
Cooperating Agents for Information Retrieval�

Research

Craig A. Knoblock, Yigal Arens, and Chun-Nan Hsu
Information Sciences Institute and Department of Computer Science

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292, USA
fknoblock,arens,chunnang@isi.edu

To appear in the Proceedings of the Second Inter-
national Conference on Cooperative Information Sys-
tems, University of Toronto Press, Toronto, Ontario,
Canada, 1994

Abstract

With the vast number of information resources
available today, a critical problem is how to lo-
cate, retrieve and process information. It would
be impractical to build a single uni�ed system
that combines all of these information resources.
A more promising approach is to build special-
ized information retrieval agents that provide ac-
cess to a subset of the information resources
and can send requests to other information re-
trieval agents when appropriate. In this paper
we present the architecture of the individual in-
formation retrieval agents and describe how this
architecture supports a network of cooperating
information agents. We describe how these infor-
mation agents represent their knowledge, commu-
nicate with other agents, dynamically construct
information retrieval plans, and learn about other
agents to improve e�ciency. We have already
built a small network of agents that have these
capabilities and provide access to information for
transportation planning.

Introduction

With the expanding amount of information avail-
able, the problem of how to combine distributed,
heterogeneous information sources becomes more
and more critical. The available information
sources include traditional databases, at �les,
knowledge bases, programs, etc. Traditional ap-
proaches to building distributed or federated sys-
tems do not scale well to the large, diverse, and
growing number of information sources. Recent
Internet systems such as Mosaic, WAIS, and Go-
pher allow users to search through large numbers
of information sources, but provide very limited

�The research reported here was supported in part
by Rome Laboratory of the Air Force Systems Com-
mand and the Advanced Research Projects Agency
under contract no. F30602-91-C-0081, and in part by
the National Science Foundation under grant number
IRI-9313993. The views and conclusions contained in
this report are those of the authors and should not be
interpreted as representing the o�cial opinion or pol-
icy of RL, ARPA, NSF, the U.S. Government, or any
person or agency connected with them.

capabilities for locating, combining, processing,
and organizing information.
A promising approach to this problem is to pro-

vide access to the large number of information
sources by organizing them into a network of in-
formation agents [Papazoglou et al., 1992]. The
goal of each agent is to provide information and
expertise on a speci�c topic by drawing on rele-
vant information from other information agents.
Similar to the way current information sources
are independently constructed, these information
agents can be developed and maintained sepa-
rately, drawing on the other available information
agents and providing a new information source
that others can then build upon. Each information
agent is another information source, but provides
a desperately needed abstraction of the many in-
formation sources available. Similarly, an informa-
tion source, such as a database or program, can be
turned into a simple information agent by build-
ing the appropriate interface code around the in-
formation source. Given this simple mapping be-
tween information agent and information source,
we will use these terms interchangeable through-
out the rest of this paper.
Figure 1 shows an example network of infor-

mation retrieval agents. This network includes
agents such as a USC computer science technical
report agent, which is an agent that only provides
information about and access to the department
technical reports. This agent is in turn used to
construct both a computer science technical re-
port agent that spans multiple universities as well
as USC technical report agent that spans depart-
ments within the university. These agents could in
turn be used to construct other agents, and so on.
An important feature of this organization is that
the individual agents can be independently built
and maintained. This makes it possible to scale
the architecture to large numbers of information
sources.
To build a network of specialized informa-

tion agents, we need an architecture for a single
agent that can be instantiated to provide multiple
agents. In previous work we developed an informa-
tion server, called SIMS [Arens et al., 1993], which

 USC
Technical
 Report
 Agent

Document
 Agent

 Tech
Report
Agent

Book
Agent

University
 Library
 Agent

Library of
Congress
 Agent

Library
Agent

Publisher
 Agent

 Book
Review
 Agent

 USC
Library
Agent

 ISI
Library
 Agent

Addison
 Wesley
 Agent

 Morgan
Kaufmann
 Agent

 CS
 Tech
Report
 Agent

 USC
CS Tech
 Report
 Agent

 USC
EE Tech
 Report
 Agent

 ISI
CS Tech
 Report
 Agent

Figure 1: Network of Information Retrieval Agents

provides access to heterogeneous data and knowl-
edge bases. In addition, Pastor et al. [1992] devel-
oped a system called the Loom Interface Manager
(LIM), which we use to build agents for accessing
individual relational databases. Using SIMS and
LIM, we have built a small network of informa-
tion retrieval agents that interact over the Inter-
net. We are now in the process of building a more
ambitious network of interacting agents.

The SIMS architecture is shown in Figure 2.
Each SIMS agent contains a detailed model of its
domain of expertise and models of the information
sources that are available to it. Given an informa-
tion request, an agent selects an appropriate set of
information sources, generates a plan to retrieve
and process the data, uses knowledge about the
information sources to reformulate the plan for ef-
�ciency, and then executes it.

This paper presents the design of an individ-
ual SIMS agent and discusses the issues that arise
in using this design to build a network of cooper-
ating information retrieval agents. First, we de-
scribe how the knowledge of an agent is repre-
sented. Second, we describe how the agents ex-
change queries and data with one another. Third,
we describe how information requests are exibly
and e�ciently processed. Fourth, we describe how
the system learns about the other agents in order
to improve performance over time. Fifth, we iden-
tify how the di�erent features of this design sup-
port exible, e�cient, and modular agents. Sixth,
we describe the closely related work in this area.
Finally, we conclude with a discussion of the cur-
rent status and the work that remains to be done.

Representing an Agent's Knowledge

Each agent contains a model of its domain of ex-
pertise and models of the other agents and infor-
mation sources that can provide relevant informa-
tion. We will refer to these two types of models as
the domain model and information source mod-
els. The domain model provides descriptions of
the classes of objects in the domain, relationships
between these classes (e.g.., subclass and super-
class), relations on each class, and other domain-
speci�c information. The information source mod-
els describe both the contents of the information
sources and the relationship between those mod-
els and the domain model. Both the domain and
information source models are expressed in the
Loom knowledge representation language [Mac-
Gregor, 1990]. Loom is an AI knowledge represen-
tation system based on KL-ONE [Brachman and
Schmolze, 1985]. Loom provides a language for
representing hierarchies of classes and relations,
as well as e�cient mechanisms for classifying in-
stances of classes and reasoning about descriptions
of object classes.

The domain and information source models con-
stitute the general knowledge of an agent and are
used to determine how to process an information
request. The domain model of an agent de�nes its
area of expertise and the terminology for interact-
ing with that agent. The information source mod-
els describe the resources that are available to an
agent to answer information requests. These mod-
els do not need to contain a complete description
of another agent or information source, but rather
only the portions of those agents or information
sources that are directly relevant. Specializing the

Execution

Learning

Domain Model

Output
Information
 Source
 Selection

 Query
 Access
Planning

 Semantic
 Query
Reformulation

 Query

Information Source
 Models

 Information
 Sources

Figure 2: The Architecture of an Agent

agents for speci�c areas provides a modular orga-
nization of the vast number of information sources
and provides a clear delineation of the types of
queries each agent can handle. In complex do-
mains, the domain can be broken down into mean-
ingful subparts and an information agent can be
built for each subpart.

Domain Models

Each information agent is specialized to a single
\application domain" and provides access to the
available information sources within that domain.
The largest application domain that we have to
date is a transportation planning domain, which
involves information about the movement of per-
sonnel and materiel from one location to another
using aircraft, ships, trucks, etc.

As described above, the application domain
models are de�ned in the Loom knowledge rep-
resentation system. This provides a semantic de-
scription of the objects and relations in a do-
main, which is used extensively for processing
queries. Figure 3 shows a fragment of the domain
model in the transportation planning domain. In
this �gure, the nodes represent classes of objects,
the thick arrows represent subclass relationships,
and the thin arrows represent relations between
classes.

The classes de�ned in the domain model do not
necessarily correspond directly to the objects de-
scribed in any particular information source. The
domain model is intended to be a description of
the application domain from the point of view of
users or other information agents that may need
to obtain information about the application do-
main. The terms in the domain model provide the
language to de�ne the contents of an information
source to the agent.

Modeling Information Sources

The critical part of the information source mod-
els is the description of the contents of the infor-
mation sources. This consists of a description of
the classes contained in the information source,
as well as the relationship between these classes
and the classes in the domain model. The map-
pings between the domain model and the infor-
mation source model are needed for transforming
a domain-level query into a set of queries to actual
information sources.

Figure 4 illustrates how an information source
is modeled in Loom and how it is related to the
domainmodel. All of the concepts and relations in
the information source model are mapped to con-
cepts and relations in the domain model. A map-
ping link between two concepts indicates that they
represent the same class of information. Thus, if
the user requests all seaports, that information can
be retrieved from the GEO agent, which has infor-
mation about seaports.

Communication

Queries to an information agent are expressed in
the Loom query language. These queries are com-
posed of terms in a general domainmodel, so there
is no need for other agents or a user to know or
even be aware of the terms used in the underlying
information sources. Given a query, an informa-
tion agent identi�es the appropriate information
sources and issues queries to those sources to ob-
tain the requisite data for answering the query.
To do this, an information agent translates the
domain-level query into a set of queries to more
specialized information agents using the terms ap-
propriate to each of those agents.
The queries to other agents are also expressed

in the Loom query language. In order to make

Port

Channel Geoloc
 Code

vehicle_type

Ship
max_draft

port_name

channel_of geoloc_
code

channel_depth

Seaport

Vehicle

Figure 3: Fragment of the Domain Model

Portport_name

geoloc_code

geo.port_nm

geo.glc_cd

geo.shore_cranes

geo.floating_cranes

shore_cranes

floating_cranes
Seaport

indicates a mapping relation

Seaports Geo

Agent

Figure 4: Relating an Information Source Model
to a Domain Model

an existing database or other application program
available to the network of agents requires build-
ing a wrapper around the existing system to turn
it into an agent with access to that information
source. Note that only one such wrapper would
need to be built for any given type of information
source (e.g., relational database, object-oriented
database, at �le, etc). The advantage of this ap-
proach is that it greatly simpli�es the individual
agents since they only needs to handle one under-
lying language. This makes it possible scale the
network into many agents with access to many dif-
ferent types of information sources.

Figure 5 illustrates a query expressed in the
Loom language. This query requests all seaports
and the corresponding ships that can be accom-
modated within each port. The �rst argument
to the retrieve expression is the parameter list,
which speci�es which parameters of the query to
return. The second argument is a description of
the information to be retrieved. This description
is expressed as a conjunction of concept and rela-
tion expressions, where the concepts describe the

classes of information, and the relations describe
the constraints on these classes. The �rst clause
of the query is an example of a concept expression
and speci�es that the variable ?port describes a
member of the class seaport. The second clause is
an example of a relation expression and states that
the relation port name holds between the value of
?port and the variable ?port name. This query
requests all seaport and ship pairs where the depth
of the port exceeds the draft of the ship.

(retrieve
(?port name ?depth ?ship type ?draft)
(and (seaport ?port)

(port name ?port ?port name)
(channel of ?port ?channel)
(channel depth ?channel ?depth)
(ship ?ship)
(vehicle type ?ship ?ship type)
(max draft ?ship ?draft)
(> ?depth ?draft)))

Figure 5: Example Loom Query

In addition to sending queries to other agents,
the agents also need the capability to send back
objects in response to their queries. Commu-
nication between information agents is done us-
ing the Knowledge Query Manipulation Language
(KQML)[Finin et al., 1992]. KQML is an agent
communication language that handles the inter-
face protocols for transmitting queries, returning
the appropriate information, and building the ap-
propriate internal structures. We currently use
this language to send queries between a SIMS
agent and the LIM agents, which provide access
to relational databases [Pastor et al., 1992].

Processing an Information Request

The core contribution of an information agent is
the ability to intelligently retrieve and process
data. Information sources are constantly chang-
ing; new information becomes available, old infor-
mation may be eliminated or temporarily unavail-
able, and so on. Thus, an agent needs the capa-
bilities to dynamically select an appropriate set of
information sources, construct a plan for retriev-

Port

channel_depth

Channel Geoloc
 Code

vehicle_type

Ship
max_draft

port_name

channel_of

Seaport
geoloc_
code

Vehicle

Notional
 Ships

Assets
Agent

Geo
Agenrt

Port
Agent

Geo
Agent

Seaports

 Ports

Channels

Figure 6: Fragment of the Domain and Information Source Models

ing and processing the information, and optimize
this plan to ensure that the data is retrieved e�-
ciently. This section describes each of these pro-
cessing steps in turn.

Information Source Selection

The �rst step in answering a query expressed in
the terms of the domain model is to select the
appropriate information sources. This is done by
mapping from the concepts in the domain model
to the concepts in the information source models.
If the user requests information about ports and
there is a single information agent that provides
access to information on ports, then the map-
ping is straightforward. However, in some cases
there may be several agents that provide access to
the same information and in other cases no single
agent can provide the required information and it
will need to be drawn from several di�erent agents.
The process of selecting the information sources is
performed by reformulating the terms in the orig-
inal query into the terms that correspond to the
available information sources.
Consider the fragment of the knowledge base

shown in Figure 6, which covers the knowledge
relevant to the example query in Figure 5. The
concepts Seaport, Channel and Ship have sub-
concepts, shown by the shaded circles, that cor-
respond to concepts whose instances can be re-
trieved from some information agent. Thus, the
geo agent contains information about both sea-
ports and channels, and the port agent contains
information about only seaports. Thus, if the user
asks for seaports, then the query must be trans-
lated into one of the information source concepts
| seaports from the geo agent or ports from
the port agent.
In order to select the information sources

for answering a query, an agent applies a
set of reformulation operators to transform

the domain-level concepts into concepts that
can be retrieved directly from an informa-
tion source. The system has a number of
truth-preserving reformulation operations that
can be used for this task. The operations
include Select-Information-Source, Generalize-
Concept, Specialize-Concept, Partition-Concept,
and Decompose-Relation. These operations are
described briey below.

Select-Information-Source maps a domain-
level concept directly to an information-source-
level concept. In many cases this will simply be
a direct mapping from a concept such as Seaport
to a concept that corresponds to the seaports in
some information source. There may be multiple
information sources that contain the same infor-
mation, in which case the domain-level query can
be reformulated in terms of any one of the infor-
mation source concepts. In general, the choice is
made so as to minimize the number of di�erent
information sources used to answer a query.

Generalize-Concept uses knowledge about
the relationship between a class and a superclass
to reformulate a query in terms of the more gen-
eral concept. In order to preserve the semantics of
the original request, one or more additional con-
straints may need to be added to the query in
order to avoid retrieving extraneous data. For ex-
ample, if a query requires some information about
airports, but the information sources that corre-
spond to the airport concept do not contain the
requested information, then it may be possible to
generalize airport to port and retrieve the informa-
tion from some information source that contains
port information. In order to ensure that no ex-
traneous data is returned, the reformulation will
include a join between airport and port.

Specialize-Concept replaces a concept with a
more speci�c concept by checking the constraints
on the query to see if there is an appropriate spe-

cialization of the requested concept that would
satisfy it. For example, if a query requests all ports
with an elevation greater than 1000 feet, it may be
possible to reformulate this in terms of all airports
with an elevation greater than 1000 feet since there
are no seaports with an elevation this high. Even
if there was an information source corresponding
to the port concept, this may be a more e�cient
way to retrieve the data. Range information such
as this is naturally represented and stored as part
of the domain model.

Partition-Concept uses knowledge about set
coverings (a set of concepts that include all of the
instances of another concept) to specialize a con-
cept. This information is used to replace a re-
quested concept with a set of concepts that cover
it. For example, if a query requests information
about ports and there are no information source
that cover ports, it may be possible to reformulate
the query into a set of subqueries that cover ports.
If ports are covered by seaports, airports, and rail
ports, then the original query can be replaced by
queries on each of these subconcepts.

Decompose-Relation replaces a relation de-
�ned between concepts in the domain model with
equivalent terms that are available in the informa-
tion source models. For example, channel of is
a property of the domain model, but it is not de-
�ned in any information source. Instead, it can be
replaced by joining over a key, geoloc-code, that
in this case happens to occur in both seaport and
channel.

Reformulation is performed by treating the re-
formulation operators as a set of transformation
operators and then using a planning system to
search for a reformulation of the given query de-
scription. The planner searches for a mapping
from each of the concepts and relations in the
query into concepts and relations for which data
is available.

For example, consider the query shown in Fig-
ure 5. There are two concept expressions { one
about ships and the other about seaports. In the
�rst step, the system attempts to translate the
seaport expression into a information-source-level
expression. Unfortunately, none of the informa-
tion sources contain information that corresponds
to channel of. Thus, the system must reformu-
late channel of, using the decompose operator.
This expresses the fact that channel of is equiv-
alent to performing a join over the keys for the
seaport and channel concepts. The resulting re-
formulation is shown in Figure 7.

The next step reformulates the seaport por-
tion of the query into a corresponding informa-
tion source query. This can be done using the
select-information-source operator, which selects
between the geo and port information agents.
In this case geo is selected because the infor-
mation on channels is only available in the geo

(retrieve
(?port name ?depth ?ship type ?draft)
(:and (seaport ?port)

(port name ?port ?port name)
(geoloc code ?port ?geocode)

(channel ?channel)
(geoloc code ?channel ?geocode)

(channel depth ?channel ?depth)
(ship ?ship)
(vehicle type ?ship ?ship type)
(range ?ship ?range)
(> ?range 10000)
(max draft ?ship ?draft)
(> ?depth ?draft)))

Figure 7: Result of Applying the Decompose Op-
erator to Eliminate channel of

(retrieve
(?port name ?depth ?ship type ?draft)

(:and (seaports ?port)
(seaports.port nm ?port ?port name)
(seaports.glc cd ?port ?glc cd)
(channels ?channel)
(channels.glc cd ?channel ?glc cd)
(channels.ch depth ft ?channel ?depth)
(notional ship ?ship)
(notional ship.sht nm ?ship ?ship type)
(notional ship.range ?ship ?range)
(> ?range 10000)
(notional ship.max draft ?ship ?draft)
(< ?draft ?depth))))

Figure 8: Result of Selecting Information Sources
for Channels and Ships

agent. The channel and ship portions of the query
are then similarly reformulated. The �nal query,
which is the result of reformulating the entire
query is shown in Figure 8.

Query Access Planning

Once the system has reformulated the query so
that it uses only terms from its information source
models, the next step is to generate a query plan
for retrieving and processing the data. The query
plan speci�es the operations for processing the
data, as well as the order in which to perform these
operations.

There may be a signi�cant di�erence in e�-
ciency between di�erent plans for a query. There-
fore, the planner searches for a plan that can be
implemented as e�ciently as possible. To do this
the planner must take into account the cost of ac-
cessing the di�erent information sources, the cost
of retrieving intermediate results, and the cost of
combining these intermediate results to produce
the �nal results. In addition, since the information
sources are distributed over di�erent machines or
even di�erent sites, the planner takes advantage
of potential parallelism and generates subqueries
that can be issued concurrently.

Figure 9: Parallel Query Access Plan

There are �ve general operators that are used
to plan out the processing of a query:

� Move { Moves a set of data from one information
source to another information source.

� Join { Combines two sets of data into a com-
bined set of data using the given join relations.

� Retrieve { Speci�es the data that is to be re-
trieved from a particular information source.

� Select { Selects a subset of the data using the
given constraints.

� Assign { Constructs a new term in the data from
some combination of the existing data.

Each of these operations manipulates one or more
sets of data, where the data is speci�ed in the same
terms that are used for communicatingwith SIMS.
This simpli�es the input/output since there is no
conversion between languages.
The planner is implemented in a version of

UCPOP [Barrett et al., 1993] that has been
modi�ed to generate parallel execution plans
[Knoblock, 1994]. The system searches through
the space of possible plans using a best-�rst search
until a complete plan is found.
The plan generated for the example query in

Figure 8 is shown in Figure 9. In this example,
the system partitions the given query such that
the ship information is retrieved in a single query
to the assets agent and the seaport and chan-
nel information is retrieved in a single query to
the geo agent. All of the information is brought
into the local system (Loom) where the draft of
the ships can be compared against the depth of
the seaports. Once the �nal set of data has been
generated, it is returned by the agent.
The planner attempts to minimize the overall

execution time by searching for a query that can be
implemented as e�ciently as possible. It does this
by using a simple estimation function to calculate

the expected cost of the various operations and
then selecting a plan that has the lowest overall
parallel execution cost. In the example, the agent
leaves the join between the seaports and channels
to be performed by the remote geo agent since
this will be cheaper than moving the information
into the local system. If the system could per-
form all of the work in one remote system, then it
would completely bypass the local agent and re-
turn the data directly to the agent that requested
the information. Once an execution plan has been
produced, it is sent to the reformulation system
for global optimization, as described in the next
section.

Semantic Query Reformulation

The goal of the semantic query reformulation is
to use reformulation to search for the least ex-
pensive query in the space of semantically equiv-
alent queries. The reformulation from one query
to another is done through logical inference using
information-source abstractions, the abstracted
knowledge of the contents of relevant information
sources. See [Hsu and Knoblock, 1993a] for an ex-
planation of how rules like these are automatically
learned. The information-source abstractions de-
scribe the information in terms of a set of closed
formulas of �rst-order logic. These formulas de-
scribe an information source in the sense that they
are true with regard to all instances in the infor-
mation source.
Consider the example shown in Figure 10. The

input query retrieves ship types whose ranges are
greater than 10,000 miles. This query could be
expensive to evaluate because there is no index
placed on the range attribute. The system must
scan all of the instances of notional ship and
check the values of the range to retrieve the an-
swer.
A set of applicable rules for this query is shown

Input Query:
(retrieve (?sht-type ?ship ?draft)
(:and (notional ship ?ship)

(notional ship.sht nm ?ship ?ship-type)
(notional ship.max draft ?ship ?draft)
(notional ship.range ?ship ?range)
(> ?range 10000)))

Figure 10: Example Subquery

in Figure 11. These rules would either be learned
by the system or provided as semantic integrity
constraints about an information source. Rule
R1 states that for all ships with maximum drafts
greater than 10 feet, their range is greater than
12,000 miles. Rule R2 states that all ships with
range greater than 10,000 miles have fuel capaci-
ties greater than 5,000 gallons. The last rule R3

simply states that the drafts of ships are greater
than 12 feet when their fuel capacity is more than
4,500 gallons.

Information-Source Abstractions:

R1:(:if
(:and
(notional ship ?ship)
(notional ship.max draft ?ship ?draft)
(notional ship.range ?ship ?range)
(> ?draft 10))

(:then (> ?range 12000)))

R2:(:if
(:and
(notional ship ?ship)
(notional ship.range ?ship ?range)
(notional ship.fuel cap ?ship ?fuel cap)
(> ?range 10000))

(:then (> ?fuel cap 5000)))

R3:(:if
(:and
(notional ship ?ship)
(notional ship.max draft ?ship ?draft)
(notional ship.fuel cap ?ship ?fuel cap)
(> ?fuel cap 4500))
(:then (> ?draft 12)))

Figure 11: Applicable Rules in the Information-
Source Abstractions

Based on these rules, the reformulation com-
ponent infers a set of additional constraints and
merges them with the input query. The result-
ing query is the �rst query shown in Figure 12.
This query is semantically equivalent to the input
query but is not necessary more e�cient. The set
of constraints in this resulting query is called the
inferred set. The system will then select a sub-
set of constraints in the inferred set to complete
the reformulation. The selection is based on two
criteria: reducing the total evaluation cost, and
retaining the semantic equivalence. Detailed de-
scription of the algorithm is in [Hsu and Knoblock,

1993b]. In this example, the input query is refor-
mulated into a new query where the constraint on
the attribute range is replaced with a constraint
on the attribute max draft, which turns out to be
cheap to access because of the way the information
is indexed. The reformulated query can therefore
be evaluated more e�ciently.

Query with inferred set:
(retrieve (?ship-type ?ship ?draft)
(:and
(notional ship ?ship)
(notional ship.sht nm ?ship ?ship-type)
(notional ship.max draft ?ship ?draft)
(notional ship.range ?ship ?range)
(notional ship.fuel cap ?ship ?fuel cap)
(> ?range 10000)
(> ?fuel cap 5000)
(> ?draft 12)))

Reformulated Query:
(retrieve (?sht-type ?ship ?draft)
(:and
(notional ship ?ship)
(notional ship.sht nm ?ship ?ship-type)
(notional ship.max draft ?ship ?draft)
(> ?draft 12)))

Figure 12: Reformulated Query

The reformulation is not limited to removing
constraints. There are cases when the system can
reformulate a query by adding new constraints
or proving that the query is unsatis�able. The
inferred set turns out to be useful information
for extending the algorithm to reformulate an en-
tire query plan. Previous work only reformulates
single database queries. In addition, our algorithm
is polynomial in terms of the number of infor-
mation source abstraction rules and the syntactic
length of the input query. A large number of rules
may slow down the reformulation. In this case,
we can adopt sophisticated indexing and hashing
techniques in rule matching, or constrain the size
of the information-source abstractions by remov-
ing information-source abstractions with low util-
ity.
We can reformulate each subquery in the query

plan with the subquery reformulation algorithm
and improve their e�ciency. However, the most
expensive aspect of queries to multiple informa-
tion sources is often processing intermediate data.
In the example query plan in Figure 9, the con-
straint on the �nal subqueries involves the vari-
ables ?draft and ?depth that are bound in the
preceding subqueries. If we can reformulate these
preceding subqueries so that they retrieve only the
data instances possibly satisfying the constraint
(< ?draft ?depth) in the �nal subquery, the in-
termediate data will be reduced. This requires
the query plan reformulation algorithm to be able
to propagate the constraints along the data ow
paths in the query plan. We developed a query

plan reformulation algorithm which achieves this
by updating the information-source abstractions
and rearranging constraints. We explain the algo-
rithm using the query plan in Figure 9.

The algorithm �rst reformulates each subquery
in the partial order (i.e., the data ow order)
speci�ed in the plan. The two subqueries to
information sources are reformulated �rst. The
information-source abstractions are updated and
saved in Inferred-Set, which is returned from
the subquery reformulation to propagate the con-
straints to later subqueries. For example, when
reformulating the subquery on notional ship,
(> ?draft 12) is inferred and saved in the in-
ferred set. In addition, the constraint (> ?range

10000) in the original subquery is propagated
along the data ow path to its succeeding sub-
query. Similarly, the system can infer the range of
?depth in this manner. In this case, the range of
?depth is 41 � ?depth � 60.

Now that the updated ranges for ?draft and
?depth are available, the subquery reformulation
algorithm can infer from the constraint (< ?draft

?depth) a new constraints (< ?draft 60) and
add it to the subquery for the join operation. How-
ever, this constraint should be placed on the re-
mote subquery instead of the local Loom query
because it only depends on the data in the re-
mote information source. In this case, when up-
dating the query plan with the reformulated sub-
query, the algorithm locates where the constrained
variable of each new constraint is bound, and in-
serts the new constraint in the corresponding sub-
queries. In our example, the variable is bound by
(max draft ?ship ?draft) in the subquery on
notional ship in Figure 9. The algorithm will
insert the new constraint on ?draft in that sub-
query.

The semantics of the modi�ed subqueries, such
as the subquery on notional ship in this exam-
ple, are changed because of the newly inserted
constraints. However, the semantics of the over-
all query plan remain the same. After all the
subqueries in the plan have been reformulated,
the system reformulates these modi�ed subqueries
again to improve their e�ciency. In our example,
the subquery reformulation algorithm is applied
again to the notional ship subquery. This time,
no reformulation is found to be appropriate. The
reformulated subquery of the �nal query plan is
shown in Figure 13.

The resulting query plan is more e�cient and
returns the same answer as the original one. In
our example, the subquery to notional ship is
more e�cient because the constraint on the at-
tribute range is replaced with another constraint
that can be evaluated more e�ciently. The in-
termediate data are reduced because of the new
constraint on the attribute ?draft. The logical
rationale of this new constraint is derived from

Reformulated Subquery:
(retrieve (?sht-type ?ship ?draft)
(:and
(notional ship ?ship)
(notional ship.sht nm ?ship ?ship-type)
(notional ship.max draft ?ship ?draft)
(> ?draft 12)
(< ?draft 60)))

Figure 13: Reformulated Query

the constraints in the other two subqueries: (>

?range 10000) and (< ?draft ?depth), and the
rules in the information-source abstractions. The
entire algorithm for query plan reformulation is
still polynomial. Our experiments shows that the
overhead of reformulation is very small compared
to the overall query processing cost. On a set of 32
example queries, the query reformulation yielded
signi�cant performance improvements with an av-
erage reduction in execution time of 43%.

Learning

An intelligent agent for information retrieval
should be able to improve its performance over
time. To achieve this goal, the information agents
currently support two forms of learning. First,
they have the capability to cache frequently re-
trieved or di�cult to retrieve information. Second,
for those cases where caching is not appropriate,
an agent can learn about the contents of the infor-
mation sources in order to minimize the costs of re-
trieval. Since information retrieval agents serve as
information sources for other agents, both caching
and learning can be applied to information agents
as well as data and knowledge bases. This section
describes these two forms of learning.

Caching Retrieved Data

Data that is required frequently or is very expen-
sive to retrieve can be cached in the local agent and
then retrieved more e�ciently. An elegant feature
of using Loom to model the domain is that cached
information can easily represented and stored in
Loom. The data is currently brought into the lo-
cal agent for processing, so caching is simply a
matter of retaining the data and recording what
data has been retrieved.
To cache retrieved data into the local agent re-

quires formulating a description of the data so it
can be used to answer future queries. This can be
extracted from the initial query, which is already
expressed in the form of a domain-level descrip-
tion of the desired data. The description de�nes
a new subconcept and it is placed in the appro-
priate place in the concept hierarchy. The data
then become instances of this concept and can be
accessed by retrieving all the instances of it.
Once the system has de�ned a new class and

stored the data under this class, the cached infor-

mation becomes a new information source for the
agent. The reformulation operations, which map
a domain query into a set of information source
queries, will automatically consider this new in-
formation source. Since the system takes the re-
trieval costs into account in selecting the infor-
mation sources, it will naturally gravitate towards
using cached information where appropriate. In
those cases where the cached data does not cap-
ture all of the required information, it may still
be cheaper to retrieve everything from the remote
site. However, in those cases where the cached in-
formation can be used to avoid an external query,
the use of the stored information can provide sig-
ni�cant e�ciency gains.
The use of caching raises a number of important

questions, such as which information should be
cached and how the cached information is kept up-
to-date. We are exploring caching schemes where,
rather than caching the answer to a speci�c query,
general classes of frequently used information are
stored. This is especially useful in the Internet
environment where a single query can be very ex-
pensive and the same set of data is often used to
answer multiple queries. To avoid problems of in-
formation becoming out of date, we have focused
on caching relatively static information.

Learning about the Contents of
Information Sources

The agent's goal is to provide e�cient access to
a set of information sources. Since accessing and
processing information can be very costly, the sys-
tem strives for the best performance that can be
provided with the resources available. This means
that when it is not processing queries, it gathers
information to aid in future retrieval requests. The
information agents improve performance by learn-
ing about the contents of the information sources
[Hsu and Knoblock, 1993a].
The learning is triggered when an agent detects

an excessively expensive query. In this way, the
agent will incrementally gather a set of rules to
reformulate expensive queries. The learning sub-
system uses induction on the contents of the infor-
mation sources to construct a less expensive spec-
i�cation of the original query. This new query is
then compared with the original to generate a set
of rules that describe the relationships between the
two equivalent queries. The learned rules are in-
tegrated into the agent's domain model and then
used for semantic query reformulation.

Advantages of the Architecture

Now that we have described the basic architec-
ture, this section �rst reviews the critical features
of this architecture and then describes the advan-
tages provided by these features.
The critical features of this architecture that

support multiple cooperating agents are:

1. A uniform query language that is used as the
interface for the user as well as the interface
between agents.

2. A uni�ed model of the domain and sepa-
rate models of the contents of the information
sources.

3. The dynamic selection of an appropriate set of
information sources.

4. The generation of parallel query access plans.

5. The use of semantic knowledge to optimize the
query plans.

6. A learning system that improves the perfor-
mance of an agent by caching frequently used
information and learning about the contents of
the information sources.

First, the uniform query language and separate
models provide a modular architecture for mul-
tiple information agents. An information agent
for one domain can serve as an information source
to other information agents. This is can done
seamlessly since the interface to every informa-
tion source is exactly the same { it takes a query
in a uniform language (i.e., Loom) as input and
returns the data requested by the query. The
domain model provides a uniform language for
queries about information in any of the sources
to which an agent has access. The contents of
each agent is represented as a separate information
source and is mapped to the domain model of an
agent. Each information agent can export some
or all of its domain model, which can be incor-
porated into another information agent's model.
This exported model forms the shared terminol-
ogy between agents.
Second, the separate domain and information

source models and the dynamic information source
selection make the overall architecture easily ex-
tensible. Adding a new information source sim-
ply requires building a model of the information
source that describes the contents of the informa-
tion source as well as how it relates to the domain
model. It does not require integrating the new
information source model with the other informa-
tion source models since the mapping between do-
main and information source models is not �xed.
Similarly, changes to the contents of information
sources require only changing the model of the
speci�c information source. Since the selection of
the information sources is performed dynamically,
when an information request is received, the agent
will select the most appropriate information source
that is currently available.
Third, the separate domain and information

source models and the dynamic information source
selection also make the agents very exible. The
agents can choose the appropriate information
sources based on what they contain, how quickly
they can answer a given query, and what resources

are currently available. If a particular informa-
tion source or network goes down or if the data
is available elsewhere, the system will retrieve the
data from sources that are currently available. An
agent can take into consideration the rest of the
processing of a query, so that the system can take
advantage of those cases where retrieving the data
from one source is much cheaper than another
source because the remote system can do more of
the processing. This exibility also makes it pos-
sible to cache and reuse information without extra
work or overhead.
Fourth, building parallel query access plans, us-

ing semantic knowledge to optimize the plans,
caching retrieved data, and learning about infor-
mation sources provide e�cient access to large
numbers of information sources. The planner gen-
erates plans that minimize the overall execution
time by maximizing the parallelism in the plan to
take advantage of the fact that separate informa-
tion sources can be accessed in parallel. The se-
mantic query reformulation provides a global opti-
mization step that minimizes the amount of inter-
mediate data that must be processed. The ability
to cache retrieved data allows an agent to store
frequently used or expensive-to-retrieve informa-
tion in order to provide the requested information
more e�ciently. And the ability to learn about
the contents of the information sources allows the
agent to exploit time when it would not other-
wise be used to improve its performance on future
queries.

Related Work

A great deal of work has been done on building
agents for various kinds of tasks. This work is
quite diverse and has focused on a variety of is-
sues. First, there has been work on multi-agent
planning and distributed problem solving, which
is described in [Bond and Gasser, 1988]. The
body of this work deals with the issues of coor-
dination, synchronization, and control of multi-
ple autonomous agents. Second, a large body of
work has focused on de�ning models of beliefs,
intentions, capabilities, needs, etc., of an agent.
[Shoham, 1993] provides a nice example of this
work and a brief overview of the related work on
this topic. Third, there is more closely related
work on developing agents for information gather-
ing.

The problem of information gathering is also
quite broad and the related work has focused on
various issues. Kahn and Cerf [1988] proposed an
architecture for a set of information-management
agents, called Knowbots. The various agents are
hard-coded to perform particular tasks. Etzioni
et al. [1992, 1994] have built agents for the Unix
domain that can perform a variety of Unix tasks.
This work has focused extensively on reasoning
and planning with incomplete information, which

arises in many of these tasks. Levy el al. [1994]

are also working on building agents for retrieving
information from the Internet. The focus of their
work has been on developing a formal framework
for selecting a minimal set of sites to answer a
query.
In contrast to much of this previous work, the

focus of our work is on exible and e�cient re-
trieval of information from heterogeneous infor-
mation sources. Since most of these other systems
have in-memory databases, they assume that the
cost of a database retrieval is small or negligible.
One of the critical problems when dealing with
large databases is how to issue the appropriate
queries to e�ciently access the desired informa-
tion. We are focusing on the problems of how to
organize, manipulate, and learn about large quan-
tities of data.
Research in databases has also focused on build-

ing integrated or federated systems that com-
bine information sources [Landers and Rosenberg,
1982, Sheth and Larson, 1990]. The approach
taken in these systems is to �rst de�ne a global
schema, which integrates the information available
in the di�erent information sources. However, this
approach is unlikely to scale to the large number
of evolving information sources (e.g., the Internet)
since building an integrated schema is labor inten-
sive and di�cult to maintain, modify, and extend.
The Carnot project [Collet et al., 1991] also inte-

grates heterogeneous databases using a knowledge
representation system. Carnot uses a knowledge
base to build a set of articulation axioms that de-
scribe how to map between SQL queries and do-
main concepts. After the axioms are built the do-
main model is no longer used or needed. In con-
trast, the domain model of one of our agents is an
integral part of the system, and allows an agent to
both combine information stored in the knowledge
base and to reformulate queries.

Conclusion

This paper described the SIMS architecture for
intelligent information retrieval agents. This par-
ticular architecture has a number of important
features: (1) modularity in terms of representing
an information agent and information sources, (2)
extensibility in terms of adding new information
agents and information sources, (3) exibility in
terms of selecting the most appropriate informa-
tion sources to answer a query, and (4) e�ciency
in terms of minimizing the overall execution time
for a given query.
To date, we have built information agents that

plan and learn in the transportation planning do-
main. These agents contain a detailed model of
this domain and extract information from a set
of nine relational databases. The agents select
appropriate information sources, generate paral-
lel plans, execute the queries in parallel, and learn

about the information sources.
Future work will focus on extending the plan-

ning and learning capabilities described in this
paper. An important issue that we have not
yet addressed is how to handle the various forms
of incompleteness and inconsistency that will in-
evitably arise from using autonomous information
sources. Our plan is to address these issues by ex-
ploiting available domain knowledge and employ-
ing more sophisticated planning and reasoning ca-
pabilities to both detect and recover from these
problems.

Acknowledgments
We gratefully acknowledge the contributions of
Chin Chee and Hoh In in building the various com-
ponents in SIMS. We also thank Don Mckay, Jon
Pastor, and Robin McEntire at Unisys for setting
up the LIM agents and providing us with an im-
plementation of KQML.

References
[Arens et al., 1993] Arens, Yigal; Chee, Chin Y.;
Hsu, Chun-Nan; and Knoblock, Craig A. 1993.
Retrieving and integrating data from multiple
information sources. International Journal on
Intelligent and Cooperative Information Systems
2(2):127{158.

[Barrett et al., 1993] Barrett, Anthony; Golden,
Keith; Penberthy, Scott; and Weld, Daniel 1993.
Ucpop user's manual (version 2.0). Technical Re-
port 93-09-06, Department of Computer Science
and Engineering, University of Washington.

[Bond and Gasser, 1988] Bond, Alan H. and
Gasser, Les 1988. Readings in Distributed Arti�-
cial Intelligence. Morgan Kaufmann, San Mateo.

[Brachman and Schmolze, 1985] Brachman, R.J.
and Schmolze, J.G. 1985. An overview of the
KL-ONE knowledge representation system. Cog-
nitive Science 9(2):171{216.

[Collet et al., 1991] Collet, Christine; Huhns,
Michael N.; and Shen, Wei-Min 1991. Re-
source integration using a large knowledge base
in carnot. IEEE Computer 55{62.

[Etzioni et al., 1992] Etzioni, Oren; Hanks, Steve;
Weld, Daniel; Draper, Denise; Lesh, Neal; and
Williamson, Mike 1992. An approach to plan-
ning with incomplete information. In Proceedings
of the Third International Conference on Princi-
ples of Knowledge Representation and Reasoning,
Cambridge, MA.

[Etzioni et al., 1994] Etzioni, Oren; Golden,
Keith; and Weld, Dan 1994. Tractable closed-
world reasoning with updates. In Fourth Inter-
national Conference on Principles of Knowledge
Representation and Reasoning, Bonn, Germany.

[Finin et al., 1992] Finin, Tim; Fritzson, Rich;
and McKay, Don 1992. A language and proto-
col to support intelligent agent interoperability.

In Proceedings of the CE and CALS, Washington,
D.C.

[Hsu and Knoblock, 1993a] Hsu, Chun-Nan and
Knoblock, Craig A. 1993a. Learning database ab-
stractions for query reformulation. In Proceedings
of the AAAI Workshop on Knowledge Discovery
in Databases.

[Hsu and Knoblock, 1993b] Hsu, Chun-Nan and
Knoblock, Craig A. 1993b. Reformulating query
plans for multidatabase systems. In Proceedings
of the Second International Conference of Infor-
mation and Knowledge Management, Washing-
ton, D.C.

[Kahn and Cerf, 1988] Kahn, Robert E. and Cerf,
Vinton G. 1988. An open architecture for a digi-
tal library system and a plan for its development.
Technical report, Corporation for National Re-
search Initiatives.

[Knoblock, 1994] Knoblock, Craig A. 1994. Gen-
erating parallel execution plans with a partial-
order planner. In Arti�cial Intelligence Planning
Systems: Proceedings of the Second International
Conference (AIPS94), Chicago, IL.

[Landers and Rosenberg, 1982] Landers, Terry
and Rosenberg, Ronni L. 1982. An overview of
multibase. In Schneider, H.J., editor 1982, Dis-
tributed Data Bases. North-Holland.

[Levy et al., 1994] Levy, Alon Y.;
Sagiv, Yehoshua; and Srivastava, Divesh 1994.
Torwards e�cient information gathering agents.
In Proceedings of the AAAI Spring Symposium
Series on Software Agents, Palo Alto, CA.

[MacGregor, 1990] MacGregor, R. 1990. The
evolving technology of classi�cation-based knowl-
edge representation systems. In Sowa, John, ed-
itor 1990, Principles of Semantic Networks: Ex-
plorations in the Representation of Knowledge.
Morgan Kaufmann.

[Papazoglou et al., 1992] Papazoglou, Mike P.;
Laufmann, Steven C.; and Sellis, Timos K.
1992. An organizational framework for cooperat-
ing intelligent information systems. International
Journal of Intelligent and Cooperative Informa-
tion Systems 1(1):169{202.

[Pastor et al., 1992] Pastor, Jon A.; McKay, Don-
ald P.; and Finin, Timothy W. 1992. View-
concepts: Knowledge-based access to databases.
In Proceedings of the First International Con-
ference on Information and Knowledge Manage-
ment, Baltimore, MD. 84{91.

[Sheth and Larson, 1990] Sheth, Amit P. and
Larson, James A. 1990. Federated database sys-
tems for managing distributed, heterogeneous,
and autonomous databases. ACM Computing
Surveys 22(3):183{236.

[Shoham, 1993] Shoham, Yoav 1993. Agent-
oriented programming. Arti�cial Intelligence
60(1):51{92.

