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Abstract

Most practical partial-order planning systems
employ some form of goal protection. How-
ever, it is not clear from previous work what
the tradeo�s are between the di�erent goal-
protection strategies. Is it better to protect
against all threats to a subgoal, some threats,
or no threats at all? In this paper, we con-
sider three well-known planning algorithms,
snlp, nonlin, and tweak. Each algorithm
makes use of a di�erent goal-protection strat-
egy. Through a comparison of the three al-
gorithms, we provide a detailed analysis of
di�erent goal protection methods, in order to
identify the factors that determine the per-
formance of the systems. The analysis clearly
shows that the relative performance of the
di�erent goal-protection methods used by the
systems, depends on the characteristics of the
problems being solved. One of the main de-
termining factors of performance is the ratio
of the number of negative threats to the num-
ber of positive threats. We present an arti�-
cial domain where we can control this ratio
and show that in fact the planners show radi-
cally di�erent performance as the ratio is var-
ied. The implication of this result for some-
one implementing a planning system is that
the most appropriate algorithm will depend
on the types of problems to be solved by the
planner.

1 Introduction

There has been a great deal of work recently on com-
paring total and partial order planning systems [Barrett
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and Weld, 1992; Minton et al. 1991], but little has been
done in comparing di�erent partial order planners them-
selves. There are a variety of design decisions that must
be made in order to build a general planner. This pa-
per focuses on one of these design choices { the choice
of a protection strategy. In particular, we compare the
protection strategy employed in three basic planning al-
gorithms, snlp, nonlin and tweak.

On the surface, the three planners are quite di�erent.
However, on a careful examination one can �nd that they
mainly di�er in which conditions they protect. During
planning, an inserted plan step can interact with previ-
ously inserted steps. If a goal is achieved by one plan
step, then later it could be threatened by other steps.
A goal is protected by removing all threats by impos-
ing additional constraints on a plan whenever a threat
is detected. Among the three planners, tweak protects
nothing, nonlin protects against all negative threats,
and snlp protects against both negative and positive
threats.

The use of goal protection in snlp prevents the plan-
ner from generating redundant plans and thereby could
potentially reduce the size of the search space. However,
enforcing the goal protection has a cost. In this paper,
we show that none of the planners is always a winner. In
some domains our planner based on tweak greatly out-
performs both a planner based on nonlin

1 and snlp.
In other domains, snlp and nonlin perform much bet-
ter than tweak. The challenge is to identify the fea-
tures of the domains where each planner is expected to
perform well, so that practitioners can balance the pro-
tection methods based on the application domain.

In the following sections, we �rst review the three al-
gorithms. Then we present an analysis of the algorithms
to identify their relative merits. We also report on two
critical domain features that have the greatest impact
on the performance of the planners. Finally, we present
empirical results on an arti�cial domain to support the
analysis.

1For convenience we will simply refer to them as tweak
and nonlin.



2 Comparison of the Algorithms

This section presents the snlp, tweak, and nonlin

planning algorithms. First, we present the snlp algo-
rithm based on the algorithm descriptions of McAllester
and Rosenblitt's Find-Completion algorithm [McAllester
and Rosenblitt, 1991] and Barrett and Weld's POCL al-
gorithm [Barrett and Weld, 1992]. We start with this
algorithm because we can build on the elegant algo-
rithm description and implementation provided in pre-
vious work. Then, we describe the changes necessary
to transform the snlp algorithm into algorithms that
implement nonlin [Tate, 1977] and tweak [Chapman
1987].

2.1 The snlp Algorithm

In the planning algorithms that we consider below, we
follow the notations used by Barrett and Weld [Barrett
and Weld, 1992]. A plan is a 3-tuple, represented as
hS;O;Bi, where S is a number of steps, O is a set of
ordering constraints, and B the set of variable binding
constraints associated with a plan. A step consists of a
set of preconditions, an add list, and a delete list. The
binding constraints specify whether two variables can be
bound to the same constant or not.

The core of snlp is the recording of the causal links

for why a step is introduced into a plan, and for protect-
ing that purpose. If a step Si adds a proposition p to

satisfy a precondition of step Sj , then Si
p
! Sj denotes

the causal link. An operator Sk is a threat to Si
p
! Sj if

Sk can possibly add or delete a literal q that can possi-
bly be bound to p. For convenience, we also refer to the

pair (Sk; Si
p
! Sj) as a threat. In addition, we de�ne an

operator Sk to be a positive threat to Si
p
! Sj, if Sk can

possibly be between Si and Sj , and Sk adds a literal q
that can possibly be bound to p. Likewise, Sk is a neg-

ative threat if it can possibly be between Si and Sj , and
deletes a literal q that can possibly be bound to p.

The following algorithm which is an adaptation of
McAllester and Rosenblitt's Find-Completion algorithm
[McAllester and Rosenblitt, 1991] and Barrett and
Weld's POCL algorithm [Barrett and Weld, 1992], has
been shown to be sound, complete, and systematic
(never generates redundant plans). Let the notation
codesignate(R) denote the codesignation constraints im-
posed on a set of variable pairs R. For example, if
R = f(xi; yi) j i = 1; 2; : : :kg, then codesignate(R) =
fxi = yi j i = 1; 2; : : :kg. Similarly, noncodesignate(R)
denotes the set of non-codesignation constraints on a
set R of variable pairs. The parameters of the algorithm
are: S=Steps, O=Ordering constraints, B= Binding con-

straints, G= Goals, T=Threats, and L=Causal links.

Algorithm snlp(hS;O;Bi; T;G; L)

1. Termination: If G and T are empty, report suc-
cess and stop.

2. Declobbering: A step sk threatens a causal link

si
p
! sj when it occurs between si and sj , and it

adds or deletes p. If there exists a threat t 2 T such
that t is a threat between a step sk and a causal

link si
p
! sj 2 L, then:

� Remove the threat by adding ordering con-
straints and/or binding constraints using pro-
motion, demotion, or separation. For com-
pleteness, all ways of resolving the threat
must be considered.

{ Promotion: O0 = O
S
fsk�sig, B

0 = B

{ Demotion: O0 = O
S
fsj�skg, B

0 = B
{ Separation:

O0 = O
S
fsi�skg

S
fsk�sjg. Let q be

the e�ect of sk that threatens p and let
P be the set of binding pairs between
q and p. B0 = B

S
�, where � 2 f� j

� = noncodesignate(s)
S
codesignate(P �

s);where s � P ^ s 6= ;g.2

� Recursive invocation:

snlp(hS;O0; B0
i; T � ftg; G; L)

3. Goal selection: Let p be a proposition in G, and
let Sneed be the step for which p is a precondition.

4. Operator selection: Let Sadd be an existing
step, or some new step, that adds p before Sneed.
If no such step exists or can be added then back-

track. Let L0 = L
S
fSadd

p
! Sneedg, S0 =

S
S
fSaddg; O

0 = O
S
fSadd�Sneedg; and B0 =

B
S

the set of variable bindings to make Sadd add

p. Finally, update the goal set: G0 = (G � fpg)
S

preconditions of Sadd, if new. For completeness,
all ways of achieving the step must be considered.

5. Threat identi�cation: Let T 0 = ft j for every
step sk that is a positive or negative threat to a

causal link si
p
! sj 2 L0, t = (sk; Si

p
! Sj)g.

6. Recursive invocation:

snlp(hS0; O0; B0i; T 0; G0; L0).

2.2 The nonlin Algorithm

snlp is a descendant of nonlin [Tate, 1977], so the al-
gorithms are quite similar and di�er mainly in which
threats they protect against and how they perform sep-
aration. These two di�erences stem from the added con-
straints on snlp that are used to ensure systematicity.
nonlin also provides some additional capabilities such
as hierarchical task-network decomposition, but these
capabilities are orthogonal to the point of this paper and
are not considered.

The �rst change to the snlp algorithm is in the threat
identi�cation step. In contrast to snlp, only the negative
threats are added to the list T 0:
Threat identi�cation: Let T 0 = ft j for every step

sk that is a negative threat to a causal link si
p
! sj 2 L0,

t = (sk; Si
p
! Sj)g.

The second change is that to perform separation,
there is no requirement that promotion, demotion and
separation are made mutually exclusive. In this case,
separation simply entails that one or more of the possi-
ble bindings are forced not to codesignate, but imposes
no ordering constraints.

2The possible binding constraints are mutually exclusive,
since systematicity requires that the search space is parti-
tioned into non-overlapping parts.



Separation: O0 = O. Let q be the e�ect of sk
that possibly codesignates with p and let P be the set
of binding pairs between q and p. B0 = B

S
�, where

� 2 f� j � = noncodesignate(e);where e 2 Pg.
As we will see in the experimental results section, the

di�erences in performance of goal protection methods
employed by snlp and nonlin are relatively minor.

2.3 The tweak Algorithm

The primary di�erence between tweak and the two
previous algorithms is that instead of building explicit
causal links for each condition established by the plan-
ner, tweak uses what is called the Modal Truth Crite-
rion [Chapman 1987] to check the truth of each precondi-
tion in the plan. This di�erence results in four changes
from the snlp algorithm and only three changes from
the nonlin algorithm. The di�erences are in termina-
tion, separation, goal selection, and threat identi�cation.
Each of these are discussed in turn.

Since tweak does not maintain explicit causal links
for each precondition, it must test the truth of all of the
preconditions in the plan to determine when the plan
is complete. It does this using the Modal Truth Crite-
rion check [Chapman 1987]. This algorithm takes O(n3)
time, as compared with the O(1) time termination rou-
tine of snlp. We will refer to the algorithm that imple-
ments the Modal Truth Criterion as mtc. This algorithm
returns true if a given plan is complete and otherwise re-
turns a precondition of some step in the plan that does
not necessarily hold.
Termination: If mtc(hS;O;Bi) is true, report suc-

cess and stop.
Similar to nonlin, there is no requirement that all of

the separation constraints are mutually exclusive. Thus,
tweak uses the same method for separation as nonlin.
Separation: O0 = O. Let q be the e�ect of sk

that possibly codesignates with p and let P be the set
of binding pairs between q and p. B0 = B

S
�, where

� 2 f� j � = noncodesignate(e);where e 2 Pg.
Since tweak does not maintain an explicit set of

causal links, there is no explicit record of which pre-
conditions much be achieved. Thus, goal section is done
using the mtc algorithm. The mtc returns a precondition
of a step in the plan that is not necessarily true.
Goal Selection: Let p be the precondition of step

Sneed returned by the mtc procedure.
Finally, unlike both snlp and nonlin, tweak makes

no attempt to protect all of the previously established
preconditions against either negative or positive threats.
Tweak does, however, ensure that at each step all neg-
ative threats to the most recently built causal link are
removed. However, after a precondition is established
and threats are removed, it can be clobbered again. In
such a case, tweak will have to re-establish the condi-
tion.
Threat identi�cation: Let lnew = Sadd

p
! Sneed,

which is the causal link constructed in step 4. Let T 0 =
ftjfor every step sk that is a negative threat to lnew,
t = (sk; lnew)g.

As we stated above, the mtc routine for the termina-
tion check is more expensive than that for snlp. How-

ever, this does not mean that tweak is less e�cient
than snlp, since in many cases, tweak will explore
fewer nodes. In the next section, we consider the ma-
jor factors that a�ect the search space, and present a
complexity analysis of the three algorithms.

3 Analyzing the Algorithms

3.1 Algorithm Complexities

Let eb be the e�ective branching factor and ed the ef-
fective depth of the search tree. In both algorithms, eb
is the maximum number of successor plans generated ei-
ther after step 2, or after step 5, while ed is the maximum
number of plan expansions in the search tree from the
initial plan state to the solution plan state. Then with
a breadth-�rst search, the time complexity of search is

O(ebed � Tnode);

where Tnode is the amount of time spent per node.
We next analyze the complexity of the algorithms by


eshing out the parameters eb, ed and Tnode. In this
analysis, let P denote the maximum number of precon-
ditions or e�ects for a single step, let N denote the total
number of operators in an optimal solution plan, and let
A be either the snlp, nonlin, or tweak algorithm.

To expand the e�ective branching factor eb, we �rst
de�ne the following additional parameters. We use
b new for the number of new operators found by step
4 for achieving p, b old for the number of existing op-
erators found by step 4 for achieving p, and rt for the
number of alternative constraints to remove one threat.
The e�ective branching factor of search by either algo-
rithm is then

eb = maxf( b new + b oldA); rtAg;

since each time the main routine is followed, either step 2
is executed for removing threats, or step 3 {6 is executed
to build causal links. If step 2 is executed, rt successor
states are generated, but otherwise, ( b new + b old)
successor plan states are generated.

Next, we expand the e�ective depth ed. In the solu-
tion plan, there are N � P number of (p; Sneed) pairs,
where p is a precondition for step Sneed. Let fA be the
fraction of the N � P pairs chosen by step 3. For each
pair (p; Sneed) chosen by step 3, step 5 accumulates a
set of threats to remove. Let tA be the number of threats
generated by step 5. Finally, let v be the total number
of times any �xed pair (p; Sneed) is chosen by step 3.
Then we have

edA = fA �N � P � tA � vA:

A summary of the parameters can be found in Table 3.1.
For snlp, each pair (p; Sneed) must be visited exactly

once. Therefore, fsnlp = 1 and vsnlp = 1. Also, snlp
examines every causal link in the current plan in step
4. Thus, in the average case, the amount of time per
node is half of the total number of links in the solution
plan, i.e., N � P=2. Thus, the average time complexity
for snlp is:

O(max( b new + b oldsnlp; rtsnlp)
N�P�tsnlp �N � P ):



eb e�ective branching factor
ed e�ective search depth

Tnode average time per node
N total number of operators in a plan
P total number of preconditions per operator
fA fraction of (p; Sneed) pairs examined by algorithm A

vA average number of times a (p; Sneed) pair is visited by A
tA average number of threats found by A at each node
rtA average number of ways to resolve a threat by A
b new average number of new establishers for a precondition
b old average number of existing (or old) establishers for a precondition

Table 1: Parameters used in complexity analysis.

nonlin's behaviour is similar to snlp in that each
pair (p; Sneed) must be visited exactly once. Therefore,
fnonlin = 1 and vnonlin = 1. Also similar to snlp, non-
lin examines every causal link in the current plan in
step 4. The di�erence between nonlin and snlp is that
nonlin resolves only negative threats. This means that
in general nonlin will have a smaller t value. The aver-
age time complexity for nonlin is:

O(max( b new+ b oldnonlin; rtnonlin)
N�P�tnonlin �N �P )

In tweak, ftweak � 1, and can be much smaller than
one since tweak does not build explicit causal links for
every precondition. If many preconditions already hold,
then the number of chosen preconditions by step 3 in
tweak could be much smaller than the total number of
preconditions in the solution plan. Since tweak does
not protect any past causal links, a precondition can be
visited twice. Therefore, vtweak � 1. ttweak, on the other
hand, should be much smaller than tsnlp and tnonlin,
since tweak only declobbers for the most recently con-
structed causal link, and only negative threats are con-
sidered. Thus the number of threats is much smaller.
Finally, tweak uses MTC to check the correctness of a
plan, resulting a complexity per node to be O((N �P )3).
Overall, the complexity of tweak is:

O(max( b new + b oldtweak; rttweak)
m
� Ttweak

where m = ftweak �N �P � ttweak � vtweak and Ttweak =
(N � P )3:

In the next section, we discuss how these parameters
change with certain domain features.

3.2 Systematicity

snlp is systematic, which means that no redundant plans
are generated in the search space. In contrast, neither
tweak nor nonlin are systematic. However, a plan-
ner that is systematic is not necessarily more e�cient.
The systematicity property reduces the branching factor
by avoiding redundant plans. However, systematicity is
achieved in snlp by protecting against both the negative
and positive threats, which increases the factor t, a mul-
tiplicative factor in the exponent. Thus, snlp reduces
the branching factor at a price of increasing the depth
of search. Therefore, one can get a systematic, but less
e�cient planning system.

4 Domain Features and Search

Performance

The analysis in the previous section can be used to pre-
dict the relative performance of the three planning al-
gorithms in di�erent types of domains. An important
feature of a domain that determines the relative per-
formance of any two algorithms is the ratio between
the number of positive threats and number of negative

threats. The ratio is an important factor in di�erentiat-
ing the algorithms because the major di�erence between
any two algorithms is the way they handle positive and
negative threats. Among the three algorithms, tweak
only avoids some negative threats, snlp protects against
all positive and negative threats, and nonlin protects
against all negative threats but not the positive ones.

4.1 Predictions

The major di�erence between the algorithms manifest
themselves in the execution of Step 1, the termination
subroutine, and Step 4, threat detection. To see their ef-
fect on search e�ciency, let t+ denote the average num-
ber of positive threats, and let t� be the average number
of negative threats detected by Step 4 of snlp. Let R

denote the ratio of t� to t+: R =
t
�

t+
. In this section we

predict the performance of the three planning algorithms
based on the value of R.

Case 1: R� 1

Since snlp resolves all positive threats, it imposes
more constraints on a plan. Thus, on the average an
snlp plan is more linearly ordered than either a tweak
plan or a nonlin plan. A more linearly ordered plan
has a smaller number of existing establishing operators
for a given precondition, and thus a smaller branching
factor. Thus, the branching factor of snlp is likely to be
the smallest among the three, and that for tweak is the
largest due to its conservative stand in resolving threats.

When t+ is relatively large, the total number of
threats t resolved by snlp is large, which in turn in-
creases snlp's search depth. Also, for both nonlin and
snlp, a causal link has to be built for every precondition
in a plan, a behavior that �xes a lower bound on their
search depths. With many positive threats in a plan, a



precondition is more likely to be achievable by an ex-
isting step. Therefore tweak will be able to skip many
more preconditions compared to nonlin and snlp. Thus
the search depth of tweak will be much less than both
nonlin and snlp, and the search depth of nonlin will
be smaller than snlp because it does not resolve positive
threats.

As R decreases below one, the branching factor for
tweak and nonlin increase, while the search depth for
snlp increases. The time complexity for the former go
up polynomially, while for the latter it goes up exponen-
tially. Moreover, the depth of nonlin is greater than
the depth of tweak. Therefore, we predict that when
R � 1 tweak will perform better than nonlin, which
in turn will perform better than snlp.

Case 2: R � 1

As with the previous case, the additional constraints
imposed by snlp and nonlin over tweak imply that
snlp will have a smaller branching factor then non-

lin, and nonlin will have a smaller branching factor
than tweak. However, the di�erence in the number of
threats t resolved by tweak, snlp, and nonlin will be
reduced since there are fewer positive threats and more
negative threats. The reduced number of positive threats
will reduce the depth for snlp and nonlin and the in-
creased number of negative threats increases the chance
that tweak will be forced to revisit the same precon-
dition/step pair. As a result, the performance of the
di�erent planners could be very close and will depend
on depth and branching factors for the problems being
solved.

Case 3: R� 1

tweak is likely to have the largest branching factor
because every time a negative threat occurs, all existing
and new operators are considered as establishers again.
This e�ect increases the factor b old for tweak, result-
ing in the e�ective branching factor for tweak being
greater than both snlp and nonlin. Also due to its
resolution of positive threats, a snlp plan is likely to be
more linearized than a nonlin plan, thus the branching
factor of snlp will be smaller than nonlin.

Each negative threat creates a chance for tweak to
revisit the same precondition/step pair. Since in the
R� 1 case, there is a large number of negative threats,
the number of times each precondition is visited, vtweak,
is likely to increase. Since tweak is expected to have
a larger branching factor and depth greater than both
snlp and nonlin, when R � 1 tweak is expected to
perform the worst. snlp will outperform nonlin slightly
due its smaller branching factor.

4.2 Empirical Results

In order to verify our predictions by comparing snlp,
nonlin and tweak on problems with di�erent ratios of
negative and positive threats, we constructed an arti�cial
domain where we could control the value of R. In this
domain, each goal can be achieved by a subplan of two
steps in a linear sequence. Each step either achieves a
goal condition or a precondition of a later step. The
preconditions of the �rst step always hold in the initial

state. In addition, we also added extra operator e�ects to
create threats in planning. The di�culty of the problems
in this domain can be increased by increasing the number
of goal conditions and the total number of threats.

(defstep :action Ai1 :precond Ii :equals fg
:add fPi; Ii+1 if i < n+; I0 if i = n� 1 and n+ > 0g
:delete fIi�1; if 0 < i < n�; In�1 if i = 0
and n� > 0g)

(defstep :action Ai2 :precond Pi :equals fg
:add fGi;Pi+1 if i < n+;P0 if i = n� 1 and n+ > 0g
:delete fPi�1; if 0 < i < n�;Pn�1 if i = 0
and n� > 0g)

We used this arti�cial domain to run a set of experi-
ments to compare the performance of the di�erent plan-
ners. In these experiments we simultaneously varied the
number of positive and negative interactions, such that
the total number of interactions remained the same, but
the ratio R changes from zero to in�nity; the number
of negative interactions increased from 0 to 9 while the
number of positive interactions decreased from 9 to 0.
Below, we present the results of our empirical tests on
di�erent points of the spectrum of as de�ned by the ratio
R.

In the experiments, each problem was run in snlp

[Barrett and Weld, 1992], a version of nonlin and a
version of tweak that were modi�ed from snlp. The
problems were solved using a best-�rst search on the
solution size in order to fairly compare the size of the
problem spaces being searched by each system. All the
problems were run on a SUN IPC in Lucid Common Lisp
with a 120 CPU second time bound. For each value of
ratio R, we ran the systems on 20 randomly generated
problems. The points shown in the graphs below are an
average of the 20 problems.

4.2.1 Branching Factor

The branching factor results are shown in Figure 1.
Most of our predictions for branching factors are observ-
able in the �gure. For example, due to its conservative
stand in resolving both positive and negative threats,
snlp imposes the most constraints onto a plan, and as a
results it generally has the lowest branching factor. Also,
as the number of negative threats increases, which con-
strains the possible plans, the branching factor decreases
to one.

However, there are a few surprises shown in the �g-
ure. When R� 1, we had predicted that tweak would
have a larger branching factor than snlp and would be
similar to nonlin. This prediction cannot observed from
the �gure. In order to explain this e�ect we have broken
the branching factor into the two parts described in the
analysis, the establishment branching factor and the de-
clobbering branching factor, which are combined to form
the overall branching factor. These graphs are shown in
Figures 2 and 3. As shown in the graphs, the smaller
than expected branching factor for tweak is due to a
smaller than expected establishment branching factor.
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Figure 1: Comprison of the Average Branching Factor
of each of the Algorithms
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Figure 2: Comprison of the Average Establishment
Branching Factor of each of the Algorithms

Careful analysis of the data shows that this dis-
crepency with the predictions is due to the assumption
that the branching factor is uniform across an entire
problem-solving episode. In fact, where there are many
positive interactions, tweak quickly narrows in on a
plan and reduces the establishment branching factor. In
contrast, because both snlp and nonlin build explicit
causal links and resolve more threats they spend more
time in the early plan formation stage when the branch-
ing factor is higher. Thus overall, snlp and nonlin

expand a larger part of the search space that has a
large branching factor, while tweak uses it ability to
exploit positive threats to rapidly traverse that part of
the search space.
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Figure 3: Comprison of the Average Declobbering
Branching Factor of each of the Algorithms

4.2.2 Depth

The comparison of the search depths is shown in Fig-
ure 4 and they are as predicted. The only apparent dis-
crepency is that the di�erence between snlp and tweak
should be larger when R � 1. However, the graph is
a bit misleading in this case because it includes prob-
lems that could not be solved within the time bound by
nonlin and snlp and so it underestimates their search
depth.
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Figure 4: Comprison of the Average Depth of each of
the Algorithms

The overall search depth is composed of a number of
factors described in the analysis, which includes the frac-
tion of the preconditions considered, the average number
of times each precondition is visited,a and the average



number of threats detected by each algorithm. Figure 5
shows the fraction of preconditions considered. This
number should be one for both snlp and nonlin but
again the graphs are distorted by the fact that these two
systems did not complete all of the problems within the
time limit. In that case, there are a number of precon-
ditions of operators that had not yet been considered.
Note that for most of the problems, tweak only ex-
panded roughly 60-80% of the preconditions and as the
problems had fewer positive interactions, it was forced
to expand more and more of the preconditions.
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Figure 5: Comprison of the Average Fraction of Precon-
ditions Considered by each of the Algorithms

Figure 6 shows the average of number of times each
precondition is visited. As predicted, snlp and nonlin

visit every precondition exactly once, while tweak vis-
its some preconditions more than once. As the number
of negative interactions increase, the value for tweak
increases because it does not protect the conditions that
have already been achieved.

Figure 7 shows the average number of threats detected
by each of the systems. The fact that snlp detects a
much larger number of threats than both nonlin and
tweak comes as no surprise. However, the fact that the
number of threats detected by nonlin is less than the
number detected by tweak when R � 1 was not pre-
dicted by the analysis. This appears to be due to the fact
that the negative threats that nonlin protects against
impose additional ordering constraints on the plan and
a more linearly ordered plan has fewer potential threats.

4.2.3 Average CPU Time

The average CPU time for solving problems in the
arti�cial domain is shown in Figure 8. The result �ts
exactly with our predictions. One thing to note is that
no system performs absolutely the best throughout the
entire spectrum de�ned by R. Another is that although
nonlin did well as compared to snlp when R is small, it
is never signi�cantly better than snlp. In the case where
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Figure 6: Comprison of the Average Number of Times
each Precondition is Visited by each of the Algorithms

0

0.2

0.4

0.6

0.8

1

1.2

0/9 1/8 2/7 3/6 4/5 5/4 6/3 7/2 8/1 9/0

N
u
m
b
e
r
 
o
f
 
T
h
r
e
a
t
s
 
D
e
t
e
c
t
e
d

R = (negative interactions / positive interactions)

SNLP
NONLIN
TWEAK

Figure 7: Comprison of the Average Number of Threats
Detected by each of the Algorithms

it does outperfrom snlp it is dramatically worse than
tweak. This e�ect should lend credibility to the protec-
tion against positive threats as used in snlp. Although
protection of positive threats seemed clumsy when R is
small, when the number of negative threats is relatively
large the protection method used by snlp imposes more
constraints on a plan. The resulting plans in snlp's
search space are more linear due to the additional con-
straints. The computational advantage of dealing with
a more linear plan compansates for the loss of e�ciency
due to the protection of positive threats.
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Figure 8: Comprison of the Average CPU Time of each
of the Algorithms

5 Related Work and Conclusions

As we stated in the introduction, little work has been
done on comparing di�erent partial order planners. An
exception is the work by Kambhampati[Kambhampati,
1993; Kambhampati, 1992], who (concurrently with our
work) carried out a set of experiments to test the merits
of di�erent partial-order planners. In that work, a pair of
partial-order planners MP and MP-I are proposed that
build upon snlp and nonlin by making use of multiple
contributors to achieve a precondition. Experiments in
a set of closely related domains were conducted, and the
resulting comparison of snlp, nonlin, tweak, MP, and
MP-I show that MP-I outperforms all of the rest, and
that nonlin in one test performed much better than
both snlp and tweak(Figure 8, [Kambhampati, 1993]).

Contrasting Kambhampati's results to ours, we note
that the former is based on a �xed domain. Our results
clearly demonstrate that varying the ratio R of positive
to negative threats experienced by a planner, almost any
comparison result can be obtained; when R � 1 the
comparison results should be dramatically di�erent from
that when R � 1. Thus, it is not surprising that one
can �nd a domain, with a speci�c R value, where snlp
and/or tweak perform worse than nonlin. From this
perspective, the work by Kambhampati can be seen as
orthogonal to ours; while we search for domain features
by which to determine the relative performance of each
system, Kambhampati looks for the best planner on a
single point in the spectrum of features.

In summary, we have presented a detailed compari-
son of the goal protection strategies used in the snlp,
nonlin, and tweak planning algorithms. The analy-
sis provides a foundation for predicting the conditions
under which di�erent planning algorithms will perform
well. As the results show, snlp and nonlin performs
better than tweak when the ratio of negative threats
to positive threats is large, and tweak performs signi�-

cantly better than snlp and nonlin in the opposite case.
The implications of these results for someone building a
practical planning system is that the most appropriate
goal protection strategy depends on the characteristics
of the problem being solved. This paper provides an im-
portant step in building useful planners by identifying a
feature of planning domains that has a major impact on
the performance of di�erent planning algorithms.
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