
E�cient Query Processing for

Information Gathering Agents�

Craig A. Knoblock Alon Levy

Information Sciences Institute and AT&T Bell Laboratories

Department of Computer Science 600 Mountain Ave., Room 2C-406

University of Southern California Murray Hill, NJ 07974

4676 Admiralty Way levy@research.att.com

Marina del Rey, CA 90292

knoblock@isi.edu

1 Introduction

In the not too distant future, we envision information gathering agents that will have access

to a large set of diverse information sources. These information sources will not belong

to the agent, rather they will be information resources that are made available across the

network (possibly for a fee). The agents will not maintain any real data, they will only have

descriptions of the contents of these information sources. An agent will have a domain model

of its area of expertise (e.g., a class hierarchy describing the objects in it domain), and a

description of an information source relates the contents of the source to the domain model

of the agent. An agent will serve as a mediator for processing information requests, sending

requests to the appropriate information sources and possibly processing the intermediate

data, thus freeing a user from being aware of and sending queries directly to the information

sources.

The characteristics distinguishing this environment from traditional knowledge base and

database systems can be summarized as follows:

1. Agents do not have any real data, only descriptions of information sources that contain

the data.

�The �rst author is supported in part by Rome Laboratory of the Air Force Systems Command and

the Advanced Research Projects Agency under contract no. F30602-91-C-0081, and in part by the National

Science Foundation under grant number IRI-9313993. The second author is supported by AT&T Bell Labo-

ratories. The views and conclusions contained in this paper are the author's and should not be interpreted as

representing the o�cial opinion or policy of DARPA, RL, NSF, Bell Labs, or any person or agency connected

with them.

1



2. An agent's knowledge about the contents of the information sources is incomplete.

3. There is a large number of information sources.

4. Information may reside redundantly in many sources.

5. Sources are autonomous.

6. Access to sources is not always possible (e.g., network failures) and may be expensive

(either in time or in dollars).

7. Sources use di�erent languages, ontologies, protocols, etc.

There are many issues that must be addressed to build agents that can intelligently

operate in this environment. We have addressed some of these issues in previous work [4, 5],

but one issue not previously addressed is how to e�ciently process information requests

when there are multiple autonomous information sources and the information about the

contents of these information sources is incomplete. Traditionally, query processing systems

have relied on static plans (i.e., plans created at compile time by examining only the query).

While this is appropriate for environments where there is complete information about the

data, we argue in this paper that it is not appropriate for information gathering agents. The

following examples illustrate the problem.

� Determining the relevant information sources at compile time may not be possible.

Consider the query

areaCode(PaloAlto; ac)^ phone(BobJones; ac; number):

There may be many directory services available. Just by looking at the query, it is not

possible to rule any of them out, and therefore a plan generated by the query processor

that retrieved both the areaCode and the phone information and then combined them

would require an excessive amount of data. However, once we have a binding for the

area code of Palo Alto, the number of information sources that will give us 415 numbers

will be much smaller, and therefore we can create an e�ective query plan. This type of

optimization has been considered for logic programs with in-memory databases, and

is called sideways information passing. However, it has not been generalized to sepa-

rate databases, where the tradeo�s between parallel access and sideways information

passing must be considered.

� Even if some of the bindings are given (or passed sideways) it doesn't necessarily

mean that the query processor can use them to prune the set of relevant sources. For

example, if my query is

PaperBy(RonBrachman;X)

then the system still has to consider all possible paper repositories, because it doesn't

know anything about Ron Brachman (e.g., �eld, a�liation). Note that the source of

the problem is that the system does not know anything about the binding (except the

actual value) in order to prune the relevant information sources.

2



In our previous work [1, 4, 5] we have shown how to statically determine the information

sources that are relevant to a given query. In this paper we argue that e�cient query

processing in information gathering agents requires that we complement these methods with

(1) interleaving planning and execution of the query, (2) exploiting additional knowledge

we get about bindings in the process of �nding them, and (3) actively seeking additional

information about bindings in order to narrow the set of relevant information sources. Recent

work by by Etzioni [3] on software agents does exploit the use of additional information

gathering actions to determine what to do next. However, that work encodes these actions

as part of the planning operators. In this paper we present a more general framework that

identi�es a variety of di�erent types of information about bindings that can be exploited

and ways in which it can be found and used.

2 A Framework for Dynamic Query Processing

We describe a general framework for dynamic query processing in information gathering

agents. We identify two dimensions in the framework. The �rst includes the kinds of

information that can be obtained at run-time and how they can be used. The second

dimension identi�es the ways in which this information can be obtained.

2.1 A Taxonomy of Information Types

For simplicity, we assume in our discussion that an information agent is using a frame-based

representation language (e.g., LOOM [7], CLASSIC [2]), where domain objects are organized

into classes (denoted by C;Ci etc.) and binary relations among objects are represented by

roles (denoted by r; ri etc.). The information agents has a set of classes and roles describing

its domain of expertise.

An information source s can be viewed as providing some knowledge about a class in the

domain model Cs. It can either provide some or all of the instances of the class Cs. In the

latter case we will say that s is a complete source. The source s also provides some role �llers

for the instances it knows about. Formally, s provides the role �llers for the roles rs
1
; . . . ; rs

n
.

For each role, s may provide all the �llers or only some of them. The information about

which class and roles s knows about it is contained in the description of s that is available

to the agent.

We can now describe the kinds of information that can be obtained by the agent at

run time and how they can be used. The �rst set of information types (called domain

information) include information about the class hierarchy and individuals in those classes.

Speci�cally, we have identi�ed the following types of information:

Membership An individual being a member (or not a member of a class), for example,

Ron Brachman being an instance of AI-researcher.

Fillers One or more individuals �lling a role of another individual (or not being a �ller of

a role), for example, that the a�liation of Ron Brachman is AT&T Bell Labs.

Size The size of a class or the number of �llers of a role.

3



Constraints High level constraints on classes or �llers of roles (e.g., all �llers are in a certain

range).

Relationships Relationships between di�erent classes or roles (e.g., one class contains an-

other). 1

The second set of information types (called source information) are like the above types,

but concerns knowledge about information sources, and not about the domain model's class

hierarchy:

Membership An individual being found in an information sources (or not being found

there).

Fillers One or more individuals �lling a role of another individual in a speci�c information

source.

Size The number of class instances found in a speci�c information sources.

Constraints High level constraints speci�c to an information source (e.g., an information

source only contains Bell Labs researchers).

Relationships Relationships between di�erent classes or roles (e.g., source s1 containing

all the data in source s2).

It should be noted that in some cases the domain information can be inferred from the

source information, and the description of the sources.

2.1.1 Usages of the Information

There are several ways in which the information types outlined above can be used to optimize

queries:

Membership Membership information can be useful in identifying an information source

that is likely to contain additional information. If we found the individual a in source

s, and a subsequent subgoal asks for the �ller of a role r of a, we will �rst check

whether s contains �llers for r (which will be known in the description). Note that

this type of information is especially useful because typically information sources will

only have part of the instances of a class, and therefore, �nding an instance in a given

information sources is a signi�cant piece of information.

Fillers Information about speci�c �llers for roles can be used to constrain the queries to

other information sources. For example, if we learn the area code for Bob Jones from

one information source, then it can be incorporated into the query sent to another

information source.

1Note that intensional subsumption relationships between classes are can be inferred in the domain

model. This class of information refers to extensional containment relationships, e.g., in the current state,

all instances of C1 are also instances of C2.

4



Size Size information about classes and intermediate results is useful in ordering subgoals in

a query. Traditional query processing systems estimate sizes before processing starts,

but using actual size information may be critical when good estimates are unavail-

able [8].

Relationships The main use of additional domain model information is to rule out possible

information sources. Knowing that an individual belongs to a more speci�c class that

can be inferred from the query enables us to limit the number of sources considered

in later subgoals of the query that contain the individual as a binding. For example,

knowing that Ron Brachman is an AI researcher enables us to focus on paper reposi-

tories that provide AI publications. Knowing that he is an AT&T employee provides

a justi�cation for considering �rst a paper repository from AT&T researchers.

Constraints Domain-level constraints can be used by propagating the restrictions from one

subgoal to the next. This is similar to some of the reformulations done with semantic

query optimization, except that the constraints are identi�ed dynamically instead of

using precompiled information.

Completeness Completeness information about a class (or the �llers of a role) enable us

to stop searching for more instances of the class (or �llers of that role).

2.2 Obtaining Domain and Source Information

A second dimension along which dynamic query processing methods di�er is the way that

the domain and source information are obtained:

� Information can be found by simply solving subgoals in the query. Instead of recording

only the values of the bindings that are found in solving a subgoal, we can also record

the information sources in which they are found. Additional domain knowledge can be

inferred from the description of the information source in which the binding was found.

For example, if Ron Brachman was found in the AAAI-fellow information source, then

we can infer that he is a member of the class AAAI-fellows, which is a subclass of

AI-researcher. If Brachman was not found in an information source that contains all

physics researchers, then we can infer that he is not a physicist. This has already been

implemented in the Information Manifold [6]

� Information about a binding can be found in the process of trying to solve the subgoal

that needs the information. For example, we may begin considering a few paper

repositories to �nd Brachman's papers, and by doing so �gure out that he is a member

of AI-researcher class. This will enable us to prune the subsequent paper repositories

we consider.

� Information gained in solving previous queries can be used. The challenge here is

to remember from previous queries only information that may be relevant in future

queries, and will not change rapidly.

5



� Finally, an the information agent can create new subqueries in order to actively seek

information about bindings. For example, by considering the descriptions of informa-

tion sources providing paper repositories, the agent can determine that knowing the

a�liation and �eld of an author dramatically reduce the number of relevant informa-

tion sources. Therefore, the agent may �rst pose a query looking for Brachman's �eld

and a�liation, before solving the query.

3 Discussion

This paper provides the �rst step towards building e�cient information gathering agents in

an environment with a large number of information resources and only limited information

about their contents. We have presented a taxonomy of the di�erent types of run-time

information, described how this information can be used, and �nally identi�ed the di�erent

way in which it can be collected. We are currently working on the next step, which is to

design a query processor that collects and uses the di�erent types of information described

here.

References

[1] Yigal Arens, Chin Y. Chee, Chun-Nan Hsu, and Craig A. Knoblock. Retrieving and integrating
data from multiple information sources. International Journal on Intelligent and Cooperative

Information Systems, 2(2):127{158, 1993.

[2] R. J. Brachman, A. Borgida, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Resnick.
Living with classic: When and how to use a kl-one-like language. In John Sowa, editor,
Principles of Semantic Networks, pages 401{456. Morgan Kaufmann, San Mateo, CA, 1991.

[3] Oren Etzioni, Steve Hanks, Daniel Weld, Denise Draper, Neal Lesh, and Mike Williamson.
An approach to planning with incomplete information. In Proceedings of the Third Interna-

tional Conference on Principles of Knowledge Representation and Reasoning, pages 115{125,
Cambridge, MA, 1992.

[4] Craig Knoblock, Yigal Arens, and Chun-Nan Hsu. Cooperating agents for information retrieval.
In Proceedings of the Second International Conference on Cooperative Information Systems,
Toronto, Canada, 1994. University of Toronto Press.

[5] Alon Y. Levy, Yehoshua Sagiv, and Divesh Srivastava. Towards e�cient information gather-
ing agents. In Working Notes of the AAAI Spring Symposium on Software Agents, Stanford,

California, pages 64{70, 1994.

[6] Alon Y. Levy and Divesh Srivastava. Data model and query evaluation in the information
manifold system. In preparation, 1994.

[7] Robert MacGregor. A deductive pattern matcher. In Proceedings of the Seventh National

Conference on Arti�cial Intelligence, Saint Paul, Minnesota, 1988.

[8] David E. Smith and Michael R. Genesereth. Ordering conjunctive queries. Arti�cial Intelligence,
26(2):171{215, 1985.

6


