
Planning, Executing, Sensing, and Replanning
for Information Gathering�

Craig A. Knoblock

Information Sciences Institute and Department of Computer Science

University of Southern California

4676 Admiralty Way

Marina del Rey, CA 90292

Email: knoblock@isi.edu

To appear in the Proceedings of the Fourteenth In-
ternational Joint Conference on Arti�cial Intelligence,
Montreal, Canada, 1995.

Abstract

Current specialized planners for query process-
ing are designed to work in local, reliable, and
predictable environments. However, a number
of problems arise in gathering information from
large networks of distributed information. In
this environment, the same informationmay re-
side in multiple places, actions can be executed
in parallel to exploit distributed resources, new
goals come into the system during execution,
actions may fail due to problems with remote
databases or networks, and sensing may need
to be interleaved with planning in order to for-
mulate e�cient queries. We have developed a
planner called Sage that addresses the issues
that arise in this environment. This system in-
tegrates previous work on planning, execution,
replanning, and sensing and extends this work
to support simultaneous and interleaved plan-
ning and execution. Sage has been applied to
the problem of information gathering to pro-
vide a exible and e�cient system for integrat-
ing heterogeneous and distributed data.

1 Introduction

The task of information gathering requires locating, re-
trieving, and integrating information from large numbers
of distributed and heterogeneous information sources.
In this environment, exibility and e�ciency are criti-
cal. The usual approach of generating a static plan for
processing information and then executing it is inexi-
ble and may be very ine�cient if problems arise during
query processing. The problem is that there may be
many information sources from which to choose, actions
may fail, the system has incomplete knowledge about

�The research reported here was supported in part by
Rome Laboratory of the Air Force Systems Command and
the Advanced Research Projects Agency under Contract
Number F30602-91-C-0081, and in part by the National Sci-
ence Foundation under Grant Number IRI-9313993. The
views and conclusions contained in this paper are those of
the author and should not be interpreted as representing the
o�cial opinion or policy of RL, ARPA, NSF, the U.S. Gov-
ernment, or any person or agency connected with them.

the available information, and new goals may arise at
any time.
To address these problems, we have developed a plan-

ning system that builds on previous work on planning,
execution, sensing, and replanning. The planner, which
we call Sage, was implemented by augmenting ucpop

[Penberthy and Weld, 1992; Barrett et al., 1993] with the
capabilities to produce parallel execution plans [Wilkins,
1984; Knoblock, 1994], interleave planning and execution
[Ambros-Ingerson, 1987; Etzioni et al., 1994], support
run-time variables for sensing [Ambros-Ingerson, 1987;
Etzioni et al., 1992], perform replanning where appro-
priate, and plan for new goals as they arise. We have
integrated all of these capabilities into a single, uni�ed
system in which planning, sensing, and replanning can
be performed during execution. This allows the system
to replan portions of the plan that is currently being ex-
ecuted, receive and plan new tasks within the context of
the executing plan, and interleave sensing actions with
planning in order to improve e�ciency.
Before describing the integration of planning and exe-

cution, we �rst describe the information gathering task
and how it can be cast as a planning problem in a general
planning framework (Section 2). Next, we present our
approach to tightly integrating planning and execution
(Section 3). This integration is used to support planning
for new goals, replanning for failure, and the interleav-
ing of sensing actions to gather additional information
for planning (Section 4). We compare this work to pre-
vious work in planning as well as information gathering
and query processing (Section 5). Finally, we conclude
with a discussion of the contributions of the paper (Sec-
tion 6).

2 Planning for Information Gathering

Information gathering requires selecting, integrating,
and retrieving data from distributed and heterogeneous
information sources in order to satisfy a query. The rel-
evant data must be selected from numerous, possibly
overlapping or replicated sources. Integrating the infor-
mation may be costly, especially when combining data
from di�erent sites. Retrieving the information may be
time consuming due to the distribution of data and the
contention for limited resources.
To solve this problem, we have developed a planner

called Sage that builds on the ucpop partial-order plan-
ner [Barrett et al., 1993]. ucpop provides an expres-
sive operator language that includes conjunction, nega-
tion, disjunction, existential and universal quanti�ers,
conditional e�ects, and a functional interface that al-
lows preconditions to be implemented as Lisp functions.
We extended this planner to support simultaneous action
execution and to tightly integrate planning and execu-
tion. The execution is presented in the next section, and
the support for simultaneous actions was previously ad-
dressed in [Knoblock, 1994] and will be briey described
here.

Partial-order planners, such as ucpop, produce plans
with actions that are unordered. However, if two actions
are left unordered they can be executed in either order,
but not simultaneously. To execute actions in parallel in
a partial-order planner requires that (1) actions can be
executed simultaneously without changing the outcome
of the individual actions, and (2) any potential resource
conicts must be captured in the representation of the
operators in order to avoid conicts during execution.
We assume that the �rst condition holds (as it does in
the information gathering domain described below) and
we extended the planner to support the second condi-
tion. To support reasoning about resources, we added
an explicit resource declaration to the action language,
which describes the resources required when executing
an action. We also augmented the planner to identify
and remove potential resource conicts. With these ex-
tensions, any actions left unordered in the �nal plan can
be executed simultaneously.

In the remainder of this section we describe how the
information gathering task is cast as a planning problem
in Sage. This problem requires producing a plan for gen-
erating a requested set of data. This involves selecting
the sources for the data, the operations for processing the
data, the sites where the operations will be performed,
and the order in which to perform the operations. Since
data can be retrieved frommultiple sources and the oper-
ations can be performed in a variety of orders, the space
of possible plans is large.

An information gathering goal consists of a description
of a set of desired data as well as the location where that
data is to be sent. For example, Table 1 illustrates a goal
which speci�es that the set of data be sent to the out-
put device of the sims information mediator [Arens et
al., 1993; Knoblock et al., 1994]. The goal also speci�es
the data to be retrieved and is de�ned using the syntax
of the query language of the Loom knowledge represen-
tation system [MacGregor, 1990]. This particular query
requests all port names of seaports that are su�ciently
deep to accommodate \breakbulk" ships.

The initial state of a problem de�nes the available in-
formation sources (e.g., databases) and the servers (e.g.,
an Oracle DBMS) they are running on. The example
shown in Table 2 de�nes two servers, an Oracle database
server running on an HP workstation, called hp-oracle,
and an another Oracle server running on a Sun work-
station, called sun-oracle. Both servers contain iden-
tical copies of the geo and assets databases. In ad-
dition to this information, a description of the contents

(available output sims
(retrieve (?port-name)

(:and (seaport ?sport)
(port-name ?sport ?port-name)
(channel-of ?sport ?channel)
(channel-depth ?channel ?depth)
(transport-ship ?ship)
(vehicle-type-name ?ship "breakbulk")
(max-draft ?ship ?draft)
(< ?draft ?depth))))

Table 1: An information gathering goal

of the information sources is stored in a Loom knowl-
edge base. However, this information is static and is
accessed directly through the functional interface rather
than through the literals listed in the initial state.

((source-available geo hp-oracle)
(source-available assets hp-oracle)
(source-available geo sun-oracle)
(source-available assets sun-oracle))

Table 2: An initial state

For this domain, Sage uses a set of ten general oper-
ators to plan out the processing of a query. They in-
clude a move operator for moving a set of data from
one information source to another, a join operator that
combines two sets of data into a combined set of data,
and a select-source operator for selecting the infor-
mation source for retrieving a set of data. The other op-
erators perform additional processing of data (select,
compute, and assignment) or reformulate queries us-
ing background knowledge (generalize, specialize,
definition, and decompose). Each operator is instan-
tiated at planning time with the particular set of data
being manipulated as well as the database where the
manipulation is being performed.
Consider the operator shown in Table 3, which de-

�nes a join performed in the local system. This operator
is used to achieve the goal of making some information
available in the local knowledge base of the sims informa-
tion mediator. It does this by partitioning the request
into two subsets of the requested data, retrieving that
information into the local system, and then joining the
data together to produce the requested set of data. The
available preconditions are achieved by other opera-
tors and the join-partition precondition is de�ned by
a function that produces the relevant partitions of the
requested data.

(define (operator join)
:parameters (?join-op ?data ?data-a ?data-b)
:precondition

(:and (join-partition ?data ?join-op
?data-a ?data-b)

(available local sims ?data-a)
(available local sims ?data-b))

:effect (available local sims ?data))

Table 3: The join operator
2

Select−Source
 Source: Geo

Select−Source
 Source: Assets

Move
 From: geo@hp−oracle
 To: local@sims
 Data: port−name
 channel−depth

Move
 From: assets@sun−oracle
 To: local@sims
 Data: max−draft

Join
 (< max−draft
 channel−depth)

Move
 From: local@sims
 To: output@sims
 Data: port−name

Figure 1: An information gathering plan

This planning domain di�ers from many of the do-
mains that previous planning work has focused on in
two signi�cant ways. First, there are few interactions
between the operators. The main source of interaction
arises in handling resource conicts when two operators
require access to the same server. Second, it is not suf-
�cient to �nd any solution to a problem; the goal is to
�nd an e�cient solution. The �rst di�erence makes the
problem somewhat easier, while the second di�erence
makes the problem signi�cantly harder since it may re-
quire searching a large space of plans.

In order to generate query access plans e�ciently, we
have carefully constrained the space of possible plans.
We wrote the operators such that they generate only the
relevant portions of the search space. Some examples of
this are: �rst, the operators only reason about joins in
the local system, since joins in the remote systems will
be handled by the remote database management system
and the planner has no control over how or in what or-
der these are performed. Second, the operators consider
only joins across data that are distributed in di�erent
information sources. It will generally be less e�cient to
pull two sets of information from the same information
source and perform the join locally rather than in the re-
mote source. Third, since we usually do not have write
access to the remote databases, information can only be
moved from the remote systems to the local system or
directly to the output. However, even with a set of care-
fully designed operators, the search space may still be
very large since the operations can be performed in dif-
ferent orders, and there may be multiple replicated and
overlapping sources from which the information can be
retrieved.

To further constrain the overall search for an e�-
cient plan, we also employ standard database estima-
tion techniques to write an evaluation function to guide
the search. The planner uses the evaluation function in
a branch-and-bound search, estimating the cost of each
intermediate plan and selecting the plan with the low-
est overall execution cost. The cost of each operation is
estimated by maintaining information about the size of
each relation and the number of di�erent possible val-
ues for each attribute of a relation. Assuming a uniform
distribution of the data, we then estimate the amount
of intermediate data that will be retrieved and manip-
ulated, which is usually the dominant cost in handling
multidatabase queries. Using the estimated cost of each
operation, we can then compute an estimate for the over-

all cost of a plan, taking into account the parallelism of
some of the actions. The evaluation function allows the
planner to compare di�erent partial plans; those plans
that are more expensive than the plan eventually se-
lected will never be expanded further.

The �nal plan generated for the example query in Ta-
ble 1 is shown in Figure 1. This plan shows where the
information is retrieved from and how the information
is manipulated to produce the requested data. The sys-
tem works backward from the goal to produce a plan to
retrieve the data. In this particular plan the �nal move
operator is used to achieve the original goal of sending
the requested data to the output; it also generates the
subgoal of getting the data into the local system. Next,
the system considers how to get the data into the lo-
cal system and since the information is not available in
any single information source, it selects the join opera-
tor, which decomposes the original goal into two simpler
information goals. Each of these simpler goals is then
achieved by using the select-source operator to select
a relevant source for each of the requests and translate
the requests into subgoals that use the terminology of
the selected information source. These goals are in turn
achieved by moving the information from the remote in-
formation sources into the local system. When this plan
is executed, all of the information is brought into the
local sims mediator, where the draft of the ship can be
compared against the depth of the seaports. Once the
�nal set of data has been generated, it is sent to the
output.

The approach of searching the space of plans to �nd
the best one is similar to what is done in other sys-
tems for producing query plans for relational databases
[Selinger et al., 1988]. These systems typically generate
the space of query access plans, constraining the space
of plans with appropriate domain-speci�c heuristics, and
then evaluate the plans and select the best one. An im-
portant di�erence from traditional query planning sys-
tems is that in those systems the source from which the
information is to be retrieved is �xed, whereas part of
the planning process described here includes the selec-
tion of an appropriate information source. While this
makes the problem harder, it also provides a much more
exible approach to integrating distributed and hetero-
geneous sources of information.

So far we have described the approach to generating
query plans for information gathering in a distributed
and heterogeneous environment. In addition to gener-

3

ating a plan, the system must also execute it. How-
ever, unlike traditional database environments, there are
a number of problems and issues that arise when dealing
with distributed and autonomous information sources.
Information sources may be unavailable, queries may
fail, new information requests may arise that compete
for resources with the currently executing plan, and ad-
ditional information may be required to select an ap-
propriate plan or formulate an e�cient query. In the
remainder of this paper we will describe how planning
and execution are tightly integrated and how this inte-
gration is used to address the issues that arise during
execution.

3 Integrating Planning and Execution

Planning and execution are tightly integrated by consid-
ering execution as an integral part of the planning pro-
cess. This is done by treating the execution of each in-
dividual action as a necessary step in completing a plan.
The goal of the planner becomes producing a complete
and executed plan rather than just producing a complete
plan. Just as achieving all of the preconditions of a plan
is required for a complete plan, executing each of the
actions is also part of the �nal result.
Sage keeps track of the current status of every ac-

tion in the plan by marking them as either unexecuted,
executing, completed, or failed. This is similar to how
execution was integrated into ipem [Ambros-Ingerson,
1987]. The underlying planner, ucpop, maintains a list
of aws, which is an agenda of things that need to be
done to complete a particular plan. These aws include
open conditions, which are subgoals that have not yet
been achieved, and threats, which are potential interac-
tions between operators that must be resolved by adding
ordering or binding constraints. We integrated execution
in Sage by adding two new types of aws: an unexecuted
action aw and an executing action aw. Whenever a
new operator is added to a plan, the corresponding aw
indicating that the action is unexecuted is also added
to the agenda. The executing aw is used to handle the
fact that actions are not instantaneous and in some cases
may take considerable time. A plan is not complete until
all unexecuted and executing aws have been removed.
The choice of when to execute an action in a plan is im-

portant, since undoing an executed action may be costly
or impossible. An action cannot be executed until every
precondition of the action has been both planned and
achieved by executing the preceding actions. Even after
an action is executable, Sage delays execution as long as
possible to avoid committing to a partially constructed
plan prematurely. Once an action has been executed, it
is viewed as a commitment to the plan in which the ac-
tion occurs { the planner cannot consider any plans that
are not re�nements of the plan being executed. The idea
is that the planner should �nd the best complete plan
before any action is executed. Then once execution is ini-
tiated, it resolves any failed subplans or new goals before
executing the next action. This means that the planner
will never execute an action until the corresponding plan
is selected as the best available.
Since executing an action may take considerable time,

the planner cannot simply execute an action and wait
for the results. Instead, Sage creates a subprocess that
executes the action and noti�es the planner once it has
completed. In order to keep track of the actions currently
being executed, the corresponding unexecuted aw is re-
moved from the agenda and the executing aw is added.
At any one time there may be a number of actions that
are all executing simultaneously. On each cycle of the
planner, the system checks if any executing actions have
completed. Once an action is completed, the executing
aw is removed from the agenda. If it completes success-
fully, the action is marked as completed. Other actions
that depend on this action may now be executable if all
of the other preceding actions have also been executed.
If an action fails, the failed portion of the plan is removed
and then replanned, as described in the next section.
Sage's top-level algorithm for tightly integrating plan-

ning and execution is summarized in Table 4. The plan-
ner starts with an initial plan, where the goals are the
open conditions. Initially, the set of current plans con-
tains only this initial plan. It repeats the algorithm until
it produces a plan in which every action has been exe-
cuted. The planner considers only re�nements of the
current plans. Whenever an action is executed, an ac-
tion terminates, or a new goal is added, the set of current
plans is replaced by a new set containing only this new
plan. The �rst two conditions in this algorithm ensure
that the planner �nds a plan with no open conditions
or threats before it commits to a plan and initiates any
actions.

Remove a plan from the set of current plans and apply the
�rst applicable condition:

� If there are any threats, resolve them by adding ad-
ditional constraints to the plan. Add the possible re-
�nements to the current plans.

� If there are any open conditions, add additional ac-
tions or ordering links to achieve them. Add the pos-
sible re�nements to the current plans. (As described
in the next section, open conditions that contain run-
time variables for sensing will be postponed.)

� If any executing actions have completed:

{ If the action completed successfully, record the
results and update the plan. If the plan is com-
plete, return the results. Otherwise, replace the
current plans with this new plan.

{ If the action failed, remove the failed portion
of the plan, update the model to avoid generat-
ing the same plan again, and replace the current

plans with this new plan.

� If there are any new goals to solve, add them to the
open conditions and replace the current plans with
this new plan.

� If any unexecuted actions are now executable, create a
process to execute them and replace the current plans

with this new plan.

Table 4: Algorithm for planning and execution

This algorithm supports simultaneous planning and
execution. Before the system initiates execution of any

4

Legend

Executing

Planned Completed

Select−Source
 Source: Geo

Select−Source
 Source: Assets

Select−Source
 Source: Geo

Move
 From: geo@sun−oracle
 To: output@sims
 Data: port−description

Move
 From: geo@hp−oracle
 To: local@sims
 Data: port−name
 channel−depth

Move
 From: assets@sun−oracle
 To: local@sims
 Data: max−draft

Move
 From: local@sims
 To: output@sims
 Data: port−name

Join
 (< max−draft
 channel−depth)

Figure 2: Planning for new goals

action, it constructs an initially complete plan. How-
ever, once execution starts, an action could fail, a new
goal could arise, or the system may require additional in-
formation (sensing) to continue planning. In any of these
cases, once the new open condition has been added to
the list of aws, the system can augment the executing
plan to achieve these conditions while it continues exe-
cuting any actions that have already been initiated. In
the next section we describe these capabilities in more
detail.

4 Advantages of Integrating Planning

and Execution

Integrating the planning and execution allows the system
to plan for new goals as they arrive, replan failed actions,
and exploit sensing operations, all while the system is
executing other actions in a plan.

4.1 Planning for New Goals

Interleaving planning and execution allows the system
to handle new goals while the system is in the midst of
executing a plan that achieves some other goals. This
is important, since execution may require substantial
amounts of time and it may be impractical and ine�-
cient to wait for one task to complete before starting the
next task. In addition, it may not be possible to treat
the new goal as an independent task since it may com-
pete with the executing plan for the same resources. The
handling of new goals is captured in the algorithm de-
scribed in Table 4. When a new goal arises, the system
adds this goal to the currently executing plan and then
re�nes that plan to solve the goal.
Consider an example where a new goal is given to the

system while it is executing the plan in Figure 1. As-
sume that the system has already executed some of the
actions and is in the midst of executing others, as shown
in Figure 2. When a new goal arises to retrieve the de-
scription of the Long Beach seaport, the planner notices
the pending goal on the next cycle and then searches for
appropriate additions to the currently executing plan to
solve this goal. While the system is generating this plan,
the action in progress (shown by the action in the box

with thick lines) continues to execute, since actions are
run as separate processes.
The resulting plan is shown in Figure 2. The advan-

tage of planning this new goal in the context of the exist-
ing plan is that shared work can be exploited and any po-
tential resource conicts are considered in the planning
process. In this case, the goal requires access to the geo
database, which is already in use by the other executing
query. As a result, the system uses the geo database
running on the sun-oracle server, since the other ac-
tion that required this resource has already completed.
The separate top-level goals are treated as independent
goals, so if a subplan fails it will not cause unrelated
goals to fail. In addition, as soon as any top-level goal
is complete, the results are sent to the calling process.
This allows the planner to run continuously and return
results as soon as they are obtained rather than waiting
for a plan to complete.

4.2 Replanning Failed Actions

Integrating planning and execution allows the system to
gracefully handle action failures and replanning. Since
the planner may have expended considerable e�ort in
executing a plan so far, we want to avoid throwing out
the entire plan and starting from scratch when an ac-
tion fails. Instead, the planner should replan the failed
portion of the plan, while maintaining as much of the
executing plan as possible. This is currently supported
by requiring the designer of a domain to de�ne a set
of domain-speci�c failure handlers. When a failure oc-
curs, the failure handler is called with the action that
failed and the type of failure, and the failure handler is
expected to remove the failed portion of the plan and up-
date the model to avoid the same failure when the failed
actions are replanned. This replanning can be performed
while other una�ected actions continue to execute. A
more complete replanning capability could be incorpo-
rated by using the approach developed in the Systematic
Plan Adaptor (SPA) [Hanks and Weld, 1992], which sys-
tematically searches the space of plan modi�cations.

In the information gathering domain, the ability to
replan upon failure can be exploited to handle query
failures by redirecting a query to a di�erent informa-

5

Legend

Executing

Planned Completed

Select−Source
 Source: Geo

Select−Source
 Source: Assets

Select−Source
 Source: Geo

Move
 From: geo@sun−oracle
 To: output@sims
 Data: port−description

Failed

Move
 From: geo@sun−oracle
 To: local@sims
 Data: port−name
 channel−depth

Move
 From: geo@hp−oracle
 To: local@sims
 Data: port−name
 channel−depth

Move
 From: assets@sun−oracle
 To: local@sims
 Data: max−draft

Join
 (< max−draft
 channel−depth)

Move
 From: local@sims
 To: output@sims
 Data: port−name

Select−Source
 Source: Geo

Figure 3: Replanning a failed plan

tion source. An execution failure may occur because a
database or network is down. In this case the failure
handler would remove the actions for retrieving the data
from a speci�c information source and would mark the
information source as unavailable to avoid generating the
same plan. The planner would then attempt to replan
the query; if another information source is available it
would generate an alternative plan.

An example of a failed action that can be replanned
is shown in Figure 3. The actions in the shaded boxes
are the failed actions and the actions above the failed
ones are the replanned actions. Since the replanned
move action requires the same resource as the action cur-
rently being executed, an ordering constraint is added
between these two actions. This constraint prevents the
replanned move action from being executed until this
other action completes.

4.3 Sensing to Plan

Integrating planning and execution allows the system
to interleave sensing actions with the planning. Ear-
lier work on sensing in planning [Ambros-Ingerson, 1987;
Etzioni et al., 1992] proposed the idea of incorporating
run-time variables in the planner to allow the planner
to reason about the sensed information. Run-time vari-
ables appear in the e�ects of operators and essentially
serve as place holders for the value or values returned by
the action at the point it is executed. These variables are
useful because the result can be incorporated and used
in other parts of the plan. An issue that arises in the use
of run-time variables is that until desired information is
available, the planning may have to be postponed or a
plan with all possible contingencies will have to be pro-
duced in order to deal with the possible returned values.
Sage supports run-time variables and delays working on
any open condition that involves such a variable. How-
ever, unlike previous planners, Sage can begin execution
of other actions while it is waiting for the sensed infor-
mation and then continue planning while these actions

continue to execute.

For information gathering, there are two important
uses of run-time variables. First, the run-time vari-
ables can be used to retrieve information from one source
and that information is then used to formulate queries
to another source. Second, the run-time variables also
can be used to retrieve information which is then used
in the selection of the most appropriate information
sources. We have already implemented the �rst use,
which is described below, and we investigate the second
in [Knoblock and Levy, 1995].

The capability for gathering information to use in the
formulation of another query can be added to the system
by adding two more operators to the domain, shown in
Table 5. The �rst operator is simply an action to exe-
cute a query in the local system and bind the result to
\!result". As in UWL, run-time variables are annotated
with an exclamationmark. The only precondition of this
operator is that the information is available in the local
system and the only e�ect is that the data is bound to
the result. Note that the system will have to generate a
subplan and execute it in order to get the information
into the local system.

(define (operator bind-result)
:parameters (?query !result)
:precondition (available local sims ?query)
:effect (sensed ?query !result))

(define (operator use-sensed-info)
:parameters (?source ?host ?query

?mod-query ?sub-query ?result)
:precondition

(:and (sensed ?sub-query ?result)
(available ?source ?host ?mod-query)
(gather-data ?query ?mod-query

?sub-query ?result))
:effect (available ?source ?host ?query))

Table 5: Operators for sensing
6

Legend

Executing

Planned Completed

Select−Source
 Source: Geo

Select−Source
 Source: Assets

Bind−Result
 max−draft=24

Move
 From: assets@sun−oracle
 To: local@sims
 Data: max−draft

Use−Sensed−Info
 max−draft = 24

Move
 From: geo@hp−oracle
 To: output@sims
 Data: port−name
 channel−depth > 24

Figure 4: Exploiting sensing actions

The second operator, called use-sensed-info, re-
trieves information and uses it in the formulation of
another query. The heart of this operator is the
gather-data precondition, which is a function that de-
termines whether a query can be decomposed such that
some of the information can be retrieved and incorpo-
rated directly into another query. If so, then it decom-
poses the original query into a modi�ed query and a
sub-query, which will get executed �rst to return an an-
swer. The result will then be inserted directly into the
modi�ed query through the run-time binding.
Consider the example query described in the previous

sections. Instead of executing two parallel queries, the
system can �rst gather the information on the ship draft
and incorporate that information directly into the sec-
ond query, as shown in Figure 4. In this plan the bind-
ing for the \max-draft," is incorporated directly into the
query against the geo database. While the two queries
must then be done sequentially, it will greatly reduce the
amount of intermediate data that needs to be retrieved
from the second query. Also, there will be no local pro-
cessing, so the result can be sent directly to the output.

5 Related Work

There are a variety of systems that have tightly inte-
grated planning with some combination of execution,
sensing, and replanning. There is work on reactive plan-
ning (e.g., [Firby, 1987; Beetz and McDermott, 1992]),
which emphasizes the ability to react to unexpected
situations rather than assume that a plan will usually
work. This view is appropriate for some domains, such
as robot planning, but not in domains such as informa-
tion gathering where the cost of execution will usually
be much higher than the cost of reasoning about actions.
In a partial-order planning framework, Ambros-Ingerson
[1987] developed an integrated planning, execution, and
monitoring system called ipem and introduced the idea
of run-time variables for sensing. Olawsky and Gini
[1990] focused on the tradeo�s and strategies in choos-
ing when to sense and when to plan. Etzioni et al.[1992]

developed a language for representing incomplete infor-
mation and Etzioni et al.[1994] built an integrated sys-
tem for planning, execution, and sensing called xii that
can represent and reason about locally complete infor-
mation. We have built on many of the ideas from the
earlier work within the partial-order planning paradigm

and extended them to support simultaneous planning
and execution and build an integrated system for infor-
mation gathering.
The other aspect to this work is the application of the

planner to the problem of information gathering. The xii
planner [Etzioni et al., 1994], which is used in the Unix
Softbot [Etzioni and Weld, 1994], also supports execu-
tion and sensing for information gathering. Compared
to Sage, the Softbot reasons about the information at
a di�erent level of granularity. Instead of representing
general actions for manipulating data, each operator cor-
responds to a Unix command. The advantage of their
approach is that it provides �ner-grained control and
reasoning of the information. The disadvantage is that
it would be impractical to e�ciently reason about and
manipulate large amounts of information. Information
gathering is also similar to conventional query process-
ing in databases. These systems generate a query access
plan and then execute it [Jarke and Koch, 1984]. There
is no choice of which information source is used and no
capability for interleaving the planning and execution,
performing sensing operations, replanning due to fail-
ures, or handling additional goals.

6 Discussion

This paper presented a planning system, called Sage,
which tightly integrates planning and execution, runs
continuously and handles new goals as they arrive, per-
forms sensing actions, and recovers from failures that
arise, all while continuing to execute actions already in
progress. The contributions of this work are twofold.
First, we extended the previous work by tightly inte-
grating these components and adding the capability to
execute actions simultaneously with the planning, re-
planning, and sensing. Second, we demonstrated that
the resulting planner can be e�ectively applied to the
problem of information gathering from distributed and
heterogeneous information sources.
In this work we started with a real-world planning

application and identi�ed the issues that had to be ad-
dressed to solve this problem. While there is a signi�cant
amount of previous work on planning that we could build
on, the emphasis and assumptions in previous work do
not closely match the problems that arise in this domain.
For example, in terms of generating plans, the interac-
tions between actions do arise, but they are not the dom-

7

inant problem. Issues that are important in this domain
are �nding high quality plans, exploiting parallelism in
the plans, and planning and executing simultaneously to
support planning for new goals, replanning and sensing.
In order to put all of this work together and turn it into
a practical planning system, the resulting planner makes
some simplifying assumptions that may not hold in other
domains. However, the basic architecture is quite general
and has been demonstrated in a real-world application.
Sage serves as the underlying query planner for the

sims information mediator [Arens et al., 1993; Knoblock
et al., 1994]. The goal of sims is to provide exible and
e�cient access to large numbers of information sources.
We have implemented the planning, execution, replan-
ning, and sensing as described in this paper. The current
system has been used in the domains of logistics plan-
ning and trauma care and provides access to data stored
in a variety of systems that are distributed at various
sites.

Acknowledgments

Thanks to the other members of the sims project, Yi-
gal Arens, Wei-Min Shen, Chin Chee, Chun-Nan Hsu,
Jose-Luis Ambite, and Sheila Tejada, for their work
on developing the rest of the system. Also, thanks to
Yolanda Gil, Kevin Knight, Qiang Yang, Sheila Coyazo,
and the anonymous reviewers for their comments on ear-
lier drafts of this paper.

References

[Ambros-Ingerson, 1987] Jose Ambros-Ingerson. IPEM:
Integrated Planning, Execution, and Monitoring. PhD
thesis, Department of Computer Science, University of
Essex, 1987.

[Arens et al., 1993] Yigal Arens, Chin Y. Chee, Chun-
Nan Hsu, and Craig A. Knoblock. Retrieving and
integrating data from multiple information sources.
International Journal on Intelligent and Cooperative
Information Systems, 2(2):127{158, 1993.

[Barrett et al., 1993] Anthony Barrett, Keith Golden,
Scott Penberthy, and Daniel Weld. UCPOP user's
manual (version 2.0). Technical Report 93-09-06, De-
partment of Computer Science and Engineering, Uni-
versity of Washington, 1993.

[Beetz and McDermott, 1992] Michael Beetz and Drew
McDermott. Declarative goals in reactive plans. In
Arti�cial Intelligence Planning Systems: Proceedings
of the First International Conference (AIPS92), pages
3{12, College Park, MD, 1992.

[Etzioni and Weld, 1994] Oren Etzioni and Daniel S.
Weld. A softbot-based interface to the Internet. Com-
munications of the ACM, 37(7), 1994.

[Etzioni et al., 1992] Oren Etzioni, Steve Hanks, Daniel
Weld, Denise Draper, Neal Lesh, and Mike
Williamson. An approach to planning with incomplete
information. In Proceedings of the Third International
Conference on Principles of Knowledge Representa-
tion and Reasoning, pages 115{125, Cambridge, MA,
1992.

[Etzioni et al., 1994] Oren Etzioni, Keith Golden, and
Dan Weld. Tractable closed-world reasoning with up-
dates. In Fourth International Conference on Prin-
ciples of Knowledge Representation and Reasoning,
Bonn, Germany, 1994.

[Firby, 1987] R. James Firby. An investigation into re-
active planning in complex domains. In Proceedings
of the Sixth National Conference on Arti�cial Intelli-
gence, pages 202{206, Seattle, WA, 1987.

[Hanks and Weld, 1992] Steven Hanks and Daniel S.
Weld. The systematic plan adaptor: A formal founda-
tion for case-based planning. Technical Report 92-09-
04, Department of Computer Science and Engineering,
University of Washington, Seattle, WA, 1992.

[Jarke and Koch, 1984] Matthias Jarke and Jurgen
Koch. Query optimization in database systems. ACM
Computing Surveys, 16(2):111{152, 1984.

[Knoblock and Levy, 1995] Craig A. Knoblock and Alon
Levy. Exploiting run-time information for e�cient
processing of queries. In Working Notes of the AAAI
Spring Symposium on Information Gathering in Dis-
tributed Heterogeneous Environments, Palo Alto, CA,
1995.

[Knoblock et al., 1994] Craig Knoblock, Yigal Arens,
and Chun-Nan Hsu. Cooperating agents for infor-
mation retrieval. In Proceedings of the Second Inter-
national Conference on Cooperative Information Sys-
tems, Toronto, Canada, 1994.

[Knoblock, 1994] Craig A. Knoblock. Generating par-
allel execution plans with a partial-order planner. In
Proceedings of the Second International Conference on
Arti�cial Intelligence Planning Systems, Chicago, IL,
1994.

[MacGregor, 1990] Robert MacGregor. The evolving
technology of classi�cation-based knowledge represen-
tation systems. In John Sowa, editor, Principles of
Semantic Networks: Explorations in the Representa-
tion of Knowledge. Morgan Kaufmann, 1990.

[Olawsky and Gini, 1990] Duane Olawsky and Maria
Gini. Deferred planning and sensor use. In Pro-
ceedings of the Workshop on Innovative Approaches
to Planning, Scheduling and Control, pages 166{174,
San Diego, CA, 1990.

[Penberthy and Weld, 1992] J. Scott Penberthy and
Daniel S. Weld. UCPOP: A sound, complete, partial
order planner for ADL. In Third International Confer-
ence on Principles of Knowledge Representation and
Reasoning, pages 189{197, Cambridge, MA, 1992.

[Selinger et al., 1988] P. Gri�ths Selinger, M.M. Astra-
han, D.D. Chamberlin, R.A. Lorie, and T.G. Price.
Access path selection in a relational database manage-
ment system. In Arti�cial Intelligence and Databases,
pages 511{522. Morgan Kaufmann, Los Altos, CA,
1988.

[Wilkins, 1984] David E. Wilkins. Domain-independent
planning: Representation and plan generation. Arti-
�cial Intelligence, 22(3):269{301, 1984.

8

