator is used to achieve various possible instantiated

literals. To perform the partial evaluation the static conditions in the initial state

are used to generate the bindings for the operator preconditions. For the single-disk

Tower of Hanoi representation the smaller, equal, and is-peg relations would be

used to partially evaluate the operator.

For example, consider how partial evaluation could be used to determine the

potential interactions when the operator is used to achieve the literal (on diskB

peg3). Since this condition matches (on disk dest-peg) in the e�ects list, disk would

be bound to diskB and dest-peg would be bound to peg3. Next, the static relations

are used to determine the bindings for the other variables. The variable source-peg

could be bound to peg1 or peg2, and the variable smaller-disk could only be bound

to diskA. Given the variable bindings it is then possible to determine the actual

preconditions and e�ects when the operator is used to achieve a particular literal.

Once the potential interactions are determined for each literal in the domain, the

basic algorithm for generating abstractions can be used to construct the abstraction

hierarchy. The di�erence is that instead of determining the constraints simply by

examining the operators, the constraints are determined by partially evaluating the

operators.

This additional capability has been implemented in an extended version of alpine

and it allows the system to produce �ner-grained abstractions in many domains. For
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example, in the process planning and scheduling domain, the system can produce

abstraction spaces that distinguish between the various parts. Thus, the literals

(shape a cylindrical) and (shape b cylindrical) could be placed at separate

levels in the abstraction hierarchy. This allows the process planning for one part to

be done separately from the process planning for another part because the di�erent

parts will not interact until they are placed in the schedule and the scheduling is

done last. In the robot planning domain, partial evaluation allows alpine to place

the literals involving di�erent doors at separate abstraction levels. Thus, some doors

can be treated as details while other doors are dealt with in more abstract spaces.

Such a discrimination, for instance, is useful if the status of only some of the doors are

mentioned in the goal state. The partial evaluation also allows alpine to generate

abstractions for the single-operator version of the Tower of Hanoi.

The di�culty with abstracting instances of literals is that the complexity of the

algorithm is dependent on the number of literal classes and this extension signi�cantly

increases the number of literal classes. One way to reduce the number of literal classes

is to expand only some of the argument types in a domain. For example, expanding

only the parts in the scheduling domains would allow di�erent parts to be placed on

separate levels. Another approach to control the number of literals is to determine

which literals will actually be used in solving a particular problem and only reason

about those literals.

7.2.2 Constraints on the Abstraction Hierarchy

The most di�cult problem of generating the abstraction hierarchies is �nding a set

of constraints that are su�cient to guarantee the ordered monotonicity problem,

but do not overconstrain the possible abstraction hierarchies. alpine attempts to

identify only those interactions that could actually occur in solving the given problem.

However, since it forms the abstractions by statically analyzing the operators it must

make assumptions about which operators could be used and in what context. Thus,

the abstraction hierarchies are based on the possible interactions, which are a superset

of the actual interactions. As a result it will in many cases overconstrain the hierarchy,

thus reducing the granularity of the possible abstraction hierarchies.

The \blocks world" [Nilsson, 1980] is a domain in which alpine is unable to

generate abstractions, although there are ordered monotonic abstractions for some

problems. For example, given the problem of building a stack of blocks with A on B, B

on C, and C on the table, an ordered monotonic abstraction hierarchy would deal with

the conditions on each block in the opposite order. For this example, the abstraction

hierarchy would contain three levels, with C in the most abstract level, B and C on

the next level, and all three blocks in the �nal level. Thus, the problem would be

solved by �rst getting the bottom block on the table, next stacking the block above
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that one, �nally placing the last block on the top of the stack. This abstraction

hierarchy has the ordered monotonicity property because as the plan is re�ned it will

never be necessary to undo any of the conditions involving a block in a more abstract

space. However, alpine cannot generate this abstraction because simply analyzing

the possible interactions of the operators, it appears that every condition will interact

with all other conditions.

In order to �nd more subtle abstractions, such as the one in the blocks world,

the system needs a deeper understanding of which conditions will actually interact

with which other conditions in practice. One approach to solving this problem is to

use explanation-based learning to acquire the necessary constraints by example. The

system could begin with no constraints on the abstraction hierarchy and then learn a

set of constraints through experience. The problem solver can easily detect a violation

of the ordered monotonicity property, which occurs anytime an operator is applied

at one level that changes a condition in a more abstract level. When a violation is

detected the problem solver halts and invokes the ebl system to explain why the

violation occurred. From the proof of the violation the system constructs a rule

that constrains some literal to be placed before some other literal in the abstraction

hierarchy whenever the conditions arise under which the violation occurs. The rules

learned by the ebl system would then be used to constrain the selection of the

abstraction hierarchy for the given problem as well as future problems in the same

domain. The resulting constraints on the abstraction hierarchy would be necessary,

but not su�cient to guarantee the ordered monotonicity property.

There are two potential di�culties with this approach. First, despite the gener-

alization of the constraint rules, the number of rules that would need to be learned

to cover a domain could be quite large. Thus, it could be expensive both to learn

the rules and to apply the rules to select an abstraction hierarchy for a particular

problem. Second, the number of levels in the resulting abstraction hierarchy could

be large, which would make it expensive to use the hierarchies for problem solving.

7.3 Using Abstractions

This thesis presented one approach to using abstractions for hierarchical problem

solving. While this particular approach produces signi�cant reductions in search, it

is by no means the only possible use of the abstractions. Since the abstractions are

abstract versions of the original problem space, they are not speci�c to the partic-

ular problem-solving method. The abstract problem spaces could be used for other

approaches to hierarchical problem solving or exploited in other ways. For example,

operators and objects that are indistinguishable in an abstract space can be merged

to simplify a problem space. Also, the abstract problem spaces could be combined
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with other learning methods. This section outlines how these abstractions could be

used for other types of problem solving, describes how operators and objects can be

combined, and sketches how the abstract problem spaces could be used for learning.

7.3.1 Problem Solving

alpine takes an initial problem space and forms abstract problem spaces that could

then be used for a variety of problem-solving techniques. This section describe how the

abstractions generated by alpine could be used for both least-commitment problem

solving and forward-chaining problem solving.

Least-Commmitment Hierarchical Problem Solving

The model of hierarchical problem solving described in Chapter 3 is based on a

state-space problem solver. An alternative is to use a least-commitment approach to

problem solving [Sacerdoti, 1977, Chapman, 1987], which searches through the space

of plan re�nements instead of searching through the state space. This approach

is referred to as a least-commitment approach because ordering commitments are

delayed as long as possible.

The use of the abstraction hierarchies generated by alpine would be a simple

extension to a least-commitment problem solver. First, a problem would be solved

in the most abstract space to produce a partially ordered plan. The plan would then

be re�ned in successive abstraction spaces by considering the conditions introduced

at that level and adding the necessary plan steps and ordering constraints to produce

a valid plan. The use of the abstractions provides additional information on which

parts of the problem to solve �rst, but the basic problem-solving method remains

unchanged. The ordered monotonicity property provides the same advantages in

this approach as it does in the state-space approach. That is, the abstract solution

produced at each level provides the outline for the �nal solution and would not be

changed in the re�nement process, thus constraining the search for a re�nement at

each level of abstraction.

Forward-Chaining Problem Solving

The problem solving method presented in this thesis assumed that the goals intro-

duced at each abstraction level will be achieved by chaining backward from the goal.

However the same abstractions could also be used in a forward-chaining problem

solver, such as soar [Laird et al., 1987]. The only problem that arises with a forward-

chaining system is that operators from more abstract levels might be applied at levels

in which they should not be considered and potentially violate the ordered mono-

tonicity property. However, this problem can be avoided simply by not allowing any
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operator that occurs at a higher abstraction level to be inserted to achieve goals

that arise in the re�nement process. Because a backward-chaining problem solver

is more goal directed and the ordered monotonicity property guarantees that the

more abstract goals never arise at the lower levels, this problem never arises in a

backward-chaining system.

Consider an example from the Tower of Hanoi. In the abstract space a plan is

constructed for moving the largest disk. At the next level this plan is re�ned to also

achieve the conditions involving the medium-sized disk. Using a backward-chaining

system, none of the operators for moving the large disk would even be considered

since the ordered monotonicity property guarantees that goals involving the large

disk will not arise at this level. However, with a forward-chaining system, an oper-

ator for moving a large disk could be inserted simply because the preconditions are

met. However, if the forward-chaining problem solver prevents any of the operators

from the more abstract space from being applied, then the problem solver would only

consider operators for moving the medium-sized disk. Thus, a forward-chaining sys-

tem can use the abstraction spaces produced by alpine and still preserve the ordered

monotonicity property.

7.3.2 Operator and Object Hierarchies

An advantage of forming reduced models of a problem space is that when details of a

problem space are removed, it may be possible to combine operators and objects to

form operator and object hierarchies. Each abstract operator or object represents an

equivalence class whose members are distinguishable only at lower levels of abstrac-

tion. Two operators may di�er by some detail in the original problem space, but in

an abstract space, the two may be indistinguishable. If so, they can then be combined

into a single abstract operator that will be re�ned into a concrete operator at the level

in which the two are distinguishable. Similarly, objects may become indistinguishable

in an abstract space, and they can be combined into an abstract object that can then

be treated as a resource. The use of both operator and object hierarchies can reduce

the branching factor in the abstract space since there will be fewer operators and/or

fewer instantiations of operators to consider during problem solving.

Consider an example in the scheduling domain, where there are two machines that

can be used to make a part cylindrical, the lathe and the milling machine. While

these operators di�er in some of their preconditions and e�ects, if these di�erences

are ignored in an abstract space, then the commitment to a particular machine can

be delayed. In the abstract problem space the two operators would be replaced by

a single abstract operator. Thus a plan produced in the abstract space would only

contain this abstract operator. When this plan is re�ned into a level where the lathe

and mill operators di�er, the abstract operator would then be replaced by one of the
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more speci�c operators. At that time there may be additional knowledge to select

one machine over the other (for instance, the milling machine may already be in use).

This abstract operator could be used in the example described in Section 2.3.

In that example, the problem was to make a part cylindrical and polished. The

abstraction hierarchy formed for this problem deals with the cylindrical goal �rst

and then the polished goal. If the mill and lathe operators are not combined into a

single abstract operator, the problem solver will be forced to arbitrarily select one

of the speci�c operators in the abstract space and it may select one that cannot be

re�ned. In this particular example if the mill operator is used the problem solver

will �nd that the plan cannot be re�ned because the part will be too hot to polish

and it will eventually be forced to backtrack to the abstract space and select the

lathe operator. With a single abstract operator for making a part cylindrical, the

system would create the abstract plan to make the part cylindrical, then when the

plan is re�ned the abstract operation would be re�ned into either the lathe or mill

operation. By delaying the commitment to the more speci�c operator, the choice

point will be moved closer to the potential interaction, which will reduce or eliminate

the backtracking. (This is the same idea used in least-commitment problem solver,

where ordering commitments are delayed as long as possible.)

Object hierarchies can be used in an analogous way. If two or more objects are

indistinguishable in an abstract space, they can be treated as a resource. Thus,

instead of committing to a speci�c object, the abstract plan can simply refer to

the resource. Then when the plan is re�ned to the level in which the objects are

distinguishable, the resource would be replaced by one of the particular objects. The

advantages of object hierarchies are similar to operator hierarchies in that they delay

committing to a particular choice as long as possible and can thus help reduce or

avoid backtracking.

The hierarchical version of prodigy could easily be extended to handle operator

hierarchies. This would simply involve combining two or more operators that are

indistinguishable in an abstract space into a single abstract operator and then replac-

ing the abstract operator with a concrete one as the abstract plan is re�ned. The

use of object hierarchies is a bit more complex because objects are often a limited

resource. To exploit object hierarchies requires the capability of reasoning about re-

sources. Such a capability is provided in sipe, as described in [Wilkins, 1988], but is

not yet available in prodigy.

7.3.3 Using Abstract Problem Spaces for Learning

Since the abstractions of a problem space are abstract problem spaces, the abstrac-

tions can be used for learning as well as problem solving. This section sketches ap-

proaches to combining the abstractions generated by alpine with both explanation-
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based learning and learning by analogy.1

Explanation-Based Learning

Explanation-based learning is used in prodigy to learn control knowledge to guide

the search [Minton, 1988a]. The control knowledge learned by ebl in prodigy pro-

vides signi�cant reductions in search. However, a di�culty with this approach is that

the examples from which the system learns often contain an abundance of unneces-

sary details. In order to learn control rules, the ebl system constructs proofs about

the success, failure, or interactions in a problem-solving example. Problems with lots

of details make this process more complex because the proofs are considerably more

complex. As a result of the details in the proofs, the ebl system may also learn

control rules that are overly speci�c. Because the rules are more speci�c, it requires

more rules to learn a su�cient set of control knowledge to solve problems e�ciently in

a given domain. The more rules in the system, the more time it will spend matching

the rules, reducing the overall bene�t of the control knowledge.

One possible approach to combining explanation-based learning and abstraction is

to apply the control rule learning within each abstraction space. This would simplify

the learning process and result in more general control rules since the proofs in an

abstract space would contain fewer details. The fewer, more general rules would be

cheaper to match and thus provide better performance.

To illustrate the synergistic e�ect of alpine and ebl, consider their integration

in the Tower of Hanoi domain. As described in Section 5.1, the use of abstraction in

the Tower of Hanoi provides a signi�cant reduction in search, but using a depth-�rst

search it still produces suboptimal solutions and requires some search. ebl can be

applied to the Tower of Hanoi to learn control rules to reduce search. For the two-disk

problem, the ebl system produces a set of control rules such that the system makes

the correct decision at each choice point and produces the optimal solution. However,

because the proofs become more complex as the problems get larger, the system does

not produce a complete set of rules for anything larger than the two-disk problem.

Combining abstraction and ebl in the Tower of Hanoi reduces the problem to one

that can be solved without search (i.e., the correct decision is made at every choice

point). The abstraction simpli�es the problem such that the only search involves

moving a disk out of the way of another disk that needs to be moved. If a disk needs

to be moved in order to move another disk, there are only two places to move the disk,

one of which is the \right" place and the other will interfere with the placement of

another disk. ebl is particularly good at recognizing this type of interaction, called a

1
alpine could also be combined with static [Etzioni, 1990], which performs static analysis of

a problem space to produce control knowledge. The integration of alpine and static would be

analogous to combining alpine with ebl.
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prerequisite violation, and learning control rules to avoid them. Thus, the ebl system

can learn a set of rules that allow the problem solving to make the correct choices at

each level in the hierarchy.

An example rule that was learned by the ebl system in an abstract problem space

is shown in Table 7.2. This rule states that if the goal is to get diskA out of the way

of moving diskB, the problem solver should move diskA someplace other than the

place where it is planning to move diskB. Otherwise, diskA will immediately need

to be moved again. While this rule is more speci�c than necessary and will require

learning a set of these rules to cover all the cases, the ebl system can learn more

general rules if the operators are parameterized.

(if (and (current-node node)

(current-goal node (noton diskA peg1))

(candidate-op node move-disk-A-peg-1-2)

(alt-on-deck node (on diskB peg2) move-disk-B-peg-1-2)

(candidate-op node op)

(not-equal move-disk-A-peg-1-2 op)))

(then (prefer operator op move-disk-A-peg-1-2))

Table 7.2: Control Rule Learned by ebl in an Abstract Space

The combination of the two techniques produces performance improvements that

neither system can achieve independently [Knoblock et al., 1991a]. In the Tower of

Hanoi the abstraction module can reduce the search from exponential-to-linear in the

solution length, but it cannot completely eliminate the search within each abstraction

level. The ebl module can learn rules for the simple Tower of Hanoi problems, but

it is unable to learn a set of rules that completely solves problems with more than

two disks. However, the combination of the two approaches can both eliminate any

search from the problem and produce the optimal solution.

Learning by Analogy

Analogy can also used to guide problem solving in prodigy [Veloso and Carbonell,

1990]. The analogy engine stores problem solving episodes in a case library and then

retrieves them to guide the search in similar problems. There are several di�culties

that arise in the use of analogy in problem solving. First, the analogy engine can get

mired down in indexing and selecting the relevant stored plans. Second, the number

of stored plans can become quite large, incurring signi�cant storage and retrieval

costs.
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Similar to combining abstraction and ebl, abstraction and analogy can be in-

tegrated by applying analogy in the abstract problem spaces. This integration will

simplify the indexing of new problems to previously solved problems since the ab-

straction spaces will separate the important aspects from the details. Since analogy

is employed in simpler abstract problem spaces, it will store a smaller set of more

general past solutions and will thus reduce the storage and retrieval costs.

Consider the integration of abstraction and analogy in the Tower of Hanoi. As

described previously, the use of abstraction partitions the problem such that each

abstraction space requires inserting the steps to move a particular disk. Analogy

would be used to store the plans for moving the disks at each level in the abstraction

hierarchy. Then, instead of searching for a solution to a subproblem, the analogy

system would retrieve a similar previously solved problem and use that to guide the

search. The integration simpli�es the indexing and retrieval since the cases will be

partitioned by the abstraction levels. Thus, the number of possible plans will be much

smaller and it will be easier to �nd one that is relevant to a given problem.

7.4 Discussion

The construction of abstract problem spaces is a type of reformulation, where the orig-

inal problem space is replaced by a more abstract one. The work presented in this

thesis takes the �rst steps towards automatically reformulating problems for problem

solving. The role of reformulation has long been recognized as central to problem

solving [Amarel, 1968, Korf, 1980, Hobbs, 1985, Subramanian and Genesereth, 1987,

Subramanian, 1989], but much of this work has focused on identifying and represent-

ing the reformulations. As described in Section 6.2, more recently has work begun to

address the problem of how to automate these processes.

The key to solving a problem is understanding the problem. Some problem solvers

forge ahead blindly hoping to stumble across a solution by focusing on one part of the

problem and when that has been achieved focusing on another part. Other problem

solvers interleave the work on the various parts of a problem but spend an excessive

amount of time delaying commitments and verifying constraints. A better approach

is to step back and understand a problem. What are the hard parts? What are the

details? How can the problem be decomposed? This thesis presented an approach to

do exactly that. It takes a problem and based on the problem reformulates the initial

problem space into a hierarchy of abstract problem spaces that can then be used to

solve the problem. This allows the problem solver to focus on the di�cult parts �rst,

decomposing the problem into simpler subproblems and gradually reintroducing the

details that were ignored.

In general, reformulating problems and solving them \intelligently" requires much
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more knowledge than is usually provided to problem solvers. When people attack a

problem they bring a vast amount of knowledge to bear on the problem. When com-

puters solve problems they are limited by inexible methods and very shallow theories

of the problem solving domains. Consider the mutilated checkerboard problem [Mc-

Carthy, 1964], where the problem is to cover a mutilated checkerboard, which has

two opposite corners removed, with a set of dominoes (each covering two squares)

or prove that the problem is impossible. In turns out that the problem is impossi-

ble since there will be two fewer squares of one color than the other color and each

domino can only cover one black and one white square. To solve this problem does

not require search in either the state space or the plan space, but search through the

space of possible problem spaces [Kaplan and Simon, 1990]. It requires changing the

problem space from one in which all possible arrangements of the dominoes on the

board are considered to one that uses the parity of the squares on the board to show

that it would be futile to even begin to arrange the dominoes.

While the particular reformulation of the mutilated checkerboard problem may

not have very general applicability, it does illustrate the approach needed to solve

more di�cult problems. That is, a problem solver should be able to take a problem

represented at some level of detail and reformulate it into a problem that captures

the \essence" of the problem. An important step in this process is determining

which conditions to focus on and which conditions to ignore. However, to build an

intelligent problem solver will require more than the ability to ignore some of the

details. It will also require the ability to reformulate a problem into a completely

di�erent representation of a problem. This thesis has achieved that �rst step of

focusing problem-solving attention on the most relevant and di�cult aspects �rst, and

then progressively reintroducing more peripheral information to construct a complete

solution to a problem.
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Appendix A

Tower of Hanoi

This section includes the prodigy code for the Tower of Hanoi and provides the

experimental results described in Chapter 5. The three representations of the Tower

of Hanoi that are described in the thesis are presented in this section. An example

problem is included for each of the three problem-space representations.

A.1 Single-Operator Representation

(MOVE-DISK

(params (<disk> <peg.from> <peg.to>))

(preconds

(and (is-peg <peg.from>)

(is-peg <peg.to>)

(not-equal <peg.from> <peg.to>)

(on <disk> <peg.from>)

(forall (<disk.sm>)(smaller <disk.sm> <disk>)

(and (~ (on <disk.sm> <peg.from>))

(~ (on <disk.sm> <peg.to>))))))

(effects ((del (on <disk> <peg.from>))

(add (on <disk> <peg.to>)))))

Goal: '(and (on diskA peg3)(on diskB peg3)(on diskC peg3))

Initial State: '((on diskA peg1)(on diskB peg1)(on diskC peg1)

(smaller diskA diskB)

(smaller diskA diskC)

(smaller diskB diskC)

(is-peg peg1)(is-peg peg2)(is-peg peg3)

(is-disk diskC)(is-disk diskB)(is-disk diskA)))
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A.2 Instantiated-Disk Representation

(MOVE-DISK-A

(params (<peg.from> <peg.to>))

(preconds

(and (on diskA <peg.from>)

(is-peg <peg.to>)

(not-equal <peg.from> <peg.to>)))

(effects ((del (on diskA <peg.from>))

(add (on diskA <peg.to>)))))

(MOVE-DISK-B

(params (<peg.from> <peg.to>))

(preconds

(and (on diskB <peg.from>)

(is-peg <peg.to>)

(not-equal <peg.from> <peg.to>)

(~ (on diskA <peg.from>))

(~ (on diskA <peg.to>))))

(effects ((del (on diskB <peg.from>))

(add (on diskB <peg.to>)))))

(MOVE-DISK-C

(params (<peg.from> <peg.to>))

(preconds

(and (on diskC <peg.from>)

(is-peg <peg.to>)

(not-equal <peg.from> <peg.to>)

(~ (on diskB <peg.from>))

(~ (on diskA <peg.from>))

(~ (on diskB <peg.to>))

(~ (on diskA <peg.to>))))

(effects ((del (on diskC <peg.from>))

(add (on diskC <peg.to>)))))

Goal: '(and (on diskA peg3)(on diskB peg3)(on diskC peg3))

Initial State: '((on diskC peg1)(on diskB peg1)(on diskA peg1)

(is-peg peg1)(is-peg peg2)(is-peg peg3))

A.3 Fully-Instantiated Representation

(MOVE-DISK-A-PEG-1-2

(preconds (on diskA peg1))

(effects ((del (on diskA peg1))

(add (on diskA peg2)))))
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(MOVE-DISK-A-PEG-2-1

(preconds (on diskA peg2))

(effects ((del (on diskA peg2))

(add (on diskA peg1)))))

(MOVE-DISK-A-PEG-1-3

(preconds (on diskA peg1))

(effects ((del (on diskA peg1))

(add (on diskA peg3)))))

(MOVE-DISK-A-PEG-3-1

(preconds (on diskA peg3))

(effects ((del (on diskA peg3))

(add (on diskA peg1)))))

(MOVE-DISK-A-PEG-2-3

(preconds (on diskA peg2))

(effects ((del (on diskA peg2))

(add (on diskA peg3)))))

(MOVE-DISK-A-PEG-3-2

(preconds (on diskA peg3))

(effects ((del (on diskA peg3))

(add (on diskA peg2)))))

(MOVE-DISK-B-PEG-1-2

(preconds

(and (on diskB peg1)

(~ (on diskA peg1))

(~ (on diskA peg2))))

(effects ((del (on diskB peg1))

(add (on diskB peg2)))))

(MOVE-DISK-B-PEG-2-1

(preconds

(and (on diskB peg2)

(~ (on diskA peg2))

(~ (on diskA peg1))))

(effects ((del (on diskB peg2))

(add (on diskB peg1)))))

(MOVE-DISK-B-PEG-1-3

(preconds

(and (on diskB peg1)

(~ (on diskA peg1))

(~ (on diskA peg3))))

(effects ((del (on diskB peg1))

(add (on diskB peg3)))))

(MOVE-DISK-B-PEG-3-1

(preconds

(and (on diskB peg3)

(~ (on diskA peg3))

(~ (on diskA peg1))))

(effects ((del (on diskB peg3))

(add (on diskB peg1)))))

(MOVE-DISK-B-PEG-2-3

(preconds

(and (on diskB peg2)

(~ (on diskA peg2))

(~ (on diskA peg3))))

(effects ((del (on diskB peg2))

(add (on diskB peg3)))))

(MOVE-DISK-B-PEG-3-2

(preconds

(and (on diskB peg3)

(~ (on diskA peg3))

(~ (on diskA peg2))))

(effects ((del (on diskB peg3))

(add (on diskB peg2)))))

(MOVE-DISK-C-PEG-1-2

(preconds

(and (on diskC peg1)

(~ (on diskB peg1))

(~ (on diskA peg1))

(~ (on diskB peg2))

(~ (on diskA peg2))))

(effects ((del (on diskC peg1))

(add (on diskC peg2)))))

(MOVE-DISK-C-PEG-2-1

(preconds

(and (on diskC peg2)

(~ (on diskB peg2))

(~ (on diskA peg2))

(~ (on diskB peg1))

(~ (on diskA peg1))))

(effects ((del (on diskC peg2))

(add (on diskC peg1)))))
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(MOVE-DISK-C-PEG-1-3

(preconds

(and (on diskC peg1)

(~ (on diskB peg1))

(~ (on diskA peg1))

(~ (on diskB peg3))

(~ (on diskA peg3))))

(effects ((del (on diskC peg1))

(add (on diskC peg3)))))

(MOVE-DISK-C-PEG-3-1

(preconds

(and (on diskC peg3)

(~ (on diskB peg3))

(~ (on diskA peg3))

(~ (on diskB peg1))

(~ (on diskA peg1))))

(effects ((del (on diskC peg3))

(add (on diskC peg1)))))

(MOVE-DISK-C-PEG-2-3

(preconds

(and (on diskC peg2)

(~ (on diskB peg2))

(~ (on diskA peg2))

(~ (on diskB peg3))

(~ (on diskA peg3))))

(effects ((del (on diskC peg2))

(add (on diskC peg3)))))

(MOVE-DISK-C-PEG-3-2

(preconds

(and (on diskC peg3)

(~ (on diskB peg3))

(~ (on diskA peg3))

(~ (on diskB peg2))

(~ (on diskA peg2))))

(effects ((del (on diskC peg3))

(add (on diskC peg2)))))

Goal: (and (on diskA peg3)

(on diskB peg3)

(on diskC peg3))

Initial State: ((on diskC peg1)

(on diskB peg1)

(on diskA peg1))
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A.4 Experimental Results

The Tower of Hanoi experiments were run in Allegro Common Lisp on a SparcSta-

tion 1+ with 12 megabytes of memory. These experiments used the single-operator

representation of the Tower of Hanoi, but since the problem spaces are equivalent,

the numbers would be roughly the same for any of the representations.

The tables below compare prodigy both with and without using the abstractions

produced by alpine. The entries in the table are de�ned as follows:

Disks The number of disks in the problem.

Time Total CPU time used in solving the problem. A 600 CPU second time bound

was imposed on all problems.

Nodes Total number of nodes searched in solving the problem.

Len Length of the solution found. Zero if no solution exists.

ACT Time required to create the abstraction hierarchy. This time is also included

in the total CPU time for ALPINE.

AbNodes Nodes searched at each level in the hierarchy. Ordered from more abstract

to less abstract levels.

AbLen Solution length found at each level in the hierarchy. Ordered from more

abstract to less abstract levels.

Depth-First Iterative-Deepening Search

Prodigy Prodigy + Alpine

Disks Time Nodes Len Time Nodes Len ACT AbNodes AbLen

1 0.1 4 1 0.2 4 1 0.1 4 1

2 1.8 122 3 0.5 12 3 0.2 4,8 1,2

3 47.0 2790 7 0.8 24 7 0.3 4,8,12 1,2,4

4 600.0 | | 2.1 52 15 0.5 4,8,12,28 1,2,4,8

5 600.0 | | 3.8 96 31 0.8 4,8,12,28,44 1,2,4,8,16

6 600.0 | | 8.4 204 63 1.3 4,8,12,28,44,108 1,2,4,8,16,32

7 600.0 | | 16.4 376 127 1.6 4,8,12,28,44,108,172 1,2,4,8,16,32,64
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Depth-First Search

Prodigy Prodigy + Alpine

Disks TimeNodes Len Time Nodes Len ACT AbNodes AbLen

1 0.0 4 1 0.1 4 1 0.1 4 1

2 0.4 15 6 0.5 12 4 0.2 4,8 1,3

3 1.1 49 21 1.1 34 13 0.3 4,8,22 1,3,9

4 4.2 147 64 3.5 96 40 0.5 4,8,22,62 1,3,9,27

5 13.0 424 185 10.2 280 121 0.8 4,8,22,62,184 1,3,9,27,81

6 51.3 1202 524 36.1 828 364 1.3 4,8,22,62,184,548 1,3,9,27,81,243

7 233.1 3395 1477 168.2 2470 1093 1.6 4,8,22,62,184,548,1642 1,3,9,27,81,243,729

Depth-First Search on a Variant of the Tower of Hanoi

Prodigy Prodigy + Alpine

Disks Time Nodes Len Time Nodes Len ACT AbNodes AbLen

1 0.1 4 1 0.3 4 1 0.1 4 1

2 1.4 41 3 0.4 12 3 0.2 4,8 1,2

3 1.6 52 7 1.1 24 7 0.3 4,8,12 1,2,4

4 3.6 116 19 2.7 52 15 0.5 4,8,12,28 1,2,4,8

5 9.1 254 51 5.2 96 31 0.8 4,8,12,28,44 1,2,4,8,16

6 27.5 695 131 10.7 204 63 1.3 4,8,12,28,44,108 1,2,4,8,16,32

7 92.4 1935 323 22.0 376 127 1.6 4,8,12,28,44,108,172 1,2,4,8,16,32,64

This variant of the Tower of Hanoi disallows moving the same disk twice in a row.

This is implemented using the following prodigy control rule:

(DO-NOT-MOVE-TWICE

(lhs (and (current-node <node>)

(current-op <node> MOVE-DISK)

(candidate-bindings <node> (<disk> <peg1> <peg2>))

(last-disk-moved <node> <last-disk>)

(is-equal <last-disk> <disk>)))

(rhs (reject bindings (<disk> <peg1> <peg2>))))
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Extended STRIPS Domain

The robot planning domain described in this section is equivalent to the domain

described by Minton [1988a], but there are three minor syntactic changes that were

made to improve the abstractions produced by alpine. These changes are as follows:

� The original domain treated both boxes and keys simply as objects and made

no explicit distinction between them. This domain uses a type hierarchy to

distinguish between them, but since the operator language is restricted to refer

to conditions on the leaves of the type hierarchy (Section 4.4.1), each operator

for manipulating objects is divided into two operators, one for boxes and one

for keys.

� The original domain used the static conditions dr-to-room and connects to

express the relationships between the rooms and doors. The revised version

simply uses connects uniformly. This is done to simplify the analysis of the

relationships between variables in di�erent operators.

� There were also some subtle precondition ordering problems that prevented the

problem solver from �nding solutions to some problems that have solutions. To

avoid these problems, preconditions that require holding an object were moved

after the preconditions that require getting the same object into a particular

room, and preconditions that require arm-empty were moved after door-open

preconditions.

B.1 Problem Space De�nition

143
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(PICKUP-BOX

(params (<box.o1>))

(preconds

(and (arm-empty)

(next-to robot <box.o1>)

(carriable <box.o1>)))

(effects

((del (arm-empty))

(del (next-to <box.o1> <box.*30>))

(del (next-to <box.o1> <door.*30>))

(del (next-to <box.*31> <box.o1>))

(del (next-to robot <box.o1>))

(add (holding <box.o1>)))))

(PICKUP-KEY

(params (<key.o1>))

(preconds

(and (arm-empty)

(next-to robot <key.o1>)

(carriable <key.o1>)))

(effects

((del (arm-empty))

(del (next-to robot <key.o1>))

(add (holding <key.o1>)))))

(PUTDOWN-BOX

(params (<box.o2>))

(preconds

(and (holding <box.o2>)

(is-box <box.o2>)))

(effects

((del (holding <box.*35>))

(add (next-to robot <box.o2>))

(add (arm-empty)))))

(PUTDOWN-KEY

(params (<key.o2>))

(preconds

(and (holding <key.o2>)

(is-key <door.o2> <key.o2>)))

(effects

((del (holding <key.*35>))

(add (next-to robot <key.o2>))

(add (arm-empty)))))

(PUTDOWN-BOX-NEXT-TO

(params (<box.o3> <box.other>

<room.o3-rm>))

(preconds

(and

(is-object <box.other>)

(inroom <box.other> <room.o3-rm>)

(inroom <box.o3> <room.o3-rm>)

(holding <box.o3>)

(next-to robot <box.other>)))

(effects

((del (holding <box.o3>))

(add (next-to <box.o3> <box.other>))

(add (next-to robot <box.o3>))

(add (next-to <box.other> <box.o3>))

(add (arm-empty)))))

(PUSH-BOX-TO-DR

(params (<box.b1> <door.d1> <room.r1>))

(preconds

(and

(is-door <door.d1>)

(connects <door.d1> <room.r2>

<room.r1>)

(inroom <box.b1> <room.r1>)

(next-to robot <box.b1>)

(pushable <box.b1>)))

(effects

((del (next-to <box.b1> <box.*5>))

(del (next-to <box.b1> <door.*5>))

(del (next-to <box.*13> <box.b1>))

(del (next-to robot <box.*3>))

(add (next-to robot <box.b1>))

(add (next-to <box.b1> <door.d1>))

)))

(PUSH-BOX-THRU-DR

(params (<box.b-x> <door.d-x>

<room.r-x> <room.r-y>))

(preconds

(and

(is-room <room.r-x>)

(connects <door.d-x> <room.r-x>

<room.r-y>)

(is-door <door.d-x>)

(dr-open <door.d-x>)

(next-to <box.b-x> <door.d-x>)

(next-to robot <box.b-x>)

(pushable <box.b-x>)

(inroom <box.b-x> <room.r-y>)))

(effects
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((del (next-to robot <box.*1>))

(del (next-to <box.b-x> <box.*12>))

(del (next-to <box.b-x> <door.*12>))

(del (next-to <box.*7> <box.b-x>))

(del (inroom robot <room.*21>))

(del (inroom <box.b-x> <room.*22>))

(add (inroom robot <room.r-x>))

(add (inroom <box.b-x> <room.r-x>))

(add (next-to robot <box.b-x>)))))

(GO-THRU-DR

(params (<door.ddx> <room.rrx>

<room.rry>))

(preconds

(and

(is-room <room.rrx>)

(connects <door.ddx> <room.rrx>

<room.rry>)

(is-door <door.ddx>)

(dr-open <door.ddx>)

(arm-empty)

(next-to robot <door.ddx>)

(inroom robot <room.rry>)))

(effects

((del (next-to robot <door.*19>))

(del (inroom robot <room.*20>))

(add (inroom robot <room.rrx>)))))

(CARRY-BOX-THRU-DR

(params (<box.b-zz> <door.d-zz>

<room.r-zz> <room.r-ww>))

(preconds

(and

(is-room <room.r-zz>)

(connects <door.d-zz> <room.r-zz>

<room.r-ww>)

(is-door <door.d-zz>)

(dr-open <door.d-zz>)

(is-object <box.b-zz>)

(inroom <box.b-zz> <room.r-ww>)

(carriable <box.b-zz>)

(holding <box.b-zz>)

(inroom robot <room.r-ww>)

(next-to robot <door.d-zz>)))

(effects

((del (next-to robot <door.*48>))

(del (inroom robot <room.*41>))

(del (inroom <box.b-zz> <room.*42>))

(add (inroom robot <room.r-zz>))

(add (inroom <box.b-zz> <room.r-zz>)

))))

(CARRY-KEY-THRU-DR

(params (<key.b-zz> <door.d-zz>

<room.r-zz> <room.r-ww>))

(preconds

(and

(is-room <room.r-zz>)

(connects <door.d-zz> <room.r-zz>

<room.r-ww>)

(is-door <door.d-zz>)

(dr-open <door.d-zz>)

(is-object <key.b-zz>)

(inroom <key.b-zz> <room.r-ww>)

(carriable <key.b-zz>)

(holding <key.b-zz>)

(inroom robot <room.r-ww>)

(next-to robot <door.d-zz>)))

(effects

((del (next-to robot <door.*48>))

(del (inroom robot <room.*41>))

(del (inroom <key.b-zz> <room.*42>))

(add (inroom robot <room.r-zz>))

(add (inroom <key.b-zz> <room.r-zz>)

))))

(GOTO-DR

(params (<door.dx> <room.rx>))

(preconds

(and

(is-door <door.dx>)

(connects <door.dx> <room.ry>

<room.rx>)

(inroom robot <room.rx>)))

(effects

((del (next-to robot <box.*18>))

(del (next-to robot <door.*18>))

(del (next-to robot <key.*18>))

(add (next-to robot <door.dx>)))))

(PUSH-BOX

(params (<box.ba> <box.bb> <room.ra>))

(preconds

(and

(is-object <box.ba>)

(is-object <box.bb>)
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(inroom <box.bb> <room.ra>)

(inroom <box.ba> <room.ra>)

(pushable <box.ba>)

(next-to robot <box.ba>)))

(effects

((del (next-to robot <box.*14>))

(del (next-to <box.ba> <door.*5>))

(del (next-to <box.ba> <box.*5>))

(del (next-to <box.*6> <box.ba>))

(add (next-to robot <box.ba>))

(add (next-to robot <box.bb>))

(add (next-to <box.ba> <box.bb>))

(add (next-to <box.bb> <box.ba>)))))

(GOTO-BOX

(params (<box.b> <room.rm>))

(preconds

(and (is-object <box.b>)

(inroom <box.b> <room.rm>)

(inroom robot <room.rm>)))

(effects

((add (next-to robot <box.b>))

(del (next-to robot <box.*109>))

(del (next-to robot <door.*109>))

(del (next-to robot <key.*109>)))))

(GOTO-KEY

(params (<key.b> <room.rm>))

(preconds

(and (is-object <key.b>)

(inroom <key.b> <room.rm>)

(inroom robot <room.rm>)))

(effects

((add (next-to robot <key.b>))

(del (next-to robot <box.*109>))

(del (next-to robot <door.*109>))

(del (next-to robot <key.*109>)))))

(OPEN

(params (<door>))

(preconds

(and (is-door <door>)

(unlocked <door>)

(next-to robot <door>)

(dr-closed <door>)))

(effects

((del (dr-closed <door>))

(add (dr-open <door>)))))

(CLOSE

(params (<door.door1>))

(preconds

(and

(is-door <door.door1>)

(next-to robot <door.door1>)

(dr-open <door.door1>)))

(effects

((del (dr-open <door.door1>))

(add (dr-closed <door.door1>)))))

(LOCK

(params (<door.door2> <key.k1>

<room.rm-b>))

(preconds

(and

(is-door <door.door2>)

(is-key <door.door2> <key.k1>)

(connects <door.door2> <room.rm-c>

<room.rm-b>)

(inroom <key.k1> <room.rm-b>)

(holding <key.k1>)

(next-to robot <door.door2>)

(dr-closed <door.door2>)

(unlocked <door.door2>)))

(effects

((del (unlocked <door.door2>))

(add (locked <door.door2>)))))

(UNLOCK

(params (<door.door3> <key.k2>

<room.rm-a>))

(preconds

(and

(is-door <door.door3>)

(is-key <door.door3> <key.k2>)

(connects <door.door3> <room.rm-d>

<room.rm-a>)

(inroom <key.k2> <room.rm-a>)

(holding <key.k2>)

(inroom robot <room.rm-a>)

(next-to robot <door.door3>)

(locked <door.door3>)))

(effects

((del (locked <door.door3>))

(add (unlocked <door.door3>)))))
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(setq *AXIOMS*

'(((next-to <box.1-axiom1> <box.2-axiom1>) .

((inroom <box.1-axiom1> <room.axiom1>)

(inroom <box.2-axiom1> <room.axiom1>)))

((next-to robot <box.axiom2>) . ((inroom <box.axiom2> <room.axiom2>)

(inroom robot <room.axiom2>)))

((next-to robot <key.axiom3>) . ((inroom <key.axiom3> <room.axiom3>)

(inroom robot <room.axiom3>)))

((next-to robot <door.axiom4>) .

((connects <door.axiom4> <room.x4> <room.y4>)

(inroom robot <room.y4>)))

((dr-open <door.axiom5>) . ((unlocked <door.axiom5>)))

((locked <door.axiom6>) . ((dr-closed <door.axiom6>)))

((~ (dr-open <door.axiom9>)) . ((dr-closed <door.axiom9>)))

((~ (dr-closed <door.axiom10>)) . ((dr-open <door.axiom10>)

(unlocked <door.axiom10>)))

((~ (locked <door.axiom11>)) . ((unlocked <door.axiom11>)))

((~ (unlocked <door.axiom12>)) . ((locked <door.axiom12>)

(dr-closed <door.axiom12>)))

((~ (arm-empty)) . ((holding <box.o13>)(holding <key.o13>)))

((~ (holding <box.axiom14>)) . ((arm-empty)))

((~ (holding <key.axiom15>)) . ((arm-empty)))))

(setq *VARIABLE-TYPING* '(

(isa 'object 'type)(isa 'box 'object)(isa 'key 'object)

(isa 'door 'object)(isa 'robot 'type)(isa 'room 'type)

(isa-instance 'robot 'robot)(isa-instance 'box1 'box)

(isa-instance 'box2 'box)(isa-instance 'box3 'box)

(isa-instance 'room1 'room)(isa-instance 'room2 'room)

(isa-instance 'room3 'room)(isa-instance 'room4 'room)

(isa-instance 'room5 'room)(isa-instance 'room6 'room)

(isa-instance 'room7 'room)(isa-instance 'door12 'door)

(isa-instance 'door23 'door)(isa-instance 'door34 'door)

(isa-instance 'door25 'door)(isa-instance 'door56 'door)

(isa-instance 'door26 'door)(isa-instance 'door36 'door)

(isa-instance 'door67 'door)(isa-instance 'key12 'key)

(isa-instance 'key23 'key)(isa-instance 'key34 'key)

(isa-instance 'key25 'key)(isa-instance 'key56 'key)

(isa-instance 'key26 'key)(isa-instance 'key36 'key)

(isa-instance 'key67 'key)(isa-instance 'rm1 'room)

(isa-instance 'rm2 'room)(isa-instance 'dr12 'door)

(isa-instance 'key12 'key)(isa-instance 'rm3 'room)

(isa-instance 'rm4 'room)(isa-instance 'dr23 'door)

(isa-instance 'dr34 'door)(isa-instance 'key23 'key)

(isa-instance 'key34 'key)(isa-instance 'A 'box)

(isa-instance 'B 'box)(isa-instance 'C 'box)

(isa-instance 'D 'box)(isa-instance 'E 'box)

(isa-instance 'F 'box)(isa-instance 'G 'box))
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(setq *PRIMARY* '(

((holding <box>) . (PICKUP-BOX))

((holding <key>) . (PICKUP-KEY))

((arm-empty) . (PUTDOWN-BOX PUTDOWN-KEY))

((next-to <box.1> <box.2>) . (PUTDOWN-BOX-NEXT-TO PUSH-BOX))

((next-to <box> <door>) . (PUSH-BOX-TO-DR))

((inroom <box> <room>) . (PUSH-BOX-THRU-DR CARRY-BOX-THRU-DR))

((inroom robot <room>) . (GO-THRU-DR))

((inroom <key> <room>) . (CARRY-KEY-THRU-DR))

((next-to robot <door>) . (GOTO-DR))

((next-to robot <box>) . (GOTO-BOX))

((next-to robot <key>) . (GOTO-KEY))

((dr-open <door>) . (OPEN))

((dr-closed <door>). (CLOSE))

((locked <door>) . (LOCK))

((unlocked <door>) . (UNLOCK))))

Example problem:

Goal: '(and (next-to a d) (inroom b room3) (inroom a room4))

Initial State:

'((arm-empty) (dr-to-rm door67 room7) (dr-to-rm door67 room6)

(connects door67 room7 room6) (connects door67 room6 room7)

(dr-to-rm door56 room6) (dr-to-rm door56 room5)

(connects door56 room6 room5) (connects door56 room5 room6)

(dr-to-rm door36 room6) (dr-to-rm door36 room3)

(connects door36 room6 room3) (connects door36 room3 room6)

(dr-to-rm door25 room5) (dr-to-rm door25 room2)

(connects door25 room5 room2) (connects door25 room2 room5)

(dr-to-rm door34 room4) (dr-to-rm door34 room3)

(connects door34 room4 room3) (connects door34 room3 room4)

(dr-to-rm door23 room3) (dr-to-rm door23 room2)

(connects door23 room3 room2) (connects door23 room2 room3)

(dr-to-rm door12 room2) (dr-to-rm door12 room1)

(connects door12 room2 room1) (connects door12 room1 room2)

(next-to c e) (dr-closed door67) (locked door67)

(dr-closed door56) (locked door56) (dr-closed door36)

(locked door36) (unlocked door25) (dr-closed door25)

(unlocked door34) (dr-open door34) (unlocked door23)

(dr-closed door23) (dr-closed door12) (locked door12)

(is-room room7) (is-room room6) (is-room room5) (is-room room4)

(is-room room3) (is-room room2) (is-room room1) (is-door door67)

(is-door door56) (is-door door36) (is-door door25)

(is-door door34) (is-door door23) (is-door door12) (carriable e)

(carriable d) (carriable c) (carriable b) (pushable d) (pushable c)

(pushable b) (pushable a) (is-object key67)
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(is-object key56) (is-object key36)

(is-object key25) (is-object key34)

(is-object key23) (is-object key12) (is-object e)

(is-box e) (is-object d)(is-box d) (is-object c)(is-box c)

(is-object b)(is-box b) (is-object a)(is-box a)

(inroom e room4) (inroom d room2) (inroom c room4) (inroom b room7)

(inroom a room3) (inroom key67 room6) (inroom key56 room1)

(inroom key36 room3) (inroom key25 room5)

(inroom key34 room1) (inroom key23 room7)

(inroom key12 room5) (inroom robot room5) (carriable key67)

(is-key door67 key67) (carriable key56)

(is-key door56 key56) (carriable key36)

(is-key door36 key36) (carriable key25)

(is-key door25 key25) (carriable key34)

(is-key door34 key34) (carriable key23)

(is-key door23 key23) (carriable key12)

(is-key door12 key12))

B.2 Experimental Results

The experiments in this domain were run in CMU Common Lisp on a IBM RT Model

130 with 16 megabytes of memory. The tables below compare prodigy without any

control knowledge, prodigy with a set of hand-code control rules, and prodigy with

the abstractions generated by alpine. The �rst 100 problems are the test problems

used in Minton's experiments [Minton, 1988a].

The entries in the table are de�ned as follows:

Prob Num The problem number.

Time Total CPU time used in solving the problem. A 600 CPU second time bound

was imposed on all problems.

Nodes Total number of nodes searched in solving the problem.

Len Length of the solution found. Zero if no solution exists.

ACT Time required to create the abstraction hierarchy. This time is also included

in the total CPU time for ALPINE.

AbNodes Nodes searched at each level in the hierarchy. Ordered from more abstract

to less abstract levels.

AbLen Solution length found at each level in the hierarchy. Ordered from more

abstract to less abstract levels.
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Prob Prodigy Prodigy + HCR Prodigy + Alpine

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

1 0.6 14 6 0.8 14 6 2.1 14 6 0.8 6,8 2,4

2 0.3 10 4 0.5 10 4 1.5 10 4 0.7 4,0,6 1,0,3

3 0.6 20 6 0.7 14 6 1.7 14 6 0.7 4,0,10 1,0,5

4 0.5 15 6 0.8 15 6 2.2 17 6 1.0 4,4,9 1,1,4

5 0.5 16 7 0.8 16 7 1.8 18 7 0.6 6,6,6 2,2,3

6 0.3 12 5 0.5 12 5 1.3 12 5 0.6 8,4 3,2

7 1.0 32 7 1.6 31 7 3.9 80 7 1.2 72,8 3,4

8 1.3 35 15 1.9 33 15 3.3 35 15 1.0 4,8,23 1,3,11

9 0.8 24 8 1.0 18 8 2.2 16 7 1.1 8,8 3,4

10 0.9 26 12 1.5 26 12 2.4 26 9 0.9 16,10 4,5

11 0.7 21 8 1.0 19 8 2.4 21 8 1.0 4,4,13 1,1,6

12 1.4 31 14 2.0 30 14 3.8 31 14 1.3 17,14 7,7

13 0.1 6 2 0.2 6 2 1.7 8 2 1.2 2,4,2 0,1,1

14 1.1 27 12 1.3 21 9 3.0 23 9 1.2 4,11,8 1,4,4

15 0.9 24 11 1.5 24 11 2.8 26 11 1.0 4,6,16 1,2,8

16 0.6 20 9 1.0 20 9 2.2 20 9 0.9 10,10 4,5

17 0.6 20 9 1.0 20 9 1.2 10 4 0.6 4,6 1,3

18 0.2 8 3 0.4 8 3 1.2 8 3 0.7 4,4 1,2

19 0.6 17 7 0.9 17 7 2.8 19 7 1.3 4,4,11 1,1,5

20 1.6 33 11 1.7 24 11 4.2 31 11 1.4 23,8 7,4

21 3.7 108 15 3.0 53 15 4.2 36 16 1.5 4,12,20 1,5,10

22 0.5 16 7 0.9 16 7 2.2 18 7 0.8 6,6,6 2,2,3

23 1.7 35 6 0.9 14 6 3.7 16 6 2.0 4,8,4 1,3,2

24 1.3 35 13 1.6 28 13 4.8 21 8 2.7 2,11,8 0,4,4

25 0.2 8 3 0.3 8 3 2.0 10 3 1.3 2,4,4 0,1,2

26 1.1 34 13 1.4 28 13 4.0 32 14 1.5 4,10,18 1,4,9

27 0.8 20 9 1.1 20 9 2.6 22 9 1.0 4,6,12 1,2,6

28 0.8 26 8 1.0 18 8 3.2 34 8 1.2 2,22,10 0,3,5

29 2.7 64 10 1.5 22 10 5.2 38 11 1.9 26,12 5,6

30 1.1 34 12 1.4 26 12 3.3 34 12 1.2 20,14 5,7

31 0.9 20 8 1.2 20 8 3.4 21 8 1.3 4,8,9 1,3,4

32 1.9 46 20 2.7 44 20 5.0 47 20 1.2 9,16,22 3,6,11

33 3.2 84 20 2.6 44 20 4.5 47 20 1.1 9,12,26 3,4,13

34 1.0 25 10 1.4 25 10 3.0 26 10 1.1 4,9,13 1,3,6

35 2.6 57 23 3.0 47 20 4.6 39 17 1.4 9,14,16 3,6,8

36 3.4 86 21 2.7 46 21 5.0 49 21 1.0 9,10,10,20 3,4,4,10

37 1.3 37 11 1.3 25 11 2.7 26 11 1.1 4,10,12 1,4,6

38 0.9 29 4 1.4 29 4 1.9 22 4 1.0 18,4 2,2

39 3.2 79 24 3.4 55 24 4.6 43 19 1.4 9,8,26 3,3,13

40 1.1 27 10 1.5 27 10 3.0 34 10 0.9 18,6,10 3,2,5

41 0.7 18 8 1.1 18 8 2.2 18 8 1.0 8,10 3,5

42 1.6 35 8 2.1 35 8 3.3 22 8 1.3 8,6,8 2,2,4

43 1.9 51 14 2.1 36 14 3.4 34 14 1.1 4,10,20 1,3,10

44 0.6 18 5 0.9 18 5 1.5 14 5 0.7 8,6 2,3
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Prob Prodigy Prodigy + HCR Prodigy + Alpine

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

45 0.6 17 5 0.8 17 5 1.6 16 5 0.6 8,2,6 2,0,3

46 0.2 6 2 0.3 6 2 1.3 6 2 0.9 4,2 1,1

47 1.7 41 15 2.5 41 15 3.6 38 15 1.0 22,16 7,8

48 3.4 77 25 4.0 62 25 6.1 51 22 1.6 11,10,30 4,3,15

49 0.8 24 10 1.2 22 10 2.5 22 10 1.0 12,10 5,5

50 2.3 53 22 3.2 53 22 5.0 51 22 1.4 4,17,30 1,6,15

51 3.5 82 29 4.5 71 29 7.7 74 33 1.5 10,24,40 4,10,19

52 1.4 44 7 0.9 17 7 2.3 16 7 1.3 10,6 4,3

53 2.3 53 22 3.2 53 22 4.9 51 22 1.4 4,17,30 1,6,15

54 0.5 12 5 0.8 12 5 3.4 24 7 1.5 4,10,4,6 1,2,1,3

55 1.0 27 12 1.5 26 12 3.1 27 12 1.3 15,12 6,6

56 4.3 99 20 3.7 55 20 6.4 54 22 1.8 12,16,26 4,5,13

57 0.1 6 2 0.2 6 2 1.6 6 2 1.3 4,2 1,1

58 1.1 28 12 1.7 28 12 4.1 28 12 2.0 4,14,10 1,6,5

59 8.3 205 23 7.5 122 23 7.9 87 23 2.0 6,54,27 2,8,13

60 6.3 169 27 5.1 79 27 7.5 64 28 1.9 10,20,34 4,8,16

61 4.0 112 22 6.3 110 22 6.6 99 22 1.2 77,22 11,11

62 1.1 29 10 1.7 29 10 4.1 30 10 2.0 4,18,8 1,5,4

63 6.2 149 24 9.0 147 24 7.9 61 25 2.5 4,25,10,22 1,9,4,11

64 3.9 78 26 5.0 71 26 9.0 62 26 3.4 40,22 15,11

65 36.6 955 21 3.7 65 21 5.0 47 17 2.0 4,25,18 1,7,9

66 6.7 167 35 4.1 62 27 8.6 101 30 1.9 11,55,35 4,9,17

67 1.3 41 6 0.8 15 6 2.5 25 6 1.3 19,6 3,3

68 4.9 119 31 3.0 47 18 7.0 74 18 2.0 4,49,21 1,7,10

69 0.5 14 6 0.8 14 6 2.3 14 6 1.3 6,8 2,4

70 4.0 107 26 4.1 67 26 11.0 152 37 1.2 112,6,34 18,2,17

71 0.8 23 9 1.3 23 9 3.3 24 9 1.5 10,6,8 3,2,4

72 15.1 352 25 3.9 55 25 3.0 18 8 0.8 6,0,12 2,0,6

73 0.4 14 5 0.7 14 5 1.5 16 7 0.4 10,6 4,3

74 1.1 35 9 1.8 35 9 2.2 31 10 0.4 23,8 6,4

75 2.0 46 19 2.8 46 19 2.8 34 14 0.5 14,20 4,10

76 2.7 56 24 3.8 56 24 3.2 36 16 0.4 16,20 6,10

77 33.9 821 31 14.6 231 31 4.2 37 17 0.8 11,4,22 4,2,11

78 3.6 77 14 4.8 77 14 4.6 34 14 0.8 14,4,16 4,2,8

79 1.2 25 11 1.7 25 11 2.4 25 11 0.5 11,14 4,7

80 0.2 6 2 0.2 6 2 0.7 6 2 0.8 4,2 1,1

81 1.8 42 18 2.6 42 18 3.4 39 18 0.5 15,24 6,12

82 0.4 10 4 0.6 10 4 1.6 10 4 0.8 6,4 2,2

83 2.6 59 26 3.7 59 26 5.3 50 23 1.2 28,22 12,11

84 3.9 73 31 4.9 73 31 4.3 33 13 1.3 6,14,13 2,5,6

85 24.1 591 31 32.2 551 31 8.3 134 22 0.8 104,30 7,15

86 2.2 56 22 2.9 50 19 3.5 42 18 0.7 28,14 11,7

87 1.1 32 9 1.7 32 9 2.0 21 9 0.6 13,8 5,4

88 1.2 32 13 1.8 32 13 2.0 21 9 0.6 13,8 5,4
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Prob Prodigy Prodigy + HCR Prodigy + Alpine

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

89 5.2 104 32 6.8 104 32 8.1 75 32 1.1 11,20,44 4,7,21

90 48.6 1171 21 3.6 60 21 21.2 360 21 0.7 344,16 13,8

91 36.1 900 6 17.0 291 6 2.4 16 6 1.1 4,4,8 1,1,4

92 2.5 69 8 3.8 69 8 2.2 19 8 0.7 11,8 4,4

93 0.5 16 6 1.2 21 8 2.3 16 6 1.2 10,6 3,3

94 1.2 33 14 2.0 33 14 3.8 35 16 1.2 21,14 9,7

95 11.1 285 50 8.0 124 47 13.5 223 48 1.4 4,167,52 1,21,26

96 2.4 54 23 3.4 54 23 3.6 32 14 1.2 16,16 6,8

97 4.1 109 13 2.7 41 19 3.6 30 13 1.4 4,10,16 1,4,8

98 0.1 6 2 0.2 6 2 1.6 6 2 1.2 4,2 1,1

99 58.9 1367 30 4.7 67 30 6.4 61 27 1.3 4,27,30 1,11,15

100 3.2 80 18 4.8 80 18 5.1 49 18 1.1 27,6,16 8,2,8

101 0.4 8 3 0.5 8 3 1.6 8 3 0.4 4,4 1,2

102 5.0 91 37 6.6 91 37 7.5 85 37 0.5 39,46 14,23

103 2.2 44 14 3.0 44 14 4.4 33 14 0.7 4,11,18 1,4,9

104 3.5 107 0 3.4 65 0 3.8 87 0 0.4

105 3.6 75 26 5.0 75 26 5.4 63 26 0.5 31,32 10,16

106 0.1 6 2 0.2 6 2 1.1 6 2 0.6 4,2 1,1

107 1.4 24 8 1.7 24 8 3.0 18 8 0.7 6,2,10 2,1,5

108 0.1 6 2 0.2 6 2 1.1 6 2 1.0 4,2 1,1

109 0.2 6 2 0.2 6 2 0.8 6 2 0.4 4,2 1,1

110 29.4 648 22 40.1 644 22 5.8 50 21 0.7 14,4,32 4,2,15

111 0.4 6 2 0.5 6 2 1.8 6 2 0.7 4,0,2 1,0,1

112 1.0 24 10 1.4 24 10 2.0 23 10 0.4 9,14 3,7

113 0.1 6 2 0.3 6 2 0.8 6 2 0.4 4,2 1,1

114 0.6 14 6 0.9 14 6 1.5 14 6 0.4 4,10 1,5

115 41.2 939 26 10.2 156 26 20.6 297 26 1.0 271,26 13,13

116 1.5 40 12 2.2 40 12 2.5 31 12 0.4 15,16 4,8

117 113.5 2253 27 140.1 2053 27 25.1 344 29 1.0 316,28 15,14

118 15.2 355 25 7.8 118 25 4.0 31 13 0.7 13,0,18 4,0,9

119 267.7 5391 38 346.2 4941 38 84.9 1219 38 0.9 1183,36 20,18

120 6.4 124 45 8.4 122 45 5.2 58 25 0.5 26,32 9,16

121 0.8 14 6 0.9 14 6 2.3 14 6 0.7 4,2,8 1,1,4

122 5.6 119 28 7.8 119 28 6.3 76 28 0.5 42,34 11,17

123 7.3 159 25 10.1 159 25 4.1 60 11 0.4 46,14 4,7

124 3.0 62 25 4.1 62 25 5.3 60 25 0.6 36,24 13,12

125 6.5 165 14 2.0 31 14 3.4 30 14 0.7 4,6,20 1,3,10

126 1.5 37 11 2.3 37 11 2.2 10 4 1.0 6,4 2,2

127 7.8 186 15 7.0 107 21 4.1 35 13 1.0 4,17,14 1,5,7

128 8.8 179 31 11.7 174 31 7.7 68 28 1.0 6,23,39 2,7,19

129 42.9 833 55 37.7 541 55 30.7 395 49 0.9 349,46 26,23

130 82.2 1739 0 108.7 1683 0 12.1 196 0 1.1

131 40.7 1091 0 65.5 1091 0 122.5 2920 0 1.0

132 28.9 806 0 19.2 328 0 17.8 405 0 1.0
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Prob Prodigy Prodigy + HCR Prodigy + Alpine

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

133 4.2 110 0 5.9 98 0 10.0 193 0 0.8

134 33.5 833 0 15.2 250 0 17.5 371 0 1.3

135 19.8 395 50 11.4 137 55 16.4 152 46 1.5 114,38 27,19

136 1.2 27 10 1.8 27 10 2.9 26 10 0.6 10,6,10 3,2,5

137 6.3 114 48 8.6 113 48 11.6 113 48 1.3 69,44 26,22

138 62.2 1539 0 60.6 963 0 71.7 1525 0 1.2

139 124.9 2616 54 29.7 443 54 18.2 221 56 1.3 13,146,62 4,21,31

140 197.8 3874 19 133.6 1968 19 5.1 43 19 1.0 9,10,24 3,4,12

141 0.7 18 5 1.1 18 5 1.8 14 5 0.8 8,6 2,3

142 6.2 116 47 8.5 116 47 10.2 109 48 1.0 53,56 20,28

143 454.9 8883 0 444.3 6481 0 71.5 1154 0 1.0

144 3.6 107 0 3.6 65 0 4.5 98 0 0.6

145 9.1 172 48 9.6 132 48 8.2 74 34 1.1 6,24,44 2,10,22

146 0.5 12 5 0.7 12 5 1.8 12 5 0.9 8,4 3,2

147 2.5 46 16 3.3 46 16 4.6 46 16 0.9 46 16

148 0.8 21 8 1.2 21 8 2.3 16 7 0.9 10,6 4,3

149 0.7 18 6 1.1 18 6 1.7 14 6 0.6 8,6 3,3

150 30.4 664 30 40.8 660 30 12.6 138 29 1.5 108,30 14,15

151 2.9 42 14 3.7 42 14 5.2 20 8 1.8 6,6,8 2,2,4

152 160.1 3130 50 11.0 161 50 16.0 139 59 1.3 14,43,26,56 4,15,12,28

153 11.2 205 67 104.8 1415 51 12.7 156 29 1.3 14,111,31 3,11,15

154 9.1 188 36 16.4 239 45 13.4 135 42 2.0 14,69,52 4,13,25

155 336.6 6605 56 9.4 127 56 12.6 119 52 1.7 4,57,58 1,22,29

156 70.9 1453 71 19.4 267 71 37.5 470 69 1.9 402,68 35,34

157 40.7 853 31 53.2 836 27 21.4 422 27 1.0 388,34 10,17

158 174.7 3428 39 223.4 3226 39 72.0 985 39 1.9 957,28 25,14

159 19.2 436 32 13.3 199 32 6.9 50 20 1.4 19,8,23 6,3,11

160 294.7 5927 60 30.0 447 57 16.1 140 50 2.3 20,84,36 5,27,18

161 14.0 259 59 7.0 95 31 21.9 269 59 1.0 269 59

162 11.1 202 61 12.4 162 61 9.6 94 39 1.3 4,38,52 1,12,26

163 16.2 365 41 22.4 347 41 16.0 221 45 1.6 4,169,48 1,20,24

164 9.1 178 45 12.9 177 45 13.1 126 45 1.6 86,40 25,20

165 9.5 205 44 13.5 205 44 24.7 485 53 1.3 423,62 22,31

166 11.4 200 68 9.2 124 39 10.6 100 42 1.5 6,49,45 2,18,22

167 61.4 1264 54 78.2 1130 54 20.4 272 51 1.5 4,214,54 1,23,27

168 97.4 2042 27 4.7 70 27 75.7 1177 23 1.4 1161,16 15,8

169 1.5 33 15 2.3 33 15 4.0 62 11 0.9 50,12 5,6

170 2.5 58 15 3.7 58 15 4.4 34 15 1.3 2,14,18 0,6,9

171 4.3 83 13 9.1 133 29 11.8 118 35 2.4 4,78,36 1,16,18

172 33.2 685 70 12.9 177 63 15.1 173 59 1.5 9,84,80 3,16,40

173 194.6 4069 76 17.1 224 69 19.2 194 45 2.5 15,141,38 5,21,19

174 13.1 382 0 7.4 124 0 14.1 358 0 1.1

175 5.4 153 0 9.0 148 0 6.4 134 0 1.2

176 600.0 11452 | 600.0 8153 | 600.0 11058 | 1.9
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Prob Prodigy Prodigy + HCR Prodigy + Alpine

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

177 150.8 3028 83 50.1 753 73 124.3 1925 84 2.2 1857,68 50,34

178 20.0 491 0 18.0 297 0 12.8 261 0 1.4

179 62.4 1241 59 64.4 877 59 13.7 129 56 1.8 16,38,75 5,14,37

180 134.7 2894 14 137.6 2041 9 6.4 42 18 1.6 8,12,22 3,5,10

181 306.8 5697 0 72.2 1009 0 47.6 925 0 1.7

182 600.0 11506 | 600.0 8087 | 12.0 134 0 3.2

183 252.2 6010 0 77.7 1202 0 36.2 584 0 2.9

184 271.9 5283 63 80.2 1167 59 95.2 1448 64 2.1 1392,56 36,28

185 39.0 749 44 8.2 107 44 10.3 84 35 2.0 11,33,40 4,11,20

186 30.0 854 0 15.2 264 0 7.3 121 0 1.5

187 7.4 132 35 8.5 115 32 8.7 63 26 1.7 14,18,31 4,8,14

188 600.0 11466 | 600.0 8305 | 600.0 8954 | 2.7

189 5.9 133 33 8.7 133 33 6.5 49 22 1.6 4,17,28 1,7,14

190 36.1 780 60 46.2 696 60 31.0 437 55 1.9 6,369,62 2,22,31

191 173.8 3688 0 137.3 1994 0 20.8 369 0 1.8

192 1.9 45 15 2.7 45 15 4.2 45 15 1.2 45 15

193 30.6 714 16 30.4 453 31 6.7 39 16 1.8 6,13,8,12 2,5,4,5

194 27.9 640 31 16.9 268 31 10.2 72 31 2.1 11,27,34 4,11,16

195 10.8 207 50 14.4 206 50 10.4 69 31 1.9 12,19,38 5,8,18

196 39.7 899 65 26.1 421 65 13.7 126 47 2.0 12,54,60 5,12,30

197 20.4 407 63 22.6 342 59 21.0 197 72 1.7 19,97,81 7,26,39

198 4.8 106 27 7.9 126 29 20.2 396 30 1.4 356,14,26 11,6,13

199 256.6 5266 0 94.8 1448 0 35.4 633 0 2.0

200 35.8 804 33 12.5 194 33 10.6 114 33 1.5 11,67,36 3,12,18

201 203.4 4003 90 471.5 6691 66 34.5 399 70 2.8 8,311,20,60 3,28,10,29

202 50.2 1154 53 23.1 365 56 18.5 183 70 2.6 2,121,60 0,40,30

203 320.0 6544 0 169.1 2518 0 600.0 8735 | 1.6

204 600.0 11947 | 20.1 290 66 19.2 142 62 2.4 12,62,20,48 3,26,9,24

205 27.5 792 0 17.6 303 0 5.6 71 0 1.7

206 445.0 8166 77 35.6 537 77 23.6 212 87 3.3 12,112,88 5,38,44

207 6.7 114 36 8.2 113 35 12.1 122 36 1.7 122 36

208 600.0 11453 | 15.6 219 78 23.7 321 70 1.9 9,232,80 3,27,40

209 82.2 2077 0 22.4 371 0 223.0 5239 0 1.9

210 600.0 11239 | 600.0 8338 | 600.0 9394 | 1.7

211 114.4 2770 0 97.1 1551 0 11.9 217 0 2.1

212 34.0 745 38 50.3 745 38 20.1 248 41 1.7 2,198,14,34 0,18,6,17

213 600.0 12678 | 600.0 8807 | 600.0 10878 | 3.0

214 600.0 11275 | 600.0 7831 | 600.0 9596 | 2.9

215 115.5 2962 0 121.6 1857 0 105.6 2165 0 2.5

216 600.0 11112 | 600.0 8432 | 600.0 9496 | 2.2

217 9.2 187 37 12.5 187 37 11.1 142 33 1.9 106,36 15,18

218 600.0 12121 | 600.0 8131 | 600.0 10323 | 2.5

219 71.4 1544 0 91.0 1396 0 62.2 1367 0 2.3

220 26.7 546 61 27.1 415 61 16.3 158 56 2.3 16,77,65 5,19,32
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Prob Prodigy Prodigy + HCR Prodigy + Alpine

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

221 124.9 2544 44 83.2 1188 51 16.7 177 48 2.3 6,131,40 2,26,20

222 600.0 11902 | 600.0 8690 | 13.8 89 38 2.6 14,29,14,32 5,11,7,15

223 600.0 12743 | 94.9 1486 0 31.0 628 0 2.3

224 8.6 153 59 10.9 153 59 16.1 128 55 2.1 11,41,22,54 4,14,10,27

225 145.3 2837 36 8.6 130 36 106.4 1513 27 2.5 1491,22 16,11

226 600.0 10917 | 600.0 8117 | 600.0 8993 | 2.8

227 8.5 150 49 7.9 102 41 10.7 112 30 2.6 4,72,12,24 1,12,5,12

228 12.8 234 51 13.5 176 39 12.2 99 42 2.6 8,44,47 3,16,23

229 20.2 413 62 14.2 202 52 20.5 175 59 4.5 6,119,50 2,32,25

230 202.9 4163 99 23.7 294 92 35.8 367 94 4.3 15,280,72 5,53,36

231 22.2 561 0 18.0 297 0 30.3 614 0 2.4

232 37.4 955 0 33.7 540 0 48.9 948 0 2.6

233 600.0 11519 | 600.0 8068 | 15.6 200 0 4.3

234 600.0 11114 | 600.0 8110 | 600.0 9573 | 2.7

235 55.4 1339 0 43.7 721 0 27.3 568 0 2.3

236 84.2 1580 77 68.8 918 77 22.6 241 76 2.7 25,117,99 8,19,49

237 143.2 2893 14 137.1 2043 10 8.5 44 19 2.4 8,12,6,18 3,5,3,8

238 600.0 11046 | 600.0 8066 | 133.1 2474 0 4.5

239 246.8 6090 0 81.6 1274 0 37.1 584 0 3.8

240 281.2 5512 85 83.7 1222 81 159.8 2215 86 3.0 2145,70 51,35

241 59.0 1140 62 11.9 142 59 14.8 116 50 2.9 18,41,57 7,15,28

242 73.5 1968 0 30.2 522 0 17.3 314 0 2.6

243 600.0 11084 | 600.0 7781 | 600.0 10668 | 2.6

244 6.3 133 33 8.9 133 33 8.2 54 23 2.2 4,24,8,18 1,10,3,9

245 600.0 11596 | 199.0 2868 0 31.9 615 0 2.4

246 75.2 1626 0 21.4 365 0 600.0 10265 | 2.6

247 600.0 11554 | 600.0 8623 | 14.9 153 38 2.5 8,99,14,32 3,13,7,15

248 45.2 922 46 22.5 321 46 19.3 132 58 4.5 13,75,44 5,31,22

249 14.2 248 65 18.8 247 65 16.6 103 46 2.8 12,35,16,40 5,14,7,20

250 40.3 901 66 28.0 423 66 17.5 144 55 2.8 12,58,22,52 5,14,10,26
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Appendix C

Machine-Shop Planning and

Scheduling

The version of the machine-shop domain used in these experiments is almost identical

to the original prodigy version presented in [Minton, 1988a]. There are only two

minor syntactic di�erences from the original problem-space de�nition. First, the

polish operator had a disjunctive precondition in the original domain and in the

version used here this operator was separated into two operators. alpine can handle

the full prodigy language, but it does so in a conservative manner and it forces

disjunctive conditions into the same abstraction level. This particular operator was

separated into two operators so that alpine could produce a �ner-grained hierarchy.

Second, the fact that an operation could not be performed on an object once it was

joined was made explicit by adding negated joined conditions to each operator. This

condition was implicit in the fact that the original objects are deleted when they are

joined. This change allows the system to separate the joined literals from some of the

other literals in a few additional situations.

C.1 Problem Space De�nition

(POLISH-1

(params (<obj-pc> <time-pc> <time-prev-pc>))

(preconds

(and

(is-object <obj-pc>)

(~ (joined <obj-pc> <obj-pc2> <or-pc>))

(~ (joined <obj-pc2> <obj-pc> <or-pc>))

(clampable <obj-pc> POLISHER)

(last-scheduled <obj-pc> <time-prev-pc>)

(later <time-pc> <time-prev-pc>)

157
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(idle POLISHER <time-pc>)))

(effects (

(del (surface-condition <obj-pc> <surface-*7-pc>))

(add (surface-condition <obj-pc> POLISHED))

(del (last-scheduled <obj-pc> <time-prev-pc>))

(add (last-scheduled <obj-pc> <time-pc>))

(add (scheduled <obj-pc> POLISHER <time-pc>)))))

(POLISH-2

(params (<obj-pr> <time-pr> <time-prev-pr>))

(preconds

(and

(is-object <obj-pr>)

(~ (joined <obj-pr> <obj-pr2> <or-pr>))

(~ (joined <obj-pr2> <obj-pr> <or-pr>))

(shape <obj-pr> RECTANGULAR)

(last-scheduled <obj-pr> <time-prev-pr>)

(later <time-pr> <time-prev-pr>)

(idle POLISHER <time-pr>)))

(effects (

(del (surface-condition <obj-pr> <surface-*7-pr>))

(add (surface-condition <obj-pr> POLISHED))

(del (last-scheduled <obj-pr> <time-prev-pr>))

(add (last-scheduled <obj-pr> <time-pr>))

(add (scheduled <obj-pr> POLISHER <time-pr>)))))

(GRIND

(params (<obj-g> <time-g> <time-prev-g>))

(preconds

(and

(is-object <obj-g>)

(~ (joined <obj-g> <obj-g2> <or-g>))

(~ (joined <obj-g2> <obj-g> <or-g>))

(last-scheduled <obj-g> <time-prev-g>)

(later <time-g> <time-prev-g>)

(idle GRINDER <time-g>)))

(effects (

(del (surface-condition <obj-g> <surface-*1-g>))

(add (surface-condition <obj-g> SMOOTH))

(del (painted <obj-g> <color-*2-g>))

(del (last-scheduled <obj-g> <time-prev-g>))

(add (last-scheduled <obj-g> <time-g>))

(add (scheduled <obj-g> GRINDER <time-g>)))))

(ROLL

(params (<obj-r> <time-r> <time-prev-r>))

(preconds

(and
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(is-object <obj-r>)

(~ (joined <obj-r> <obj-r2> <or-r>))

(~ (joined <obj-r2> <obj-r> <or-r>))

(last-scheduled <obj-r> <time-prev-r>)

(later <time-r> <time-prev-r>)

(idle ROLLER <time-r>)

(shape <obj-r> <shape-old-r>)))

(effects (

(del (shape <obj-r> <shape-old-r>))

(del (temperature <obj-r> <temp-old-r>))

(del (has-hole <obj-r> <width-*3-r> <orientation-*4-r>>))

(del (surface-condition <obj-r> <surface-*1-r>))

(del (painted <obj-r> <color-*2-r>))

(del (last-scheduled <obj-r> <time-prev-r>))

(add (temperature <obj-r> HOT))

(add (shape <obj-r> CYLINDRICAL))

(add (last-scheduled <obj-r> <time-r>))

(add (scheduled <obj-r> ROLLER <time-r>)))))

(LATHE

(params (<obj-l> <time-l> <shape-l> <time-prev-l>))

(preconds

(and

(is-object <obj-l>)

(~ (joined <obj-l> <obj-l2> <or-l>))

(~ (joined <obj-l2> <obj-l> <or-l>))

(last-scheduled <obj-l> <time-prev-l>)

(later <time-l> <time-prev-l>)

(idle LATHE <time-l>)

(shape <obj-l> <shape-l>)))

(effects (

(del (shape <obj-l> <shape-l>))

(del (surface-condition <obj-l> <surface-*3-l>))

(del (painted <obj-l> <color-*4-l>))

(del (last-scheduled <obj-l> <time-prev-l>))

(add (surface-condition <obj-l> ROUGH))

(add (shape <obj-l> CYLINDRICAL))

(add (last-scheduled <obj-l> <time-l>))

(add (scheduled <obj-l> LATHE <time-l>)))))

(PUNCH

(params (<obj-u> <time-u> <width-hole-u> <orientation-u> <time-prev-u>))

(preconds

(and

(is-object <obj-u>)

(~ (joined <obj-u> <obj-u2> <or-u>))

(~ (joined <obj-u2> <obj-u> <or-u>))

(is-punchable <obj-u> <width-hole-u> <orientation-u>)
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(clampable <obj-u> PUNCH)

(last-scheduled <obj-u> <time-prev-u>)

(later <time-u> <time-prev-u>)

(idle PUNCH <time-u>)))

(effects (

(del (surface-condition <obj-u> <surface-*33-u>))

(del (last-scheduled <obj-u> <time-prev-u>))

(add (surface-condition <obj-u> ROUGH))

(add (has-hole <obj-u> <width-hole-u> <orientation-u>))

(add (last-scheduled <obj-u> <time-u>))

(add (scheduled <obj-u> PUNCH <time-u>)))))

(DRILL-PRESS

(params (<obj-d> <time-d> <width-hole-d> <orientation-d> <time-prev-d>))

(preconds

(and

(is-object <obj-d>)

(~ (joined <obj-d> <obj-d2> <or-d>))

(~ (joined <obj-d2> <obj-d> <or-d>))

(is-drillable <obj-d> <orientation-d>)

(last-scheduled <obj-d> <time-prev-d>)

(later <time-d> <time-prev-d>)

(idle DRILL-PRESS <time-d>)

(have-bit <width-hole-d>)))

(effects (

(del (last-scheduled <obj-d> <time-prev-d>))

(add (has-hole <obj-d> <width-hole-d> <orientation-d>))

(add (last-scheduled <obj-d> <time-d>))

(add (scheduled <obj-d> DRILL-PRESS <time-d>)))))

(BOLT

(params (<obj-1-b> <obj-2-b> <time-b> <obj-new-b> <time-prev1-b>

<time-prev2-b> <orientation-b> <width-b> <bolt-b>))

(preconds

(and

(is-object <obj-1-b>)

(is-object <obj-2-b>)

(~ (joined <obj-1-b> <obj-1-b2> <or-b>))

(~ (joined <obj-1-b2> <obj-1-b> <or-b>))

(~ (joined <obj-2-b> <obj-2-b2> <or-b>))

(~ (joined <obj-2-b2> <obj-2-b> <or-b>))

(can-be-bolted <obj-1-b> <obj-2-b> <orientation-b>)

(is-bolt <bolt-b>)

(is-width <width-b> <bolt-b>)

(has-hole <obj-1-b> <width-b> <orientation-b>)

(has-hole <obj-2-b> <width-b> <orientation-b>)

(last-scheduled <obj-1-b> <time-prev1-b>)

(last-scheduled <obj-2-b> <time-prev2-b>)
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(later <time-b> <time-prev1-b>)

(later <time-b> <time-prev2-b>)

(idle BOLTING-MACHINE <time-b>)

(composite-object <obj-new-b> <orientation-b> <obj-1-b> <obj-2-b>)))

(effects (

(del (last-scheduled <obj-1-b> <time-prev1-b>))

(del (last-scheduled <obj-2-b> <time-prev2-b>))

(add (last-scheduled <obj-new-b> <time-b>))

(add (is-object <obj-new-b>))

(del (is-object <obj-1-b>))

(del (is-object <obj-2-b>))

(add (joined <obj-1-b> <obj-2-b> <orientation-b>))

(add (scheduled <obj-new-b> BOLTING-MACHINE <time-b>)))))

(WELD

(params (<obj-1-w> <obj-2-w> <time-w> <obj-new-w> <time-prev1-w>

<time-prev2-w> <orientation-w>))

(preconds

(and

(is-object <obj-1-w>)

(is-object <obj-2-w>)

(~ (joined <obj-1-w> <obj-1-w2> <or-w>))

(~ (joined <obj-1-w2> <obj-1-w> <or-w>))

(~ (joined <obj-2-w> <obj-2-w2> <or-w>))

(~ (joined <obj-2-w2> <obj-2-w> <or-w>))

(can-be-welded <obj-1-w> <obj-2-w> <orientation-w>)

(last-scheduled <obj-1-w> <time-prev1-w>)

(last-scheduled <obj-2-w> <time-prev2-w>)

(later <time-w> <time-prev1-w>)

(later <time-w> <time-prev2-w>)

(idle WELDER <time-w>)

(composite-object <obj-new-w> <orientation-w> <obj-1-w> <obj-2-w>)))

(effects (

(del (last-scheduled <obj-1-w> <time-prev1-w>))

(del (last-scheduled <obj-2-w> <time-prev2-w>))

(add (last-scheduled <obj-new-w> <time-w>))

(del (temperature <obj-new-w> <temp-old*>))

(add (temperature <obj-new-w> HOT))

(add (is-object <obj-new-w>))

(del (is-object <obj-1-w>))

(del (is-object <obj-2-w>))

(add (joined <obj-1-w> <obj-2-w> <orientation-w>))

(add (scheduled <obj-new-w> WELDER <time-w>)))))

(SPRAY-PAINT

(params (<obj-s> <time-s> <color-s> <time-prev-s>))

(preconds

(and
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(sprayable <color-s>)

(is-object <obj-s>)

(~ (joined <obj-s> <obj-s2> <or-s>))

(~ (joined <obj-s2> <obj-s> <or-s>))

(shape <obj-s> <shape-s-s>)

(regular-shape <shape-s-s>)

(clampable <obj-s> SPRAY-PAINTER)

(last-scheduled <obj-s> <time-prev-s>)

(later <time-s> <time-prev-s>)

(idle SPRAY-PAINTER <time-s>)))

(effects (

(add (painted <obj-s> <color-s>))

(del (surface-condition <obj-s> <surface-*2-s>))

(del (last-scheduled <obj-s> <time-prev-s>))

(add (last-scheduled <obj-s> <time-s>))

(add (scheduled <obj-s> SPRAY-PAINTER <time-s>)))))

(IMMERSION-PAINT

(params (<obj-i> <time-i> <color-i> <time-prev-i>))

(preconds

(and

(is-object <obj-i>)

(~ (joined <obj-i> <obj-i2> <or-i>))

(~ (joined <obj-i2> <obj-i> <or-i>))

(have-paint-for-immersion <color-i>)

(last-scheduled <obj-i> <time-prev-i>)

(later <time-i> <time-prev-i>)

(idle IMMERSION-PAINTER <time-i>)

))

(effects (

(add (painted <obj-i> <color-i>))

(del (last-scheduled <obj-i> <time-prev-i>))

(add (last-scheduled <obj-i> <time-i>))

(add (scheduled <obj-i> IMMERSION-PAINTER <time-i>)))))

(IS-CLAMPABLE

(params (<obj-1> <machine>))

(preconds

(and

(has-clamp <machine>)

(temperature <obj-1> COLD)))

(effects ((add (clampable <obj-1> <machine>)))))

(INFER-IDLE

(params (<machine-1> <time-t>))

(preconds

(forall (<obj-2> <machine-2>)

(scheduled <obj-2> <machine-2> <time-t>)
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(not-equal <machine-2> <machine-1>)))

(effects (

(add (idle <machine-1> <time-t>)))))

(setq *AXIOMS* nil)

(setq *VARIABLE-TYPING* nil)

(setq *PRIMARY*

'(((surface-condition <obj> POLISHED) . (POLISH-1 POLISH-2))

((surface-condition <obj> SMOOTH) . (GRIND))

((shape <obj> CYLINDRICAL) . (ROLL LATHE))

((shape <obj> RECTANGULAR) . nil)

((has-hole <obj> <width> <orientation>) . (PUNCH DRILL-PRESS))

((joined <obj1> <obj2> <orientation>) . (BOLT WELD))

((painted <obj> <color>) . (SPRAY-PAINT IMMERSION-PAINT))

((clampable <obj> <machine>) . (IS-CLAMPABLE))

((idle <machine> <time>) . (INFER-IDLE))

((last-scheduled <obj> <time>) . nil)

((scheduled <obj> <machine> <time>) . nil)

((is-object <obj>) . nil)

((temperature <obj> <temp>) . nil)

((~ (joined <obj1> <obj2> <orientation>)) . (t))

))

Example Problem:

Goal: '(and (has-hole d (4 mm) orientation-4) (shape d cylindrical)

(surface-condition e smooth) (painted d (water-res white)))

Initial State:

'((last-time 10) (is-bolt (b1 (1.199999 cm))) (is-bolt (b2 (1 cm)))

(is-bolt (b3 (4 mm))) (is-bolt (b4 (1.4 cm)))

(is-bolt (b5 (1.4 cm))) (last-scheduled e 0) (last-scheduled d 0)

(last-scheduled c 0) (last-scheduled b 0) (last-scheduled a 0)

(has-hole e (8 mm) orientation-4) (surface-condition e rough)

(temperature e cold) (shape e irregular) (is-object e)

(painted d (regular red)) (temperature d cold)

(shape d undetermined) (is-object d) (painted c (regular white))

(temperature c cold) (shape c cylindrical) (is-object c)

(has-hole b (8 mm) orientation-4) (painted b (water-res white))

(surface-condition b smooth) (temperature b cold)

(shape b undetermined) (is-object b) (painted a (regular white))

(temperature a cold) (shape a undetermined) (is-object a))
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C.2 Experimental Results

The experiments in this domain were run in CMU Common Lisp on a IBM RT Model

130 with 16 megabytes of memory. The �rst set of six tables below compares prodigy

without any control knowledge, prodigy with a set of hand-code control rules, and

prodigy with the abstractions generated by alpine. The second set of six tables

below compares prodigy with the control rules produced by ebl [Minton, 1988a],

prodigy with the control rules produced by static [Etzioni, 1990], and prodigy

with both the hand-code control rules and the abstractions produced by alpine.

The �rst 100 problems in each set of tables are the test problems used in Minton's

experiments [Minton, 1988a].

The entries in the table are de�ned as follows:

Prob Num The problem number.

Time Total CPU time used in solving the problem. A 600 CPU second time bound

was imposed on all problems.

Nodes Total number of nodes searched in solving the problem.

Len Length of the solution found. Zero if no solution exists.

ACT Time required to create the abstraction hierarchy. This time is also included

in the total CPU time for ALPINE.

AbNodes Nodes searched at each level in the hierarchy. Ordered from more abstract

to less abstract levels.

AbLen Solution length found at each level in the hierarchy. Ordered from more

abstract to less abstract levels.
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Prob Prodigy Prodigy + HCR Prodigy + Alpine

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

1 0.7 19 8 2.2 19 8 2.7 19 8 0.6 4,8,7 1,4,3

2 1.1 34 0 0.1 1 0 1.7 4 0 1.0

3 0.2 6 2 0.3 6 2 1.7 6 2 0.5 4,0,2 1,0,1

4 0.4 10 4 0.8 10 4 2.4 12 4 0.8 4,4,0,4 1,1,0,2

5 0.4 15 6 1.7 15 6 2.3 15 6 0.6 4,4,7 1,2,3

6 0.5 21 0 0.0 1 0 1.3 6 0 0.7

7 0.2 8 3 0.5 8 3 2.0 10 3 0.7 2,0,4,2,2 0,0,1,1,1

8 1.1 34 0 0.1 1 0 1.6 4 0 0.9

9 0.3 10 4 0.9 10 4 1.8 10 4 0.7 6,0,4 2,0,2

10 0.6 19 8 3.0 19 8 2.5 19 8 0.6 4,8,7 1,4,3

11 0.1 2 0 0.1 1 0 0.7 2 0 0.5

12 0.5 15 6 0.4 6 2 2.4 15 6 0.6 4,4,7 1,2,3

13 0.2 8 3 0.5 8 3 1.9 8 3 0.5 4,2,2 1,1,1

14 0.4 12 5 1.2 12 5 2.1 12 5 0.7 6,2,4 2,1,2

15 0.2 6 2 0.4 6 2 1.6 6 2 0.6 4,0,2 1,0,1

16 22.6 718 0 119.3 424 0 3.0 28 0 0.8

17 0.6 20 9 2.3 16 7 3.4 22 9 1.0 4,8,2,8 1,3,1,4

18 0.9 36 0 0.1 1 0 1.7 15 0 0.8

19 5.6 178 0 0.1 1 0 2.7 28 0 1.0

20 0.8 36 0 0.1 1 0 1.2 2 0 0.8

21 1.4 44 0 0.1 1 0 1.9 6 0 1.1

22 0.2 8 3 0.5 8 3 2.0 10 3 0.8 2,4,2,2 0,1,1,1

23 0.1 6 2 0.3 6 2 1.2 6 2 0.5 4,0,2 1,0,1

24 0.7 16 6 2.4 16 7 4.1 25 6 1.1 4,4,8,3,6 1,1,1,0,3

25 16.1 642 0 0.1 1 0 2.3 15 0 1.2

26 0.7 20 8 3.1 20 8 2.9 23 8 0.6 6,10,7 1,4,3

27 0.4 10 4 0.9 10 4 2.5 10 4 0.9 6,0,4 2,0,2

28 112.9 3154 0 0.1 1 0 3.8 40 0 1.3

29 0.4 12 5 1.3 12 5 2.7 12 5 0.9 6,2,4 2,1,2

30 72.7 2450 9 4.2 21 9 8.4 60 9 1.4 12,0,26,14,8 2,0,2,1,4

31 600.0 9224 | 0.2 1 0 34.8 389 0 1.9

32 600.0 9061 | 0.1 1 0 69.2 837 0 1.9

33 9.8 342 0 0.1 1 0 2.2 13 0 1.1

34 161.0 3667 10 1.6 12 5 6.1 54 5 1.2 48,2,4 2,1,2

35 1.6 54 5 0.9 12 5 3.5 24 5 0.8 6,0,9,5,4 1,0,1,1,2

36 0.9 16 7 3.1 16 7 4.3 18 7 1.0 4,0,6,2,6 1,0,2,1,3

37 2.0 48 8 4.9 18 8 5.8 22 8 2.1 2,10,4,6 0,3,2,3

38 4.5 102 8 3.6 18 8 5.0 22 8 1.6 14,0,8 4,0,4

39 129.7 2657 10 5.5 22 10 4.5 22 10 1.2 10,4,8 4,2,4

40 3.6 156 0 0.0 1 0 1.8 15 0 0.8

41 600.0 11043 | 0.1 1 0 3.7 10 0 2.0

42 1.4 22 9 2.8 16 7 4.4 21 6 1.2 4,8,3,6 1,2,0,3

43 600.0 8019 | 600.0 772 | 330.3 3891 0 2.1

44 13.8 474 0 0.1 1 0 2.9 16 0 0.9
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Prob Prodigy Prodigy + HCR Prodigy + Alpine

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

45 0.2 6 2 0.5 6 2 1.7 6 2 0.6 4,0,2 1,0,1

46 600.0 9432 | 0.2 1 0 41.6 466 0 2.1

47 0.6 14 6 2.1 14 6 2.6 14 5 0.8 4,4,2,4 1,1,1,2

48 0.2 6 2 0.5 6 2 2.1 6 2 0.9 4,0,2 1,0,1

49 600.0 8472 | 0.1 1 0 107.8 1188 0 2.1

50 103.1 3891 0 0.1 1 0 1.9 6 0 1.1

51 351.5 6702 13 12.0 31 14 15.0 115 13 2.3 8,69,26,12 2,4,1,6

52 0.2 8 3 0.6 8 3 1.9 10 3 0.8 2,4,2,2 0,1,1,1

53 600.0 8957 | 140.5 168 21 8.4 44 14 2.1 6,20,3,15 2,5,0,7

54 3.8 86 13 11.6 30 13 18.4 192 13 2.0 6,0,100,74,12 1,0,4,3,5

55 14.3 414 6 2.2 14 6 3.7 20 6 1.1 14,0,6 3,0,3

56 600.0 8945 | 0.1 1 0 16.0 159 0 2.2

57 1.4 15 6 1.9 15 6 3.6 17 6 0.9 6,0,4,0,7 2,0,1,0,3

58 600.0 13447 | 15.8 31 14 15.1 120 14 2.2 14,16,49,27,14 2,1,3,2,6

59 0.4 10 4 1.0 10 4 2.3 12 4 0.8 4,4,0,4 1,1,0,2

60 36.3 1421 0 0.1 1 0 3.1 7 0 1.8

61 600.0 12675 | 0.1 1 0 6.0 67 0 1.3

62 0.5 12 5 1.4 12 5 2.3 12 4 0.8 4,4,0,4 1,1,0,2

63 0.9 14 6 2.0 14 6 3.4 16 6 0.9 4,0,6,0,6 1,0,2,0,3

64 4.8 107 7 2.5 16 7 3.7 20 7 1.1 12,2,6 3,1,3

65 0.9 37 0 0.1 1 0 1.2 2 0 0.8

66 176.0 3524 9 5.1 20 9 5.8 30 9 1.8 20,2,8 4,1,4

67 0.4 6 2 0.4 6 2 2.2 8 2 0.8 4,0,2,0,2 1,0,0,0,1

68 600.0 10374 | 0.1 1 0 246.1 2713 0 2.3

69 600.0 9138 | 12.7 29 13 8.4 53 12 1.9 38,4,11 5,2,5

70 0.9 10 4 1.0 10 4 2.7 12 4 0.8 4,0,4,0,4 1,0,1,0,2

71 6.5 99 17 15.0 32 15 12.8 64 15 2.5 8,14,18,12,12 2,2,2,3,6

72 0.8 16 7 3.6 16 7 4.2 18 7 1.2 2,0,8,2,6 0,0,3,1,3

73 3.5 34 14 194.5 198 23 6.7 29 10 1.6 6,0,11,0,12 2,0,3,0,5

74 0.8 16 7 1.7 16 7 3.6 18 7 1.0 4,0,6,2,6 1,0,2,1,3

75 0.5 12 5 1.4 12 5 2.8 12 5 0.9 6,2,4 2,1,2

76 125.5 2702 10 4.1 22 10 5.6 40 10 1.0 6,8,18,8 1,1,4,4

77 1.1 21 9 5.0 21 9 4.4 21 9 1.1 11,2,8 4,1,4

78 600.0 12547 | 0.1 1 0 8.2 104 0 1.8

79 7.3 153 14 10.9 31 14 6.4 29 11 1.9 16,2,11 5,1,5

80 600.0 15201 | 10.8 32 15 11.7 100 15 1.7 6,8,45,29,12 1,1,4,3,6

81 600.0 12475 | 0.1 1 0 5.6 44 0 1.8

82 121.3 3749 14 8.5 29 13 15.1 97 12 2.1 8,20,34,25,10 2,2,1,2,5

83 1.6 15 6 2.8 15 6 4.9 19 6 1.4 6,4,2,0,7 2,1,0,0,3

84 600.0 12795 | 0.1 1 0 71.2 779 0 2.2

85 600.0 7636 | 0.1 1 0 122.3 1413 0 2.3

86 1.4 19 8 4.6 19 8 4.7 21 8 1.3 4,0,8,0,9 1,0,3,0,4

87 1.4 38 0 0.1 1 0 3.2 7 0 1.7

88 3.2 27 12 10.7 24 10 7.1 26 10 2.2 6,0,8,0,12 2,0,3,0,5
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Prob Prodigy Prodigy + HCR Prodigy + Alpine

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

89 9.1 184 9 2.9 16 7 4.6 23 6 1.3 4,10,3,6 1,2,0,3

90 600.0 11870 | 0.2 1 0 5.1 9 0 2.9

91 6.3 45 19 21.8 39 17 11.9 57 15 2.4 8,4,20,8,17 3,1,3,1,7

92 600.0 12545 | 0.2 1 0 346.1 4960 0 3.8

93 600.0 10993 | 0.2 1 0 189.6 1971 0 3.0

94 1.1 19 8 0.6 6 2 3.1 19 8 0.7 4,8,7 1,4,3

95 600.0 7299 | 22.4 36 17 26.1 223 17 2.8 6,198,2,17 2,6,1,8

96 7.3 169 18 28.1 43 18 21.6 190 16 1.4 6,26,142,16 1,2,6,7

97 600.0 13117 | 59.4 48 23 600.0 7796 | 3.6

98 4.7 35 15 18.1 34 16 11.6 49 15 2.6 4,8,16,5,16 1,3,3,1,7

99 3.3 37 17 14.5 33 15 8.1 35 15 2.1 4,12,6,13 1,5,3,6

100 1.9 16 7 3.8 16 7 5.2 18 7 1.5 4,6,2,6 1,2,1,3

101 1.1 19 8 5.2 19 8 3.8 19 8 0.6 4,8,7 1,4,3

102 0.1 2 0 0.1 1 0 0.8 2 0 0.5

103 0.3 8 3 0.6 8 3 1.6 8 3 0.5 4,2,2 1,1,1

104 0.5 6 2 0.4 6 2 1.6 6 2 0.5 4,0,2 1,0,1

105 0.2 8 3 0.5 8 3 1.5 8 3 0.5 4,2,2 1,1,1

106 0.7 15 6 2.5 15 6 3.4 15 6 0.6 4,4,7 1,2,3

107 0.4 6 2 0.4 6 2 1.5 6 2 0.5 4,0,2 1,0,1

108 0.4 6 2 0.4 6 2 1.5 6 2 0.5 4,0,2 1,0,1

109 0.4 6 2 0.4 6 2 1.6 6 2 0.5 4,0,2 1,0,1

110 0.9 19 8 4.3 19 8 3.1 19 8 0.6 4,8,7 1,4,3

111 0.2 6 2 0.4 6 2 1.2 6 2 0.4 4,0,2 1,0,1

112 0.4 6 2 0.4 6 2 1.6 6 2 0.5 4,0,2 1,0,1

113 0.9 19 8 3.3 19 8 3.1 19 8 0.6 4,8,7 1,4,3

114 0.2 6 2 0.4 6 2 1.5 6 2 0.6 4,0,2 1,0,1

115 0.2 6 2 0.4 6 2 2.1 6 2 0.6 4,0,2 1,0,1

116 0.2 6 2 0.4 6 2 1.2 6 2 0.4 4,0,2 1,0,1

117 1.0 19 8 0.6 6 2 2.8 15 6 0.6 4,4,7 1,2,3

118 0.4 6 2 0.4 6 2 1.5 6 2 0.5 4,0,2 1,0,1

119 0.1 2 0 0.1 1 0 0.8 2 0 0.5

120 0.3 8 3 0.5 8 3 1.6 8 3 0.5 4,2,2 1,1,1

121 0.9 19 8 3.9 19 8 2.8 15 6 0.6 4,4,7 1,2,3

122 0.9 19 8 4.1 19 8 3.1 19 8 0.6 4,8,7 1,4,3

123 0.4 6 2 0.4 6 2 1.5 6 2 0.5 4,0,2 1,0,1

124 0.2 6 2 0.4 6 2 1.2 6 2 0.4 4,0,2 1,0,1

125 0.4 6 2 0.4 6 2 1.6 6 2 0.5 4,0,2 1,0,1

126 2.8 82 0 0.1 1 0 2.1 15 0 0.8

127 0.7 10 4 1.1 10 4 3.5 12 4 0.8 4,4,0,4 1,1,0,2

128 0.6 10 4 1.1 10 4 2.7 10 4 0.8 6,0,4 2,0,2

129 0.5 12 5 1.0 12 5 2.6 14 5 0.7 4,4,2,4 1,1,1,2

130 1.1 23 10 5.3 23 10 5.1 23 10 0.9 10,4,9 4,2,4

131 0.7 15 6 1.9 15 6 2.7 15 6 0.7 6,4,5 2,2,2

132 128.4 2837 9 1.2 10 4 3.9 10 4 0.8 6,0,4 2,0,2
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Prob Prodigy Prodigy + HCR Prodigy + Alpine

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

133 1.1 16 6 1.5 12 5 3.4 15 4 0.8 4,0,4,3,4 1,0,1,0,2

134 0.5 10 4 1.1 10 4 2.1 10 4 0.7 6,0,4 2,0,2

135 0.8 10 4 1.0 10 4 2.8 12 4 0.7 4,0,4,0,4 1,0,1,0,2

136 0.6 10 4 1.1 10 4 2.7 10 4 0.8 6,0,4 2,0,2

137 1.0 12 5 1.3 12 5 3.0 14 5 0.8 4,0,4,2,4 1,0,1,1,2

138 0.8 10 4 1.0 10 4 2.7 12 4 0.7 4,0,4,0,4 1,0,1,0,2

139 0.6 14 6 1.4 14 6 2.9 16 6 0.8 4,4,4,4 1,1,2,2

140 0.8 15 6 2.7 15 6 4.5 15 6 1.0 8,0,7 3,0,3

141 0.6 14 6 1.3 14 6 2.9 16 6 0.8 4,4,4,4 1,1,2,2

142 1.1 12 5 1.4 12 5 3.0 14 5 0.8 4,4,2,4 1,1,1,2

143 1.2 11 4 1.2 11 4 2.6 11 4 0.8 6,0,5 2,0,2

144 1.0 10 4 1.0 10 4 2.8 12 4 0.7 4,0,4,0,4 1,0,1,0,2

145 600.0 12243 | 600.0 1949 | 3.6 34 0 0.8

146 0.4 10 4 1.2 10 4 2.7 12 4 0.8 4,4,0,4 1,1,0,2

147 0.9 10 4 1.2 10 4 3.2 12 4 0.8 4,0,4,0,4 1,0,1,0,2

148 0.5 10 4 0.9 10 4 2.6 12 4 0.7 4,4,0,4 1,1,0,2

149 0.8 10 4 1.0 10 4 2.8 12 4 0.7 4,0,4,0,4 1,0,1,0,2

150 0.7 12 5 1.4 12 5 2.3 12 5 0.6 6,2,4 2,1,2

151 1.1 21 9 5.9 21 9 3.7 17 7 1.1 8,2,7 3,1,3

152 4.1 74 6 2.2 14 6 5.0 16 6 1.3 4,6,0,6 1,2,0,3

153 2.1 17 7 2.9 17 7 4.5 19 7 1.1 6,0,4,2,7 2,0,1,1,3

154 4.2 75 6 2.4 15 6 5.2 17 6 1.2 6,4,0,7 2,1,0,3

155 0.9 18 8 2.0 14 6 3.8 20 8 1.0 4,8,0,8 1,3,0,4

156 1.2 14 6 2.4 14 6 4.1 18 6 1.1 4,4,4,0,6 1,1,1,0,3

157 1.0 18 8 2.9 18 8 3.8 20 8 1.0 4,6,4,6 1,2,2,3

158 60.2 1722 0 0.1 1 0 3.3 28 0 1.1

159 1.0 16 7 2.3 16 7 4.4 18 7 1.0 6,4,2,6 2,1,1,3

160 0.8 14 6 2.3 14 6 3.6 16 6 1.0 4,6,0,6 1,2,0,3

161 1.5 15 6 2.5 15 6 4.2 17 6 1.1 6,0,4,0,7 2,0,1,0,3

162 1.1 16 7 3.3 16 7 4.0 16 7 1.2 8,2,6 3,1,3

163 1.9 22 10 1.8 14 6 3.9 18 6 1.0 4,4,4,0,6 1,1,1,0,3

164 1.8 22 9 2.9 16 7 4.2 21 6 1.0 4,0,8,3,6 1,0,2,0,3

165 600.0 13813 | 0.1 1 0 8.1 90 0 1.3

166 2.1 29 13 2.7 16 7 5.3 16 7 1.3 8,2,6 3,1,3

167 0.7 14 6 2.1 14 6 3.4 16 6 1.0 4,6,0,6 1,2,0,3

168 600.0 11187 | 600.0 919 | 6.4 36 13 1.1 22,2,12 6,1,6

169 1.2 16 6 3.0 16 7 4.2 21 6 1.0 4,0,8,3,6 1,0,2,0,3

170 3.7 83 9 2.1 16 7 5.6 34 7 1.1 6,8,9,5,6 1,1,1,1,3

171 1.8 28 13 10.3 28 13 5.7 26 12 1.2 12,4,10 5,2,5

172 130.6 5092 0 0.1 1 0 1.9 4 0 1.1

173 1.1 18 8 3.8 18 8 3.6 18 7 1.0 4,6,2,6 1,2,1,3

174 600.0 10297 | 6.5 22 10 5.7 24 10 1.4 4,6,4,10 1,2,2,5

175 1.8 15 6 2.7 15 6 4.4 17 6 1.1 6,0,4,0,7 2,0,1,0,3

176 1.7 25 11 5.3 20 9 5.4 22 9 1.3 4,8,2,8 1,3,1,4
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Prob Prodigy Prodigy + HCR Prodigy + Alpine

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

177 2.4 18 8 4.6 18 8 5.5 20 8 1.4 4,8,0,8 1,3,0,4

178 2.1 20 9 5.0 20 9 6.3 24 9 1.5 4,4,6,2,8 1,1,2,1,4

179 600.0 13373 | 0.1 1 0 34.9 443 0 1.5

180 2.7 24 10 5.8 21 9 6.6 26 8 1.3 6,0,8,3,9 2,0,2,0,4

181 164.7 5150 9 5.8 20 9 7.0 39 9 1.4 6,8,12,5,8 1,1,2,1,4

182 1.2 19 8 5.1 19 8 4.6 21 8 1.4 4,8,0,9 1,3,0,4

183 12.0 227 15 7.2 23 10 6.2 23 10 1.6 10,4,9 4,2,4

184 3.2 39 18 11.2 26 12 8.6 24 11 1.7 12,2,10 5,1,5

185 4.0 76 10 7.8 22 10 7.2 41 10 1.6 6,8,12,7,8 1,1,2,2,4

186 1.7 25 11 6.2 25 11 5.1 27 11 1.4 6,6,6,9 2,2,3,4

187 48.2 1363 15 11.9 33 15 20.7 176 15 1.7 6,98,60,12 1,5,3,6

188 1.2 20 9 4.5 20 9 4.8 22 9 1.5 4,8,2,8 1,3,1,4

189 2.9 21 9 4.6 21 9 5.4 23 9 1.3 6,0,6,2,9 2,0,2,1,4

190 1.4 18 8 3.8 18 8 5.1 22 8 1.4 4,4,6,0,8 1,1,2,0,4

191 350.4 7170 16 16.6 33 14 7.8 37 16 1.6 17,4,16 7,2,7

192 600.0 13802 | 0.1 1 0 4.2 40 0 1.4

193 2.6 23 10 6.6 23 10 5.9 25 10 1.5 6,0,6,4,9 2,0,2,2,4

194 600.0 12760 | 11.9 29 13 6.5 26 12 1.5 14,0,12 6,0,6

195 1.6 20 9 5.3 20 9 4.9 18 8 1.6 10,0,8 4,0,4

196 2.5 31 14 10.9 26 12 7.0 31 14 1.5 16,0,15 7,0,7

197 3.3 30 13 5.0 20 9 6.2 22 9 1.8 4,8,2,8 1,3,1,4

198 1.7 18 8 3.9 18 8 5.1 22 8 1.4 4,4,6,0,8 1,1,2,0,4

199 2.9 24 11 3.9 21 9 6.6 23 9 1.3 6,0,6,2,9 2,0,2,1,4

200 2.1 36 15 20.5 36 15 7.6 36 15 1.6 17,6,13 6,3,6

201 13.0 308 19 17.3 33 15 17.2 123 15 1.8 8,0,60,43,12 2,0,4,3,6

202 600.0 14277 | 0.1 1 0 13.6 172 0 1.8

203 61.8 1173 23 600.0 405 | 6.4 23 10 1.7 12,0,11 5,0,5

204 600.0 10071 | 7.0 25 11 7.1 32 11 1.8 6,13,2,11 2,3,1,5

205 3.9 28 12 8.9 28 12 8.0 32 12 1.9 6,4,6,4,12 2,1,2,2,5

206 600.0 10337 | 600.0 494 | 600.0 6928 | 2.1

207 3.2 27 12 9.4 23 10 7.9 27 10 1.9 6,4,6,0,11 2,1,2,0,5

208 2.6 37 17 27.1 37 17 9.2 37 17 2.1 17,6,14 7,3,7

209 2.8 27 11 9.9 27 12 8.1 38 11 1.8 6,4,12,5,11 2,1,2,1,5

210 600.0 9205 | 600.0 649 | 70.2 785 0 2.2

211 2.6 27 12 8.7 27 12 6.5 31 12 1.8 4,4,8,4,11 1,1,3,2,5

212 3.3 27 12 15.5 27 12 7.7 29 12 1.7 4,0,10,4,11 1,0,4,2,5

213 2.1 29 13 10.2 24 11 6.5 31 13 1.8 6,10,2,13 2,4,1,6

214 12.6 369 17 16.6 32 15 16.0 129 15 1.9 6,8,60,43,12 1,1,4,3,6

215 600.0 13867 | 0.1 1 0 4.9 39 0 1.7

216 4.1 83 19 111.7 83 19 8.8 41 17 2.0 18,6,17 7,3,7

217 2.4 26 11 7.3 26 11 5.5 28 11 1.4 6,8,2,12 2,3,1,5

218 600.0 9850 | 0.1 1 0 35.6 401 0 2.0

219 600.0 12472 | 6.8 24 11 17.4 143 11 1.9 6,98,29,10 1,4,1,5

220 600.0 11590 | 25.6 36 16 64.5 614 16 2.0 6,456,136,16 1,6,2,7
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Prob Prodigy Prodigy + HCR Prodigy + Alpine

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

221 600.0 13515 | 0.1 1 0 7.3 67 0 1.9

222 600.0 10365 | 600.0 755 | 106.1 1203 0 2.0

223 600.0 9819 | 21.5 36 17 70.3 658 17 2.1 6,448,190,14 1,6,3,7

224 4.8 34 16 15.6 30 14 7.8 36 16 1.6 4,0,14,4,14 1,0,6,2,7

225 600.0 10396 | 600.0 509 | 12.8 65 16 1.9 4,42,3,16 1,7,0,8

226 33.1 652 19 600.0 293 | 11.3 37 17 2.4 16,6,15 7,3,7

227 600.0 9710 | 0.2 1 0 49.4 523 0 2.3

228 600.0 10605 | 0.1 1 0 225.0 2847 0 2.1

229 600.0 13842 | 0.2 1 0 6.4 43 0 2.3

230 600.0 8883 | 0.2 1 0 600.0 6735 | 2.4

231 600.0 16681 | 0.1 1 0 9.3 83 0 2.1

232 4.2 39 17 13.9 29 13 9.2 45 12 2.2 4,12,12,3,14 1,3,2,0,6

233 600.0 12603 | 0.2 1 0 51.1 547 0 2.3

234 600.0 9767 | 11.6 29 13 20.0 164 13 2.3 4,145,2,13 1,5,1,6

235 4.8 29 13 16.6 29 13 8.2 33 13 2.2 6,4,8,2,13 2,1,3,1,6

236 26.7 487 16 15.2 30 14 46.2 412 14 2.2 6,299,95,12 1,5,2,6

237 6.3 87 17 16.1 35 15 8.8 39 15 2.4 4,14,6,15 1,5,3,6

238 600.0 11868 | 30.2 45 20 10.8 47 20 2.4 4,16,8,19 1,7,4,8

239 600.0 9083 | 600.0 718 | 197.9 2167 0 2.3

240 600.0 9374 | 30.4 41 19 72.1 700 19 2.3 12,616,56,16 2,6,3,8

241 2.5 32 15 15.6 32 15 7.4 34 15 2.1 6,10,6,12 2,4,3,6

242 600.0 9392 | 600.0 336 | 600.0 6802 | 2.4

243 600.0 8774 | 600.0 424 | 272.5 3307 0 2.3

244 600.0 12316 | 507.8 331 29 8.5 45 17 1.7 4,4,16,2,19 1,1,6,1,8

245 600.0 11754 | 0.2 1 0 141.0 1790 0 2.1

246 600.0 13099 | 0.2 1 0 8.3 67 0 2.2

247 600.0 14037 | 0.2 1 0 104.7 1124 0 2.9

248 600.0 10440 | 0.1 1 0 70.0 763 0 2.5

249 600.0 12685 | 0.1 1 0 28.5 411 0 2.1

250 319.1 5393 20 30.1 42 20 424.7 4099 20 2.5 6,3071,1006,16 1,7,4,8
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Prob Prodigy + EBL Prodigy + Static Prodigy + Alpine + HCR

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

1 1.7 19 8 3.0 19 8 2.9 19 8 0.6 4,8,7 1,4,3

2 0.0 1 0 0.1 1 0 1.0 1 0 1.0

3 0.4 6 2 0.5 6 2 1.5 6 2 0.5 4,0,2 1,0,1

4 1.0 10 4 1.2 10 4 2.0 12 4 0.8 4,4,0,4 1,1,0,2

5 1.3 15 6 2.2 15 6 2.0 15 6 0.6 4,4,7 1,2,3

6 0.0 1 0 0.1 1 0 0.9 1 0 0.7

7 0.4 8 3 0.6 8 3 1.8 10 3 0.7 2,4,2,2 0,1,1,1

8 0.1 1 0 0.1 1 0 1.0 1 0 0.9

9 0.7 10 4 1.0 10 4 2.1 10 4 0.7 6,0,4 2,0,2

10 2.1 19 8 2.7 19 8 2.4 19 8 0.6 4,8,7 1,4,3

11 0.0 1 0 0.1 1 0 0.6 1 0 0.5

12 1.3 15 6 4.0 19 8 1.4 6 2 0.6 4,0,2 1,0,1

13 0.4 8 3 0.7 8 3 1.2 8 3 0.5 4,2,2 1,1,1

14 1.0 12 5 1.4 12 5 2.9 12 5 0.7 6,2,4 2,1,2

15 0.4 6 2 0.5 6 2 1.3 6 2 0.6 4,0,2 1,0,1

16 135.8 718 0 101.4 458 0 3.7 18 0 0.8

17 1.8 16 7 1.2 10 4 3.4 16 7 1.0 8,2,6 3,1,3

18 0.0 1 0 0.1 1 0 0.9 1 0 0.8

19 0.0 1 0 0.1 1 0 1.5 8 0 1.0

20 0.0 1 0 0.1 1 0 1.0 1 0 0.8

21 0.1 1 0 0.1 1 0 1.3 1 0 1.1

22 0.4 8 3 0.6 8 3 1.8 10 3 0.8 2,4,2,2 0,1,1,1

23 0.3 6 2 0.4 6 2 1.0 6 2 0.5 4,0,2 1,0,1

24 2.1 16 7 3.0 16 7 3.8 18 7 1.1 4,6,2,6 1,2,1,3

25 0.0 1 0 0.1 1 0 1.6 8 0 1.2

26 2.7 20 8 4.0 20 8 2.9 23 8 0.6 6,10,7 1,4,3

27 0.8 10 4 1.4 10 4 2.1 10 4 0.9 6,0,4 2,0,2

28 0.1 1 0 0.1 1 0 1.9 8 0 1.3

29 1.0 12 5 2.0 12 5 2.5 12 5 0.9 6,2,4 2,1,2

30 3.8 21 9 5.3 21 9 4.7 23 9 1.4 6,6,2,9 2,2,1,4

31 0.2 1 0 0.2 1 0 2.7 8 0 1.9

32 0.1 1 0 0.1 1 0 2.1 1 0 1.9

33 0.1 1 0 0.1 1 0 1.2 1 0 1.1

34 600.0 2578 | 7.6 24 10 3.4 12 5 1.2 6,2,4 2,1,2

35 1.1 12 5 1.4 12 5 2.2 14 5 0.8 4,4,2,4 1,1,1,2

36 2.2 14 6 3.4 16 7 3.9 18 7 1.0 4,6,2,6 1,2,1,3

37 2.5 16 7 5.8 18 8 7.2 20 8 2.1 2,8,4,6 0,3,2,3

38 23.8 102 8 5.0 18 8 5.9 18 8 1.6 10,0,8 4,0,4

39 3.9 22 10 7.5 22 10 6.0 22 10 1.2 10,4,8 4,2,4

40 0.0 1 0 0.1 1 0 1.1 8 0 0.8

41 0.1 1 0 0.1 1 0 2.2 1 0 2.0

42 2.7 14 6 4.0 16 7 4.0 18 7 1.2 4,6,2,6 1,2,1,3

43 600.0 1024 | 600.0 741 | 88.5 187 0 2.1

44 0.1 1 0 0.1 1 0 1.0 1 0 0.9
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Prob Prodigy + EBL Prodigy + Static Prodigy + Alpine + HCR

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

45 0.4 6 2 0.6 6 2 1.3 6 2 0.6 4,0,2 1,0,1

46 0.1 1 0 0.1 1 0 2.4 1 0 2.1

47 1.3 12 5 2.3 14 6 2.4 12 5 0.8 6,2,4 2,1,2

48 0.4 6 2 0.6 6 2 1.7 6 2 0.9 4,0,2 1,0,1

49 0.1 1 0 0.1 1 0 2.3 1 0 2.1

50 0.1 1 0 0.1 1 0 1.2 1 0 1.1

51 9.7 29 13 17.0 31 14 9.6 33 14 2.3 6,10,4,13 2,4,2,6

52 0.6 8 3 0.6 8 3 2.3 10 3 0.8 2,4,2,2 0,1,1,1

53 10.9 30 14 13.1 26 12 8.4 32 12 2.1 6,13,0,13 2,4,0,6

54 9.1 30 13 15.5 30 13 10.0 32 13 2.0 4,10,6,12 1,4,3,5

55 51.0 414 6 3.0 14 6 3.5 14 6 1.1 8,0,6 3,0,3

56 0.1 1 0 0.1 1 0 2.8 8 0 2.2

57 2.5 15 6 3.6 15 6 2.9 17 6 0.9 6,4,0,7 2,1,0,3

58 11.4 31 14 17.1 31 14 12.3 33 14 2.2 6,10,4,13 2,4,2,6

59 0.9 10 4 1.3 10 4 2.2 10 4 0.8 6,0,4 2,0,2

60 0.1 1 0 0.1 1 0 2.1 4 0 1.8

61 0.1 1 0 0.1 1 0 2.4 21 0 1.3

62 1.0 10 4 1.7 12 5 2.2 10 4 0.8 6,0,4 2,0,2

63 2.0 14 6 2.9 14 6 3.4 16 6 0.9 4,6,0,6 1,2,0,3

64 7.7 51 7 3.2 14 6 3.7 16 7 1.1 8,2,6 3,1,3

65 0.0 1 0 0.1 1 0 0.9 1 0 0.8

66 600.0 2619 | 7.2 20 9 5.6 20 9 1.8 10,2,8 4,1,4

67 0.6 6 2 0.7 6 2 1.6 8 2 0.8 4,2,0,2 1,0,0,1

68 0.1 1 0 0.2 1 0 3.2 8 0 2.3

69 600.0 1390 | 15.7 29 13 10.1 27 12 1.9 12,4,11 5,2,5

70 1.3 10 4 1.7 10 4 2.2 12 4 0.8 4,4,0,4 1,1,0,2

71 11.7 30 14 18.6 32 15 12.7 35 15 2.5 6,10,6,13 2,4,3,6

72 2.0 14 6 3.5 16 7 5.9 18 7 1.2 2,8,2,6 0,3,1,3

73 8.3 24 10 8.6 24 10 10.5 29 10 1.6 6,11,0,12 2,3,0,5

74 1.9 16 7 2.6 16 7 3.2 18 7 1.0 4,6,2,6 1,2,1,3

75 1.2 12 5 2.2 12 5 2.4 12 5 0.9 6,2,4 2,1,2

76 4.2 22 10 9.9 49 10 3.7 24 10 1.0 4,4,8,8 1,1,4,4

77 3.8 21 9 6.5 21 9 4.5 21 9 1.1 11,2,8 4,1,4

78 0.1 1 0 0.1 1 0 2.4 8 0 1.8

79 35.1 117 11 10.0 25 11 9.0 25 11 1.9 12,2,11 5,1,5

80 6.5 26 12 10.0 26 12 11.2 34 15 1.7 4,12,6,12 1,5,3,6

81 0.1 1 0 0.1 1 0 2.3 8 0 1.8

82 10.6 33 15 11.9 27 12 7.4 31 13 2.1 6,8,6,11 2,3,3,5

83 3.2 15 6 3.7 14 6 3.7 17 6 1.4 6,4,0,7 2,1,0,3

84 0.1 1 0 0.2 1 0 3.5 8 0 2.2

85 0.1 1 0 0.1 1 0 3.0 8 0 2.3

86 3.5 19 8 4.3 19 8 5.6 21 8 1.3 4,8,0,9 1,3,0,4

87 0.1 1 0 0.1 1 0 2.2 4 0 1.7

88 8.4 23 10 10.4 24 10 9.4 26 10 2.2 6,8,0,12 2,3,0,5
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Prob Prodigy + EBL Prodigy + Static Prodigy + Alpine + HCR

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

89 10.2 62 6 4.2 16 7 4.1 18 7 1.3 4,6,2,6 1,2,1,3

90 0.1 1 0 0.1 1 0 3.6 4 0 2.9

91 19.1 37 16 26.8 37 17 12.6 41 17 2.4 8,10,6,17 3,4,3,7

92 0.1 1 0 0.2 1 0 4.7 8 0 3.8

93 0.1 1 0 0.2 1 0 4.8 21 0 3.0

94 2.4 19 8 3.0 15 6 1.5 6 2 0.7 4,0,2 1,0,1

95 600.0 540 | 37.1 43 20 21.5 39 17 2.8 6,14,2,17 2,6,1,8

96 24.8 43 18 57.9 70 18 6.9 38 16 1.4 4,6,12,16 1,2,6,7

97 42.9 51 24 58.1 47 22 41.3 52 23 3.6 6,18,6,22 2,8,3,10

98 16.9 34 16 25.3 34 16 19.3 36 16 2.6 4,14,4,14 1,6,2,7

99 12.8 33 15 17.4 31 13 9.0 35 15 2.1 4,12,6,13 1,5,3,6

100 3.5 14 6 5.3 16 7 5.6 18 7 1.5 4,6,2,6 1,2,1,3

101 3.5 19 8 4.1 19 8 3.4 19 8 0.6 4,8,7 1,4,3

102 0.0 1 0 0.1 1 0 0.7 1 0 0.5

103 0.6 8 3 0.8 8 3 1.5 8 3 0.5 4,2,2 1,1,1

104 0.7 6 2 0.8 6 2 1.2 6 2 0.5 4,0,2 1,0,1

105 0.5 8 3 0.6 8 3 1.4 8 3 0.5 4,2,2 1,1,1

106 2.2 15 6 3.2 15 6 2.8 15 6 0.6 4,4,7 1,2,3

107 0.7 6 2 0.8 6 2 1.2 6 2 0.5 4,0,2 1,0,1

108 0.7 6 2 0.8 6 2 1.2 6 2 0.5 4,0,2 1,0,1

109 0.7 6 2 0.8 6 2 1.2 6 2 0.5 4,0,2 1,0,1

110 3.3 19 8 2.6 15 6 2.8 19 8 0.6 4,8,7 1,4,3

111 0.3 6 2 0.5 6 2 1.1 6 2 0.4 4,0,2 1,0,1

112 0.7 6 2 0.8 6 2 1.2 6 2 0.5 4,0,2 1,0,1

113 3.1 19 8 4.5 19 8 2.8 19 8 0.6 4,8,7 1,4,3

114 0.4 6 2 0.5 6 2 1.2 6 2 0.6 4,0,2 1,0,1

115 0.3 6 2 0.5 6 2 1.8 6 2 0.6 4,0,2 1,0,1

116 0.3 6 2 0.5 6 2 1.1 6 2 0.4 4,0,2 1,0,1

117 2.5 19 8 4.7 19 8 1.6 6 2 0.6 4,0,2 1,0,1

118 0.7 6 2 0.8 6 2 1.2 6 2 0.5 4,0,2 1,0,1

119 0.1 1 0 0.1 1 0 0.6 1 0 0.5

120 0.5 8 3 0.7 8 3 1.4 8 3 0.5 4,2,2 1,1,1

121 3.3 19 8 5.1 19 8 2.5 15 6 0.6 4,4,7 1,2,3

122 3.3 19 8 5.2 19 8 2.8 19 8 0.6 4,8,7 1,4,3

123 0.7 6 2 0.8 6 2 1.3 6 2 0.5 4,0,2 1,0,1

124 0.4 6 2 0.5 6 2 1.2 6 2 0.4 4,0,2 1,0,1

125 0.7 6 2 0.8 6 2 1.2 6 2 0.5 4,0,2 1,0,1

126 0.1 1 0 0.2 1 0 1.4 8 0 0.8

127 1.5 10 4 1.8 10 4 2.7 12 4 0.8 4,4,0,4 1,1,0,2

128 1.2 10 4 1.7 10 4 2.4 10 4 0.8 6,0,4 2,0,2

129 1.1 12 5 1.6 12 5 2.2 12 5 0.7 6,2,4 2,1,2

130 4.1 23 10 6.8 23 10 4.9 23 10 0.9 10,4,9 4,2,4

131 1.8 15 6 3.1 15 6 2.6 15 6 0.7 6,4,5 2,2,2

132 600.0 2635 | 5.7 20 9 3.1 10 4 0.8 6,0,4 2,0,2
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Prob Prodigy + EBL Prodigy + Static Prodigy + Alpine + HCR

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

133 2.4 10 4 2.2 12 5 2.7 14 5 0.8 4,4,2,4 1,1,1,2

134 1.0 10 4 1.3 10 4 2.2 10 4 0.7 6,0,4 2,0,2

135 1.4 10 4 1.7 10 4 2.2 12 4 0.7 4,4,0,4 1,1,0,2

136 1.3 10 4 1.7 10 4 2.3 10 4 0.8 6,0,4 2,0,2

137 1.8 12 5 2.4 12 5 2.4 14 5 0.8 4,4,2,4 1,1,1,2

138 1.4 10 4 1.6 10 4 2.2 12 4 0.7 4,4,0,4 1,1,0,2

139 1.6 14 6 2.5 14 6 2.5 14 6 0.8 6,4,4 2,2,2

140 3.0 15 6 7.0 22 10 3.6 15 6 1.0 8,0,7 3,0,3

141 1.6 14 6 2.5 14 6 2.5 14 6 0.8 6,4,4 2,2,2

142 2.0 12 5 2.6 12 5 2.5 14 5 0.8 4,4,2,4 1,1,1,2

143 2.0 11 4 2.4 11 4 2.0 11 4 0.8 6,0,5 2,0,2

144 1.6 10 4 2.0 10 4 2.2 12 4 0.7 4,4,0,4 1,1,0,2

145 600.0 2504 | 600.0 1658 | 4.4 21 0 0.8

146 1.0 10 4 1.4 10 4 2.3 10 4 0.8 6,0,4 2,0,2

147 1.6 10 4 2.0 10 4 2.3 12 4 0.8 4,4,0,4 1,1,0,2

148 1.1 10 4 1.4 10 4 2.1 10 4 0.7 6,0,4 2,0,2

149 1.4 10 4 1.7 10 4 2.2 12 4 0.7 4,4,0,4 1,1,0,2

150 1.4 12 5 2.0 12 5 2.2 12 5 0.6 6,2,4 2,1,2

151 2.7 17 7 6.0 21 9 4.6 17 7 1.1 8,2,7 3,1,3

152 12.9 74 6 4.2 14 6 3.5 16 6 1.3 4,6,0,6 1,2,0,3

153 4.0 17 7 6.1 17 7 3.5 19 7 1.1 6,4,2,7 2,1,1,3

154 12.6 75 6 4.6 15 6 3.9 17 6 1.2 6,4,0,7 2,1,0,3

155 1.9 14 6 2.8 14 6 3.0 14 6 1.0 8,0,6 3,0,3

156 2.6 14 6 3.5 14 6 3.9 16 6 1.1 4,6,0,6 1,2,0,3

157 3.1 18 8 4.8 18 8 3.9 18 8 1.0 8,4,6 3,2,3

158 0.1 1 0 0.1 1 0 1.7 8 0 1.1

159 2.4 16 7 3.6 16 7 3.9 16 7 1.0 8,2,6 3,1,3

160 2.2 14 6 3.1 14 6 4.2 14 6 1.0 8,0,6 3,0,3

161 3.9 15 6 3.6 14 6 3.2 17 6 1.1 6,4,0,7 2,1,0,3

162 4.6 16 7 4.6 16 7 4.3 16 7 1.2 8,2,6 3,1,3

163 2.5 14 6 3.3 14 6 3.2 16 6 1.0 4,6,0,6 1,2,0,3

164 3.4 14 6 3.8 16 7 3.9 18 7 1.0 4,6,2,6 1,2,1,3

165 0.1 1 0 0.1 1 0 1.4 1 0 1.3

166 7.0 29 13 12.7 29 13 4.1 16 7 1.3 8,2,6 3,1,3

167 2.1 14 6 2.9 14 6 3.4 14 6 1.0 8,0,6 3,0,3

168 600.0 1291 | 8.9 24 11 10.5 34 11 1.1 22,2,10 5,1,5

169 3.0 14 6 3.8 16 7 3.8 18 7 1.0 4,6,2,6 1,2,1,3

170 3.0 16 7 4.0 16 7 3.5 18 7 1.1 4,6,2,6 1,2,1,3

171 7.7 26 12 10.0 26 11 6.7 26 12 1.2 12,4,10 5,2,5

172 0.1 1 0 0.1 1 0 1.3 1 0 1.1

173 2.6 16 7 4.6 18 8 3.9 16 7 1.0 8,2,6 3,1,3

174 6.0 22 10 11.4 24 11 4.8 24 10 1.4 4,6,4,10 1,2,2,5

175 3.4 15 6 4.2 15 6 3.3 17 6 1.1 6,4,0,7 2,1,0,3

176 5.9 25 11 5.7 19 8 6.4 20 9 1.3 10,2,8 4,1,4
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Prob Prodigy + EBL Prodigy + Static Prodigy + Alpine + HCR

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

177 5.2 18 8 7.0 18 8 5.7 20 8 1.4 4,8,0,8 1,3,0,4

178 5.0 20 9 7.2 20 9 6.4 22 9 1.5 4,8,2,8 1,3,1,4

179 0.1 1 0 0.1 1 0 2.2 8 0 1.5

180 5.8 19 8 6.9 20 9 5.1 23 9 1.3 6,6,2,9 2,2,1,4

181 5.6 20 9 7.1 20 9 6.2 22 9 1.4 4,8,2,8 1,3,1,4

182 4.0 19 8 5.5 19 8 5.7 19 8 1.4 10,0,9 4,0,4

183 122.4 228 15 19.1 33 15 7.3 23 10 1.6 10,4,9 4,2,4

184 16.4 37 17 45.6 48 21 8.6 24 11 1.7 12,2,10 5,1,5

185 5.2 21 9 8.9 22 10 8.0 24 10 1.6 4,8,4,8 1,3,2,4

186 6.0 25 11 9.9 25 11 5.7 25 11 1.4 10,6,9 4,3,4

187 11.0 33 15 32.1 63 15 8.9 35 15 1.7 4,13,6,12 1,5,3,6

188 3.7 20 9 5.6 20 9 6.2 20 9 1.5 10,2,8 4,1,4

189 6.3 21 9 8.7 21 9 4.6 23 9 1.3 6,6,2,9 2,2,1,4

190 3.8 18 8 5.1 18 8 5.8 20 8 1.4 4,8,0,8 1,3,0,4

191 12.0 33 14 19.5 33 14 9.2 33 14 1.6 15,4,14 6,2,6

192 0.1 1 0 0.1 1 0 1.8 8 0 1.4

193 5.5 21 9 8.9 23 10 5.3 25 10 1.5 6,6,4,9 2,2,2,4

194 600.0 1174 | 15.3 30 14 9.1 27 12 1.5 14,0,13 6,0,6

195 4.0 18 8 6.5 20 9 6.0 18 8 1.6 10,0,8 4,0,4

196 7.9 26 12 13.0 28 13 8.7 26 12 1.5 14,0,12 6,0,6

197 11.1 30 13 19.1 32 14 5.3 22 9 1.8 4,8,2,8 1,3,1,4

198 4.2 18 8 5.7 18 8 5.4 20 8 1.4 4,8,0,8 1,3,0,4

199 5.9 21 9 7.0 21 9 4.6 23 9 1.3 6,6,2,9 2,2,1,4

200 12.2 36 15 19.7 36 15 12.9 36 15 1.6 17,6,13 6,3,6

201 9.8 25 11 14.5 26 12 11.6 35 15 1.8 6,10,6,13 2,4,3,6

202 0.1 1 0 0.1 1 0 3.3 21 0 1.8

203 6.7 23 10 9.8 23 10 9.2 23 10 1.7 12,0,11 5,0,5

204 600.0 1903 | 11.9 25 11 6.8 27 11 1.8 6,8,2,11 2,3,1,5

205 10.2 28 12 15.5 28 12 6.4 30 12 1.9 6,8,4,12 2,3,2,5

206 600.0 592 | 600.0 659 | 600.0 607 | 2.1

207 8.1 23 10 10.5 23 10 8.7 25 10 1.9 6,8,0,11 2,3,0,5

208 17.3 37 17 27.7 37 17 18.5 37 17 2.1 17,6,14 7,3,7

209 9.4 27 12 13.0 26 12 8.1 29 12 1.8 6,8,4,11 2,3,2,5

210 600.0 743 | 600.0 595 | 46.5 68 0 2.2

211 8.3 27 12 12.5 27 12 8.5 29 12 1.8 4,10,4,11 1,4,2,5

212 8.4 25 10 14.2 27 12 12.8 29 12 1.7 4,10,4,11 1,4,2,5

213 6.7 24 11 10.2 24 11 8.4 24 11 1.8 12,2,10 5,1,5

214 8.1 24 11 13.2 26 12 14.7 34 15 1.9 4,12,6,12 1,5,3,6

215 0.1 1 0 0.2 1 0 2.0 1 0 1.7

216 41.8 81 17 32.1 41 19 18.3 41 17 2.0 18,6,17 7,3,7

217 8.0 26 11 11.7 26 11 8.1 26 11 1.4 12,2,12 5,1,5

218 0.1 1 0 0.1 1 0 2.6 8 0 2.0

219 600.0 1758 | 11.9 24 11 7.2 26 11 1.9 4,10,2,10 1,4,1,5

220 16.4 36 16 24.9 36 16 19.0 38 16 2.0 4,14,4,16 1,6,2,7
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Prob Prodigy + EBL Prodigy + Static Prodigy + Alpine + HCR

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

221 0.1 1 0 0.1 1 0 3.6 21 0 1.9

222 600.0 436 | 600.0 516 | 39.4 74 0 2.0

223 112.8 168 16 35.2 66 17 15.0 38 17 2.1 4,14,6,14 1,6,3,7

224 10.5 28 13 12.5 25 11 14.6 32 14 1.6 4,12,4,12 1,5,2,6

225 600.0 651 | 25.1 35 16 18.8 42 15 1.9 4,22,2,14 1,6,1,7

226 600.0 709 | 39.0 37 17 15.0 33 15 2.4 14,6,13 6,3,6

227 0.1 1 0 0.2 1 0 4.1 21 0 2.3

228 0.1 1 0 0.2 1 0 2.7 8 0 2.1

229 0.1 1 0 0.2 1 0 3.5 8 0 2.3

230 0.1 1 0 0.1 1 0 3.1 8 0 2.4

231 0.1 1 0 0.2 1 0 3.7 21 0 2.1

232 13.2 29 13 18.3 29 13 14.4 31 13 2.2 4,12,2,13 1,5,1,6

233 0.1 1 0 0.2 1 0 4.8 21 0 2.3

234 600.0 698 | 34.9 40 19 10.1 31 13 2.3 4,12,2,13 1,5,1,6

235 13.7 29 13 17.7 28 13 12.5 31 13 2.2 6,10,2,13 2,4,1,6

236 118.5 208 16 21.4 30 14 14.0 32 14 2.2 4,12,4,12 1,5,2,6

237 50.6 89 15 29.1 35 15 11.0 37 15 2.4 4,12,6,15 1,5,3,6

238 600.0 517 | 46.8 45 20 17.0 47 20 2.4 4,16,8,19 1,7,4,8

239 600.0 877 | 600.0 712 | 69.6 115 0 2.3

240 600.0 713 | 37.9 40 19 17.3 43 19 2.3 6,14,6,17 2,6,3,8

241 12.1 32 15 20.3 32 15 13.0 32 15 2.1 14,6,12 6,3,6

242 600.0 307 | 600.0 439 | 600.0 374 | 2.4

243 600.0 751 | 600.0 561 | 526.1 415 0 2.3

244 11.6 28 12 15.6 28 12 19.2 43 17 1.7 4,18,2,19 1,7,1,8

245 0.2 1 0 0.2 1 0 2.3 1 0 2.1

246 0.1 1 0 0.1 1 0 4.2 21 0 2.2

247 0.1 1 0 0.2 1 0 2.6 1 0 2.9

248 0.1 1 0 0.2 1 0 2.9 8 0 2.5

249 0.1 1 0 0.1 1 0 7.5 69 0 2.1

250 22.9 40 19 70.5 72 20 20.5 44 20 2.5 4,16,8,16 1,7,4,8



Appendix D

STRIPS Robot Planning Domain

This is the original strips robot planning domain [Fikes and Nilsson, 1971] as it is

encoded in prodigy. The only di�erences are that the variable arguments are typed

and the deletes are changed into conditional deletes. The numbers after the precon-

ditions are the criticalities that abstrips assigned and are used in the comparison

with alpine.

D.1 Problem Space De�nition

(GOTO-BOX

(params (<box> <room>))

(preconds (and

(is-type <box> box) ;(6)

(in-room <box> <room>) ;(5)

(in-room robot <room>) ;(3)

))

(effects ((if (at robot <loc.1> <loc.2>)(del (at robot <loc.1> <loc.2>)))

(if (next-to robot <box.1>)(del (next-to robot <box.1>)))

(if (next-to robot <door.1>)(del (next-to robot <door.1>)))

(add (next-to robot <box>)))))

(GOTO-DOOR

(params (<door> <room.x>))

(preconds (and

(is-type <door> door) ;(6)

(connects <door> <room.x> <room.y>) ;(6)

(in-room robot <room.x>))) ;(3)

(effects

((if (at robot <loc.1> <loc.2>)(del (at robot <loc.1> <loc.2>)))

(if (next-to robot <box.1>)(del (next-to robot <box.1>)))

(if (next-to robot <door.1>)(del (next-to robot <door.1>)))

177
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(add (next-to robot <door>)))))

(GOTO-LOC

(params (<loc.x> <loc.y> <room.x>))

(preconds (and

(loc-in-room <loc.x> <loc.y> <room.x>) ;(6)

(in-room robot <room.x>))) ;(3)

(effects

((if (at robot <loc.1> <loc.2>)(del (at robot <loc.1> <loc.2>)))

(if (next-to robot <box.1>)(del (next-to robot <box.1>)))

(if (next-to robot <door.1>)(del (next-to robot <door.1>)))

(add (at robot <loc.x> <loc.y>)))))

(PUSH-BOX

(params (<box.x> <box.y>))

(preconds (and

(is-type <box.y> box) ;(6)

(pushable <box.x>) ;(6)

(in-room <box.y> <room.x>) ;(5)

(in-room <box.x> <room.x>) ;(5)

(in-room robot <room.x>) ;(3)

(next-to robot <box.x>))) ;(2)

(effects

((if (at robot <loc.1> <loc.2>)(del (at robot <loc.1> <loc.2>)))

(if (next-to robot <box.1>)(del (next-to robot <box.1>)))

(if (next-to robot <door.1>)(del (next-to robot <door.1>)))

(if (at <box.x> <loc.3> <loc.4>)(del (at <box.x> <loc.3> <loc.4>)))

(if (next-to <box.x> <box.2>)(del (next-to <box.x> <box.2>)))

(if (next-to <box.x> <door.2>)(del (next-to <box.x> <door.2>)))

(if (next-to <box.3> <box.x>)(del (next-to <box.3> <box.x>)))

(add (next-to <box.y> <box.x>))

(add (next-to <box.x> <box.y>))

(add (next-to robot <box.x>)))))

(PUSH-TO-DOOR

(params (<box> <door> <room.x>))

(preconds (and

(connects <door> <room.x> <room.y>) ;(6)

(pushable <box>) ;(6)

(is-type <door> door) ;(6)

(in-room <box> <room.x>) ;(5)

(in-room robot <room.x>) ;(3)

(next-to robot <box>))) ;(2)

(effects

((if (at robot <loc.1> <loc.2>)(del (at robot <loc.1> <loc.2>)))

(if (next-to robot <box.1>)(del (next-to robot <box.1>)))

(if (next-to robot <door.1>)(del (next-to robot <door.1>)))

(if (at <box> <loc.3> <loc.4>)(del (at <box> <loc.3> <loc.4>)))
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(if (next-to <box> <box.2>)(del (next-to <box> <box.2>)))

(if (next-to <box> <door.2>)(del (next-to <box> <door.2>)))

(if (next-to <box.3> <box>)(del (next-to <box.3> <box>)))

(add (next-to <box> <door>))

(add (next-to robot <box>)))))

(PUSH-TO-LOC

(params (<box> <loc.x> <loc.y>))

(preconds (and

(pushable <box>) ;(6)

(loc-in-room <loc.x> <loc.y> <room.x>) ;(6)

(in-room <box> <room.x>) ;(5)

(in-room robot <room.x>) ;(3)

(next-to robot <box>))) ;(2)

(effects

((if (at robot <loc.1> <loc.2>)(del (at robot <loc.1> <loc.2>)))

(if (next-to robot <box.1>)(del (next-to robot <box.1>)))

(if (next-to robot <door.1>)(del (next-to robot <door.1>)))

(if (at <box> <loc.3> <loc.4>)(del (at <box> <loc.3> <loc.4>)))

(if (next-to <box> <box.2>)(del (next-to <box> <box.2>)))

(if (next-to <box> <door.2>)(del (next-to <box> <door.2>)))

(if (next-to <box.3> <box>)(del (next-to <box.3> <box>)))

(add (at <box> <loc.x> <loc.y>))

(add (next-to robot <box>)))))

(GO-THRU-DOOR

(params (<door> <room.y> <room.x>))

(preconds (and

(connects <door> <room.y> <room.x>) ;(6)

(is-type <door> door) ;(6)

(is-type <room.x> room) ;(6)

(in-room robot <room.y>) ;(3)

(status <door> open))) ;(1)

(effects

((if (at robot <loc.1> <loc.2>)(del (at robot <loc.1> <loc.2>)))

(if (next-to robot <box.1>)(del (next-to robot <box.1>)))

(if (next-to robot <door.1>)(del (next-to robot <door.1>)))

(if (in-room robot <room.y>)(del (in-room robot <room.y>)))

(add (in-room robot <room.x>)))))

(PUSH-THRU-DOOR

(params (<box> <door> <room.y> <room.x>))

(preconds (and

(connects <door> <room.y> <room.x>) ;(6)

(pushable <box>) ;(6)

(is-type <door> door) ;(6)

(is-type <room.x> room) ;(6)

(in-room <box> <room.y>) ;(5)
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(next-to <box> <door>) ;(4)

(in-room robot <room.y>) ;(3)

(next-to robot <box>) ;(2)

(status <door> open))) ;(1)

(effects

((if (at robot <loc.1> <loc.2>)(del (at robot <loc.1> <loc.2>)))

(if (next-to robot <box.1>)(del (next-to robot <box.1>)))

(if (next-to robot <door.1>)(del (next-to robot <door.1>)))

(if (at <box> <loc.3> <loc.4>)(del (at <box> <loc.3> <loc.4>)))

(if (next-to <box> <box.2>)(del (next-to <box> <box.2>)))

(if (next-to <box> <door.2>)(del (next-to <box> <door.2>)))

(if (next-to <box.3> <box>)(del (next-to <box.3> <box>)))

(if (in-room robot <room.y>)(del (in-room robot <room.y>)))

(if (in-room <box> <room.y>)(del (in-room <box> <room.y>)))

(add (in-room robot <room.x>))

(add (in-room <box> <room.x>))

(add (next-to robot <box>)))))

(OPEN-DOOR

(params (<door>))

(preconds (and

(is-type <door> door) ;(6)

(next-to robot <door>) ;(2)

(status <door> closed))) ;(1)

(effects

((if (status <door> closed)(del (status <door> closed)))

(add (status <door> open)))))

(CLOSE-DOOR

(params (<door>))

(preconds (and

(is-type <door> door) ;(6)

(next-to robot <door>) ;(2)

(status <door> open))) ;(1)

(effects

((if (status <door> open)(del (status <door> open)))

(add (status <door> closed)))))

(setq *AXIOMS*

'(((next-to <box.1-1> <box.2-1>) . ((inroom <box.1-1> <room.1-1>)

(inroom <box.2-1> <room.1-1>)))

((next-to robot <box.1-2>) . ((in-room <box.1-2> <room.1-2>)

(in-room robot <room.1-2>)))

((next-to robot <door.1-3>) .

((connects <door.1-3> <room.x-3> <room.y-3>)

(in-room robot <room.x-3>)))

((~ (status <door.1-4> closed)) . ((status <door.1-4> open)))

((~ (status <door.1-5> open)) . ((status <door.1-5> closed)))
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))

(setq *VARIABLE-TYPING* '(

(isa 'robot 'type)(isa 'box 'object)(isa 'door 'object)

(isa 'object 'type)(isa 'room 'type)(isa 'loc 'type)

(isa 'status 'type)

(isa-instance 'open 'status)(isa-instance 'closed 'status)

(isa-instance 'robot 'robot)(isa-instance 'a 'box)

(isa-instance 'b 'box)(isa-instance 'c 'box)

(isa-instance 'd 'box)(isa-instance 'e 'box)

(isa-instance 'f 'box)(isa-instance 'room1 'room)

(isa-instance 'room2 'room)(isa-instance 'room3 'room)

(isa-instance 'room4 'room)(isa-instance 'room5 'room)

(isa-instance 'room6 'room)(isa-instance 'room7 'room)

(isa-instance 'door12 'door)(isa-instance 'door23 'door)

(isa-instance 'door34 'door)(isa-instance 'door25 'door)

(isa-instance 'door56 'door)(isa-instance 'door26 'door)

(isa-instance 'door36 'door)(isa-instance 'door67 'door)))

(setq *PRIMARY* '(

((next-to robot <box>) . (GOTO-BOX))

((next-to robot <door>) . (GOTO-DOOR))

((at robot <loc.x> <loc.y>) . (GOTO-LOC))

((next-to <box.1> <box.2>) . (PUSH-BOX))

((next-to <box> <door>) . (PUSH-TO-DOOR))

((at box <loc.x> <loc.y>) . (PUSH-TO-LOC))

((in-room robot <room>) . (GO-THRU-DOOR))

((in-room <box> <room>) . (PUSH-THRU-DOOR))

((status <door> open) . (OPEN-DOOR))

((status <door> closed) . (CLOSE-DOOR))))

Example Problem:

Goal: '(and (in-room a room1) (status door56 closed)

(status door12 closed) (in-room robot room3)

(in-room b room6))

Initial State:

'((connects door67 room7 room6)(connects door67 room6 room7)

(connects door56 room6 room5)(connects door56 room5 room6)

(connects door36 room6 room3)(connects door36 room3 room6)

(connects door26 room6 room2)(connects door26 room2 room6)

(connects door25 room5 room2)(connects door25 room2 room5)

(connects door34 room4 room3)(connects door34 room3 room4)

(connects door23 room3 room2)(connects door23 room2 room3)

(connects door12 room2 room1)(connects door12 room1 room2)

(next-to d door36) (status door67 closed)

(status door56 open) (status door36 open) (status door26 open)
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(status door25 closed) (status door34 open) (status door23 open)

(status door12 open) (is-type room7 room) (is-type room6 room)

(is-type room5 room) (is-type room4 room) (is-type room3 room)

(is-type room2 room) (is-type room1 room) (is-type door67 door)

(is-type door56 door) (is-type door36 door)

(is-type door26 door) (is-type door25 door)

(is-type door34 door) (is-type door23 door)

(is-type door12 door) (pushable e) (pushable d) (pushable c)

(pushable b) (pushable a) (is-type e box) (is-type d box)

(is-type c box) (is-type b box) (is-type a box)

(in-room e room5) (in-room d room6) (in-room c room4)

(in-room b room7) (in-room a room2) (in-room robot room2))

D.2 Experimental Results

The experiments in this domain were run in CMU Common Lisp on a IBM RT Model

130 with 16 megabytes of memory. The tables below compares prodigy without

any control knowledge, prodigy with the abstractions generated by abstrips, and

prodigy with the abstractions generated by alpine.

The entries in the table are de�ned as follows:

Prob Num The problem number.

Time Total CPU time used in solving the problem. A 600 CPU second time bound

was imposed on all problems.

Nodes Total number of nodes searched in solving the problem.

Len Length of the solution found. Zero if no solution exists.

ACT Time required to create the abstraction hierarchy. This time is also included

in the total CPU time for ALPINE.

AbNodes Nodes searched at each level in the hierarchy. Ordered from more abstract

to less abstract levels.

AbLen Solution length found at each level in the hierarchy. Ordered from more

abstract to less abstract levels.
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Prob Prodigy Prodigy + Abstrips Prodigy + Alpine

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

1 3.7 37 16 4.4 33 13 8.3 37 16 0.6 19,4,14 7,2,7

2 6.7 69 28 5.8 36 16 12.3 59 25 0.4 31,8,20 12,3,10

3 1.3 21 8 3.2 30 12 3.0 23 8 0.4 4,12,7 1,4,3

4 2.6 30 12 1.9 16 6 2.3 15 5 0.4 4,4,7 1,1,3

5 4.1 46 20 4.3 35 15 9.9 48 20 0.7 22,16,10 8,7,5

6 1.6 28 12 2.8 23 9 3.5 30 12 0.4 4,18,8 1,7,4

7 3.8 51 22 1.7 16 7 2.3 18 7 0.4 4,8,6 1,3,3

8 0.7 15 6 1.1 12 4 1.6 15 6 0.3 11,4 4,2

9 6.5 72 24 8.1 56 23 13.1 72 24 0.4 50,0,22 13,0,11

10 4.7 50 21 3.7 26 11 5.6 29 13 0.4 13,4,12 5,2,6

11 4.7 52 23 9.9 75 30 10.3 51 23 0.6 20,13,18 9,5,9

12 4.7 52 23 6.8 46 21 8.8 53 24 0.4 15,6,32 5,3,16

13 1.4 32 10 2.9 34 13 2.5 32 10 0.3 26,6 7,3

14 4.3 56 24 5.7 48 22 9.0 66 26 0.4 13,32,21 4,12,10

15 2.9 39 8 4.9 34 12 4.3 24 10 0.4 6,12,6 2,5,3

16 4.1 55 21 3.9 37 15 7.5 42 18 0.4 14,10,18 6,3,9

17 2.9 37 14 2.1 16 7 2.9 21 7 0.5 4,10,7 1,3,3

18 2.0 39 16 1.8 24 10 3.5 39 16 0.3 29,10 11,5

19 2.9 43 11 5.4 47 18 4.2 29 11 0.4 8,10,11 2,4,5

20 4.0 52 21 4.8 40 17 8.9 54 21 0.4 21,23,10 7,9,5

21 1.4 20 8 2.1 18 8 2.9 21 8 0.4 4,11,6 1,4,3

22 4.4 62 19 6.8 49 20 8.2 44 19 0.4 19,9,16 7,4,8

23 2.7 29 11 3.2 29 11 6.8 30 11 0.5 20,6,4 7,2,2

24 2.7 34 14 4.3 31 14 6.2 36 14 0.4 15,15,6 5,6,3

25 3.6 42 16 5.7 46 16 8.1 41 16 0.6 19,10,12 7,3,6

26 23.7 494 16 41.3 502 12 8.0 46 18 0.6 15,23,8 5,9,4

27 4.6 63 25 6.6 69 24 5.2 41 16 0.6 4,27,10 1,10,5

28 12.4 287 12 6.6 75 22 3.4 22 9 0.6 4,10,8 1,4,4

29 5.9 65 27 7.4 53 22 9.3 52 22 0.8 13,23,16 5,9,8

30 9.1 183 27 34.2 388 21 10.0 83 17 0.7 16,61,6 7,7,3

31 14.3 151 41 11.6 87 31 18.8 122 19 0.7 99,15,8 9,6,4

32 10.0 99 42 183.9 2318 27 23.3 97 42 0.8 55,24,18 23,10,9

33 9.4 97 43 13.9 98 41 14.8 81 37 0.7 18,24,39 8,10,19

34 3.2 41 16 3.6 28 12 4.5 30 12 0.7 6,16,8 2,6,4

35 8.3 101 22 10.8 79 33 15.4 103 22 0.7 69,26,8 9,9,4

36 6.9 76 31 8.0 54 25 15.9 78 31 0.8 34,34,10 13,13,5

37 1.4 20 8 15.6 259 19 2.8 18 7 0.6 4,6,8 1,2,4

38 45.1 927 24 21.3 415 33 20.9 327 21 0.7 16,301,10 7,9,5

39 6.0 73 26 16.6 164 28 13.2 75 27 0.7 33,30,12 10,11,6

40 7.9 99 33 8.9 70 29 16.4 101 33 0.6 53,32,16 13,12,8

41 4.8 61 25 7.9 63 26 5.8 41 16 0.6 8,21,12 3,7,6

42 3.9 51 20 4.8 38 18 9.1 50 20 0.7 19,23,8 7,9,4

43 6.1 65 21 16.7 142 18 13.2 48 21 0.9 30,8,10 13,3,5

44 5.8 65 26 8.2 77 17 8.9 42 18 0.7 16,12,14 7,4,7
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Prob Prodigy Prodigy + Abstrips Prodigy + Alpine

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

45 4.1 46 19 7.5 48 20 9.0 50 20 0.6 15,18,17 5,7,8

46 4.3 62 20 6.8 52 21 7.9 58 18 0.5 30,18,10 5,8,5

47 6.7 81 21 11.5 80 30 9.4 51 22 0.6 15,16,20 5,7,10

48 2.0 29 12 3.2 30 13 4.0 29 12 0.6 4,15,10 1,6,5

49 16.8 408 18 19.0 392 13 19.0 319 18 0.5 14,297,8 5,9,4

50 18.3 414 36 18.3 284 31 9.1 132 18 0.6 6,112,14 2,9,7

51 4.1 58 16 12.3 175 19 8.1 72 14 0.8 10,46,16 3,4,7

52 6.9 89 31 10.3 83 33 10.6 69 30 0.8 13,23,33 5,10,15

53 11.1 109 42 13.0 97 36 21.7 93 37 1.2 54,15,24 19,6,12

54 4.0 49 21 6.8 47 20 7.6 41 17 0.9 12,21,8 5,8,4

55 10.4 113 46 150.5 1801 53 23.2 111 46 1.1 58,21,32 21,9,16

56 22.0 480 29 24.6 491 23 11.6 189 19 0.7 4,174,11 1,13,5

57 15.5 173 48 9.4 74 31 31.9 228 32 1.0 183,33,12 14,12,6

58 9.7 112 50 28.0 362 57 19.0 91 40 0.9 40,29,22 17,12,11

59 13.4 165 41 18.7 129 51 22.8 159 38 1.0 110,29,20 16,12,10

60 3.8 44 18 15.3 201 30 9.0 44 18 0.9 20,14,10 7,6,5

61 8.2 85 35 14.6 106 42 17.9 82 35 1.1 37,21,24 15,8,12

62 11.9 151 33 38.0 444 32 17.5 113 31 1.1 75,20,18 13,9,9

63 59.3 1141 42 548.4 5229 51 19.3 94 40 0.9 37,41,16 16,16,8

64 23.7 488 31 13.7 208 30 10.8 69 28 0.8 15,31,23 5,12,11

65 5.0 60 24 21.8 332 28 6.1 39 16 0.8 8,21,10 3,8,5

66 7.9 88 35 135.7 1533 28 14.7 79 32 0.8 39,18,22 13,8,11

67 16.1 192 46 489.0 7625 47 27.2 156 46 1.0 95,45,16 21,17,8

68 6.2 64 25 9.7 67 27 14.7 67 26 0.7 36,23,8 14,8,4

69 8.5 98 26 225.0 4273 24 10.0 56 23 0.8 15,20,21 5,8,10

70 5.6 58 24 4.6 32 15 6.4 43 18 0.8 6,22,15 2,9,7

71 7.5 92 40 12.4 96 41 14.7 95 40 0.8 14,46,35 6,18,16

72 7.4 64 27 69.8 734 30 13.4 50 23 0.8 26,2,22 11,1,11

73 3.2 46 20 3.6 30 14 5.5 39 16 0.7 4,23,12 1,9,6

74 7.5 93 39 13.4 112 45 10.4 73 31 0.8 10,35,28 4,14,13

75 4.6 52 22 6.8 48 21 8.8 55 22 0.8 8,28,19 3,10,9

76 5.6 57 24 80.6 1422 26 10.8 43 19 1.0 17,18,8 7,8,4

77 61.9 1168 44 136.4 1299 34 29.1 106 44 1.1 67,13,26 26,5,13

78 24.6 250 55 600.0 9947 | 33.2 183 40 1.5 141,18,24 21,7,12

79 12.5 145 43 20.7 137 56 25.1 147 43 1.0 100,27,20 21,12,10

80 13.0 219 35 415.5 3593 43 17.8 91 37 1.0 39,30,22 15,11,11

81 13.1 131 32 9.3 72 28 15.5 92 23 1.3 59,21,12 9,8,6

82 7.6 92 25 8.6 69 27 13.2 91 24 1.1 59,16,16 9,7,8

83 7.6 66 27 16.7 129 44 13.1 58 26 1.2 10,12,18,18 4,5,8,9

84 21.4 226 33 17.9 111 44 21.1 112 23 1.4 96,6,10 15,3,5

85 5.6 75 29 600.0 12506 | 12.5 98 38 1.0 8,62,28 3,22,13

86 42.6 883 52 15.8 117 50 29.5 203 45 1.1 66,125,12 26,13,6

87 6.1 89 31 10.1 81 35 10.7 72 31 0.9 12,38,22 4,16,11

88 14.5 259 25 83.0 1631 19 10.2 114 19 0.9 6,93,15 2,10,7
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Prob Prodigy Prodigy + Abstrips Prodigy + Alpine

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

89 6.0 75 30 98.8 2007 29 9.5 61 25 1.0 8,34,19 3,13,9

90 72.6 1534 31 52.1 596 33 13.4 135 28 1.0 11,97,27 4,11,13

91 8.2 86 37 270.2 2968 26 18.1 101 40 1.2 37,42,22 14,15,11

92 5.5 65 26 323.5 5696 25 12.0 69 27 1.5 8,10,31,20 3,4,10,10

93 2.6 38 17 6.3 65 21 7.2 44 19 1.0 8,26,10 3,11,5

94 12.2 127 44 16.3 109 41 22.8 107 37 1.1 69,22,16 20,9,8

95 18.3 184 46 114.7 1275 40 28.1 162 37 1.4 125,13,24 19,6,12

96 120.2 2460 40 158.3 3291 40 17.7 77 33 1.1 40,23,14 16,10,7

97 8.4 89 38 600.0 9209 | 18.8 89 38 1.1 44,23,22 17,10,11

98 8.4 87 37 14.7 106 35 19.9 86 37 1.4 45,19,22 19,7,11

99 101.5 2020 55 26.8 335 43 28.7 273 41 1.1 84,165,24 17,12,12

100 36.0 786 38 27.7 447 30 24.5 392 32 1.0 17,344,31 6,11,15

101 8.7 73 31 54.4 582 35 20.5 73 30 1.8 22,18,21,12 8,8,8,6

102 13.5 134 58 14.4 92 40 31.7 220 53 1.5 60,136,24 25,16,12

103 35.5 677 56 125.6 2326 40 17.4 81 34 1.1 42,23,16 16,10,8

104 4.2 44 19 23.4 306 26 9.2 43 18 1.3 19,12,12 7,5,6

105 30.2 665 32 10.9 75 33 13.3 71 31 1.2 24,29,18 9,13,9

106 8.1 77 33 7.4 47 19 14.6 69 30 1.1 25,26,18 10,11,9

107 75.3 1112 94 600.0 8977 | 51.0 410 49 1.3 345,41,24 20,17,12

108 8.6 82 33 100.7 1785 31 14.6 67 27 1.1 31,24,12 13,8,6

109 9.5 96 34 600.0 8762 | 21.3 107 37 1.1 65,22,20 19,8,10

110 11.8 106 34 165.0 1762 21 17.8 73 31 1.3 37,20,16 15,8,8

111 219.4 2995 31 15.3 104 43 21.6 109 35 1.8 63,24,22 14,10,11

112 7.2 80 34 14.5 105 44 13.7 75 32 1.2 19,27,29 7,11,14

113 10.4 138 47 50.0 826 51 14.3 114 33 1.2 14,70,30 6,13,14

114 7.2 86 35 152.5 1878 36 15.0 77 31 1.3 32,29,16 12,11,8

115 10.8 127 33 600.0 9792 | 28.8 594 22 1.1 10,566,18 4,9,9

116 8.8 97 39 15.6 119 45 14.8 74 29 1.1 32,26,16 12,9,8

117 8.8 80 31 8.0 47 22 17.7 74 30 1.4 42,18,14 16,7,7

118 9.5 109 47 600.0 10149 | 16.4 96 39 1.1 30,44,22 11,17,11

119 7.4 88 29 600.0 10161 | 12.9 67 25 1.1 30,23,14 10,8,7

120 6.7 77 32 9.5 75 34 13.8 75 29 1.4 27,34,14 10,12,7

121 4.1 48 21 180.8 2073 31 8.2 47 21 1.4 8,25,14 3,11,7

122 8.7 103 37 12.4 87 37 19.6 104 37 1.1 42,46,16 17,12,8

123 36.1 333 65 25.1 151 63 35.7 181 44 1.4 144,19,18 27,8,9

124 93.0 1357 79 600.0 7919 | 70.6 529 59 1.4 468,39,22 31,17,11

125 12.6 124 49 18.1 119 42 28.5 126 50 1.6 67,41,18 25,16,9

126 9.0 77 33 166.6 1240 46 22.0 81 34 2.0 22,18,27,14 8,8,11,7

127 17.9 157 67 600.0 8442 | 35.1 144 61 1.7 77,41,26 31,17,13

128 35.3 677 56 243.7 4503 41 17.7 81 34 1.2 42,23,16 16,10,8

129 8.2 75 33 27.4 320 33 16.4 73 30 1.5 34,25,14 13,10,7

130 51.6 1084 43 600.0 11080 | 20.4 103 43 1.5 39,44,20 15,18,10

131 8.3 77 33 7.9 51 21 14.6 69 30 1.3 25,26,18 10,11,9

132 124.1 1798 123 600.0 9131 | 53.0 416 52 1.5 347,43,26 21,18,13
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Prob Prodigy Prodigy + Abstrips Prodigy + Alpine

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

133 11.2 110 40 108.2 1793 36 16.9 71 29 1.3 37,20,14 15,7,7

134 10.7 113 40 600.0 8619 | 22.1 113 40 1.3 65,26,22 19,10,11

135 15.9 124 41 197.0 2048 23 23.5 86 36 1.6 50,18,18 20,7,9

136 18.3 190 56 138.8 1383 40 22.8 109 35 2.2 63,24,22 14,10,11

137 8.1 82 35 600.0 10584 | 17.5 79 34 1.4 36,27,16 15,11,8

138 12.2 162 57 44.0 694 50 15.2 118 35 1.4 14,72,32 6,14,15

139 12.4 135 54 257.1 3142 44 25.5 125 49 1.5 61,42,22 22,16,11

140 12.6 146 40 600.0 10072 | 36.2 729 26 1.3 10,701,18 4,13,9

141 9.0 97 39 15.9 123 46 14.8 74 29 1.3 32,26,16 12,9,8

142 9.4 84 33 8.9 53 25 18.5 78 32 1.6 42,20,16 16,8,8

143 9.7 109 47 600.0 10203 | 16.7 96 39 1.3 30,44,22 11,17,11

144 21.0 426 41 600.0 9803 | 24.7 320 35 1.2 30,270,20 10,15,10

145 11.5 197 37 13.0 105 38 14.6 79 31 1.6 27,36,16 10,13,8

146 4.5 48 21 180.0 2073 31 8.8 47 21 1.8 8,25,14 3,11,7

147 9.6 105 38 13.2 91 39 20.8 106 38 1.3 44,46,16 18,12,8

148 40.2 358 76 29.0 178 74 44.2 206 55 1.6 163,23,20 35,10,10

149 105.0 1618 79 600.0 7979 | 70.3 529 59 1.8 468,39,22 31,17,11

150 600.0 5571 | 600.0 7979 | 600.0 4923 | 1.8

151 9.5 85 37 95.6 854 46 23.5 89 38 2.2 22,18,33,16 8,8,14,8

152 600.0 9082 | 600.0 8372 | 53.7 234 82 2.0 148,56,30 44,23,15

153 36.6 683 59 600.0 11730 | 20.3 87 37 1.5 46,25,16 18,11,8

154 28.7 531 47 30.7 360 39 22.5 94 39 1.7 49,29,16 19,12,8

155 77.1 1495 49 600.0 11079 | 22.5 107 45 1.7 45,40,22 17,17,11

156 8.3 77 33 8.3 55 23 15.0 69 30 1.5 25,26,18 10,11,9

157 123.4 1798 123 600.0 9241 | 53.1 416 52 1.9 347,43,26 21,18,13

158 13.9 133 49 184.0 3033 43 18.0 75 31 1.5 39,20,16 16,7,8

159 10.9 115 41 600.0 8556 | 23.8 117 42 1.8 67,26,24 20,10,12

160 16.5 128 43 248.4 2832 30 23.8 90 38 1.7 50,20,20 20,8,10

161 20.7 202 62 232.0 2305 51 26.4 123 42 2.4 67,28,28 16,12,14

162 11.8 111 45 600.0 9502 | 23.8 102 42 1.5 57,27,18 21,12,9

163 12.7 164 58 45.5 715 55 19.9 120 36 1.9 14,16,72,18 6,7,14,9

164 12.5 139 56 206.2 2476 54 27.2 129 51 1.7 61,44,24 22,17,12

165 30.3 593 55 600.0 10104 | 57.2 1150 41 1.5 10,1112,28 4,23,14

166 12.6 129 52 600.0 10541 | 23.9 106 42 1.8 51,37,18 20,13,9

167 10.1 98 38 9.4 57 27 19.1 82 34 1.8 42,22,18 16,9,9

168 10.4 111 48 600.0 10197 | 17.4 98 40 1.5 30,46,22 11,18,11

169 27.8 567 51 600.0 9948 | 37.6 569 40 1.6 36,511,22 13,16,11

170 11.3 197 37 49.5 555 39 14.9 79 31 1.8 27,36,16 10,13,8

171 18.8 355 44 600.0 11812 | 17.6 84 36 2.0 27,37,20 11,15,10

172 600.0 7218 | 600.0 11812 | 600.0 4921 | 1.8

173 40.0 358 76 600.0 7641 | 46.7 206 55 1.8 163,23,20 35,10,10

174 118.3 1879 79 600.0 7916 | 67.5 529 59 2.2 468,39,22 31,17,11

175 600.0 5512 | 600.0 7916 | 600.0 5020 | 2.1

176 187.6 3783 59 600.0 10266 | 49.5 598 53 1.9 75,503,20 23,20,10
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Prob Prodigy Prodigy + Abstrips Prodigy + Alpine

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen

177 107.8 2305 74 144.3 1207 82 34.4 486 44 1.8 23,428,35 9,18,17

178 115.0 2650 56 418.1 4936 65 25.1 340 37 1.7 16,294,30 6,16,15

179 180.0 3656 90 600.0 10640 | 36.5 327 44 2.3 101,212,14 19,18,7

180 41.2 820 68 131.6 1143 36 47.4 667 46 2.1 80,569,18 21,16,9

181 53.7 1003 54 78.6 1065 49 41.2 340 51 2.4 93,225,22 25,15,11

182 34.2 732 55 600.0 11400 | 20.6 85 36 2.8 14,16,41,14 6,7,16,7

183 20.8 293 65 600.0 9194 | 38.5 289 60 1.7 68,199,22 28,21,11

184 18.0 149 60 600.0 7006 | 35.9 134 56 2.1 85,29,20 34,12,10

185 59.9 1245 39 600.0 10137 | 30.4 283 43 2.2 77,186,20 13,20,10

186 20.7 195 78 342.9 4956 29 40.1 144 61 2.8 90,34,20 37,14,10

187 12.4 111 49 600.0 11646 | 20.3 86 37 1.7 43,21,22 17,9,11

188 402.9 7733 69 600.0 6821 | 52.9 747 52 2.2 47,676,24 20,20,12

189 10.7 108 42 17.9 150 49 21.8 105 42 2.4 43,40,22 15,16,11

190 69.9 1324 67 600.0 9674 | 45.4 400 46 1.9 195,183,22 19,16,11

191 11.6 121 51 472.3 3234 68 19.3 100 44 1.7 29,43,28 13,17,14

192 600.0 8395 | 600.0 10231 | 32.2 181 48 2.7 117,48,16 22,18,8

193 459.0 8474 131 267.9 2678 56 44.5 207 59 2.5 147,42,18 35,15,9

194 131.8 1952 68 134.3 1348 51 31.6 122 55 2.3 53,45,24 24,19,12

195 46.5 571 101 460.0 5863 63 29.0 136 44 2.1 92,22,22 23,10,11

196 15.6 145 57 600.0 10000 | 28.9 125 48 1.7 75,28,22 24,13,11

197 33.8 439 42 600.0 8055 | 31.0 164 38 2.3 126,24,14 20,11,7

198 10.2 98 41 15.9 113 46 17.6 88 39 1.7 27,41,20 12,17,10

199 354.0 8068 81 600.0 10279 | 244.7 4987 54 1.6 30,4925,32 12,26,16

200 133.6 2898 91 141.0 1799 59 47.4 874 45 1.7 22,814,38 8,18,19
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