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Abstract

The AI planning �eld has a long history of intro-
ducing yet another search algorithm that is be-
lieved to be the best in all domains. Some recent
examples are nonlin, tweak and snlp. In this
paper we show, by directly comparing the above
three planners, that the quest for an overall winner
is doomed to fail. We �rst argue that these three
planners di�er in a variety of ways, including meth-
ods for termination check, causal-link protection,
and subgoal selection. These di�erences entail dif-
ferent search behaviors in terms of factors such as
the branching factor, the search depth and the time
spent by the algorithm on each search node. Fur-
thermore, the search behavior is closely related to
the characteristics of the problem domain in which
a planner is operating. In this paper we identify
one such domain feature, expressed as the ratio of
the number of negative threats to the number of
positive threats. We present an arti�cial domain
where we can control this ratio and show that in
fact the planners show radically di�erent perfor-
mance as the ratio is varied in this domain. The
implication of this result for someone implement-
ing a planning system is that the most appropriate
algorithm will depend on the types of problems to
be solved by the planner.

1 Introduction

There has been a great deal of work recently on compar-
ing total-order and partial-order planning systems [1, 9], but
little has been done in comparing di�erent partial-order plan-
ners themselves. Furthermore, there has been a great deal of
speculation on whether a particular partial-order planner is
always better than another. In this paper we focus on three
basic planning algorithms, snlp, nonlin and tweak, and
demonstrate that their relative performance depends criti-
cally on the domain features.

We start by �xing particular versions of the three planners,
and analyzing their inherent di�erences. On the surface, the

�This is a revised version of an earlier paper [7] that won
the Best Paper Award at the Canadian Arti�cial Intelligence
Conference. The �rst author is supported by Rome Lab-
oratory of the Air Force Systems Command and the De-
fense Advanced Research Projects Agency under contract
no. F30602-91-C-0081. The second author is supported in
part by grants from the Natural Science and Engineering Re-
search Council of Canada, and ITRC: Information Technol-
ogy Research Centre of Ontario. The views and conclusions
contained in this paper are the author's and should not be
interpreted as representing the o�cial opinion or policy of
DARPA, RL, NSERC, ITRC, or any person or agency con-
nected with them.

three planners are quite di�erent. However, on a careful ex-
amination one can �nd that they mainly di�er in only a few
dimensions, including termination check, subgoal selection,
and causal-link protection. Causal links are introduced dur-
ing planning to keep track of the producer-consumer rela-
tionship among the plan steps. If a causal link is threatened
by another step, then some sort of protection methods are
usually called upon. Among the three planners, tweak pro-
tects nothing, nonlin protects against all negative threats,
and snlp protects against both negative and positive threats.

The conservative causal-link protection method used in snlp

prevents the planner from generating redundant plans and
thereby could potentially limit the size of the search space.
However, enforcing the strong protection has a cost, and in
some cases can actually reduce the planning e�ciency. In this
paper, we show that none of the planners is always a winner.
In some domains our planner based on tweak greatly out-
performs both a planner based on nonlin

1 and snlp. In
other domains, snlp and nonlin perform much better than
tweak. The challenge is to identify the features of the do-
mains where each planner is expected to perform well, so
that practitioners can balance the protection methods based
on the application domain.

In the following sections, we �rst review the three algorithms.
Then we present an analysis of the algorithms to identify
their relative merits. We also report on two critical domain
features that have the greatest impact on the performance
of the planners. Finally, we present empirical results on an
arti�cial domain to support the analysis.

2 Comparison of the Algorithms

This section presents the snlp, tweak, and nonlin plan-
ning algorithms. First, we present the snlp algorithm
based on the algorithm descriptions of McAllester and Rosen-
blitt's Find-Completion algorithm [8] and Barrett and Weld's
POCL algorithm [1]. We start with this algorithm because
we can build on the elegant algorithm description and im-
plementation provided in previous work. Then, we describe
the changes necessary to transform the snlp algorithm into
algorithms that implement nonlin [10] and tweak [2].

2.1 The snlp Algorithm

In the planning algorithms that we consider below, we follow
the notations used by Barrett and Weld [1]. A plan is a
3-tuple, represented as hS; O;Bi, where S is a number of
steps, O is a set of ordering constraints, and B the set of
variable binding constraints associated with a plan. A step
consists of a set of preconditions, an add list, and a delete
list. The binding constraints specify whether two variables
can be bound to the same constant or not.

The core of snlp is the recording of the causal links for why

1For convenience we will simply refer to them as tweak
and nonlin.
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a step is introduced into a plan, and for protecting that pur-
pose. If a step Si adds a proposition p to satisfy a precon-

dition of step Sj , then Si
p
! Sj denotes the causal link. An

operator Sk is a threat to Si
p
! Sj if Sk can possibly add or

delete a literal q that can possibly be bound to p. For con-

venience, we also refer to the pair (Sk; Si
p
! Sj) as a threat.

In addition, we de�ne an operator Sk to be a positive threat

to Si
p
! Sj, if Sk can possibly be between Si and Sj , and Sk

adds a literal q that can possibly be bound to p. Likewise,
Sk is a negative threat if it can possibly be between Si and
Sj , and deletes a literal q that can possibly be bound to p.

The following algorithm which is an adaptation of McAllester
and Rosenblitt's Find-Completion algorithm [8] and Bar-
rett and Weld's POCL algorithm [1], has been shown to
be sound, complete, and systematic (never generates redun-
dant plans). Let the notation codesignate(R) denote the
codesignation constraints imposed on a set of variable pairs
R. For example, if R = f(xi; yi) j i = 1; 2; . . .kg, then
codesignate(R) = fxi = yi j i = 1; 2; . . . kg. Similarly,
noncodesignate(R) denotes the set of non-codesignation con-
straints on a set R of variable pairs. The parameters of the
algorithm are: S=Steps, O=Ordering constraints, B= Bind-

ing constraints, G= Goals, T=Threats, and L=Causal links.

Algorithm snlp(hS; O;Bi; T; G;L)

1. Termination: If G and T are empty, report success
and stop.

2. Declobbering: A step sk threatens a causal link

si
p
! sj when it occurs between si and sj , and it adds or

deletes p. If there exists a threat t 2 T such that t is a

threat between a step sk and a causal link si
p
! sj 2 L,

then:

� Remove the threat by adding ordering constraints
and/or binding constraints using promotion, demo-
tion, or separation. For completeness, all ways of
resolving the threat must be considered.

{ Promotion: O0 = O
S
fsk�sig, B

0 = B

{ Demotion: O0 = O
S
fsj�skg, B

0 = B

{ Separation: O0 = O
S
fsi�skg

S
fsk�sjg.

Let q be the e�ect of sk that threatens p
and let P be the set of binding pairs be-
tween q and p. B0 = B

S
�, where � 2

f� j � = noncodesignate(s)
S
codesignate(P �

s);where s � P ^ s 6= ;g.2

� Recursive invocation: snlp(hS;O0;B0i; T �
ftg;G; L)

3. Goal selection: Let p be a proposition in G, and let
Sneed be the step for which p is a precondition.

4. Operator selection: Let Sadd be an existing step,
or some new step, that adds p before Sneed. If no
such step exists or can be added then backtrack. Let

L0 = L
S
fSadd

p
! Sneedg, S0 = S

S
fSaddg;O

0 =

O
S
fSadd�Sneedg; and B0 = B

S
the set of variable

bindings to make Sadd add p. Finally, update the goal

set: G0 = (G � fpg)
S

preconditions of Sadd, if new.
For completeness, all ways of achieving the step must
be considered.

2The possible binding constraints are mutually exclusive,
since systematicity requires that the search space is parti-
tioned into non-overlapping parts.

5. Threat identi�cation: Let T 0 = ft j for every step
sk that is a positive or negative threat to a causal link

si
p
! sj 2 L0, t = (sk; Si

p
! Sj)g.

6. Recursive invocation: snlp(hS0;O0;B0i; T 0;G0; L0).

2.2 The nonlin Algorithm

snlp is a descendant of nonlin [10], so the algorithms are
quite similar and di�er mainly in which threats they protect
against and how they perform separation. These two dif-
ferences stem from the added constraints on snlp that are
used to ensure systematicity. nonlin also provides some ad-
ditional capabilities such as hierarchical task-network decom-
position, but these capabilities are orthogonal to the point of
this paper and are not considered.

The �rst change to the snlp algorithm is in the threat iden-
ti�cation step. In contrast to snlp, only the negative threats
are added to the list T 0:

Threat identi�cation: Let T 0 = ft j for every step sk

that is a negative threat to a causal link si
p
! sj 2 L0, t =

(sk; Si
p
! Sj)g.

The second change is that to perform separation, there is
no requirement that promotion, demotion and separation are
made mutually exclusive. In this case, separation simply en-
tails that one or more of the possible bindings are forced not
to codesignate, but imposes no ordering constraints.

Separation: O0 = O. Let q be the e�ect of sk that pos-
sibly codesignates with p and let P be the set of binding
pairs between q and p. B0 = B

S
�, where � 2 f� j � =

noncodesignate(e);where e 2 Pg.

As we will see in the experimental results section, the di�er-
ences in performance of goal protection methods employed
by snlp and nonlin are relatively minor.

2.3 The tweak Algorithm

The primary di�erence between tweak and the two previous
algorithms is that instead of building explicit causal links for
each condition established by the planner, tweak uses what
is called the Modal Truth Criterion [2] to check the truth of
each precondition in the plan. This di�erence results in four
changes from the snlp algorithm and only three changes from
the nonlin algorithm. The di�erences are in termination,
separation, goal selection, and threat identi�cation. Each of
these are discussed in turn.

Since tweak does not maintain explicit causal links for each
precondition, it must test the truth of all of the precondi-
tions in the plan to determine when the plan is complete. It
does this using the Modal Truth Criterion check [2]. This
algorithm takes O(n3) time, as compared with the O(1) time
termination routine of snlp. We will refer to the algorithm
that implements the Modal Truth Criterion as mtc. This al-
gorithm returns true if a given plan is complete and otherwise
returns a precondition of some step in the plan that does not
necessarily hold.

Termination: If mtc(hS; O;Bi) is true, report success and
stop.

Similar to nonlin, there is no requirement that all of the
separation constraints are mutually exclusive. Thus, tweak
uses the same method for separation as nonlin.

Separation: O0 = O. Let q be the e�ect of sk that pos-
sibly codesignates with p and let P be the set of binding
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pairs between q and p. B0 = B
S
�, where � 2 f� j � =

noncodesignate(e);where e 2 Pg.

Since tweak does not maintain an explicit set of causal links,
there is no explicit record of which preconditions much be
achieved. Thus, goal section is done using the mtc algorithm.
The mtc returns a precondition of a step in the plan that is
not necessarily true.

Goal Selection: Let p be the precondition of step Sneed
returned by the mtc procedure.

Finally, unlike both snlp and nonlin, tweak makes no
attempt to protect all of the previously established precon-
ditions against either negative or positive threats. Tweak

does, however, ensure that at each step all negative threats
to the most recently built causal link are removed. However,
after a precondition is established and threats are removed,
it can be clobbered again. In such a case, tweak will have
to re-establish the condition.

Threat identi�cation: Let lnew = Sadd
p
! Sneed, which

is the causal link constructed in step 4. Let T 0 = ftjfor every
step sk that is a negative threat to lnew, t = (sk; lnew)g.

As we stated above, the mtc routine for the termination check
is more expensive than that for snlp. However, this does not
mean that tweak is less e�cient than snlp, since in many
cases, tweak will explore fewer nodes. In the next section,
we consider the major factors that a�ect the search space,
and present a complexity analysis of the three algorithms.

3 Analyzing the Algorithms

3.1 Algorithm Complexities

Let eb be the e�ective branching factor and ed the e�ective
depth of the search tree. In both algorithms, eb is the max-
imum number of successor plans generated either after step
2, or after step 5, while ed is the maximum number of plan
expansions in the search tree from the initial plan state to
the solution plan state. Then with a breadth-�rst search, the
time complexity of search is

O(ebed � Tnode);

where Tnode is the amount of time spent per node.

We next analyze the complexity of the algorithms by eshing
out the parameters eb, ed and Tnode. In this analysis, let P
denote the maximum number of preconditions or e�ects for a
single step, let N denote the total number of operators in an
optimal solution plan, and let A be either the snlp, nonlin,
or tweak algorithm.

To expand the e�ective branching factor eb, we �rst de�ne
the following additional parameters. We use b new for the
number of new operators found by step 4 for achieving p,
b old for the number of existing operators found by step 4 for
achieving p, and rt for the number of alternative constraints
to remove one threat. The e�ective branching factor of search
by either algorithm is then

eb = maxf( b new + b oldA); rtAg;

since each time the main routine is followed, either step 2
is executed for removing threats, or step 3 {6 is executed to
build causal links. If step 2 is executed, rt successor states
are generated, but otherwise, ( b new+ b old) successor plan
states are generated.

Next, we expand the e�ective depth ed. In the solution plan,
there are N � P number of (p; Sneed) pairs, where p is a

precondition for step Sneed. Let fA be the fraction of the
N �P pairs chosen by step 3. For each pair (p; Sneed) chosen
by step 3, step 5 accumulates a set of threats to remove. Let
tA be the number of threats generated by step 5. Finally, let
v be the total number of times any �xed pair (p; Sneed) is
chosen by step 3. Then we have

edA = fA �N � P � tA � vA:

A summary of the parameters can be found in Table 3.1.

For snlp, each pair (p; Sneed) must be visited exactly once.
Therefore, fsnlp = 1 and vsnlp = 1. Also, snlp examines
every causal link in the current plan in step 4. Thus, in the
average case, the amount of time per node is half of the total
number of links in the solution plan, i.e., N �P=2. Thus, the
average time complexity for snlp is:

O(max( b new+ b oldsnlp; rtsnlp)
N�P�tsnlp �N � P ):

nonlin's behaviour is similar to snlp in that each pair
(p; Sneed) must be visited exactly once. Therefore, fnonlin =
1 and vnonlin = 1. Also similar to snlp, nonlin examines
every causal link in the current plan in step 4. The di�erence
between nonlin and snlp is that nonlin resolves only neg-
ative threats. This means that in general nonlin will have a
smaller t value. The average time complexity for nonlin is:

O(max( b new+ b oldnonlin; rtnonlin )
N�P�tnonlin �N � P )

In tweak, ftweak � 1, and can be much smaller than one
since tweak does not build explicit causal links for every
precondition. If many preconditions already hold, then the
number of chosen preconditions by step 3 in tweak could
be much smaller than the total number of preconditions in
the solution plan. Since tweak does not protect any past
causal links, a precondition can be visited twice. Therefore,
vtweak � 1. ttweak, on the other hand, should be much
smaller than tsnlp and tnonlin, since tweak only declobbers
for the most recently constructed causal link, and only neg-
ative threats are considered. Thus the number of threats
is much smaller. Finally, tweak uses MTC to check the
correctness of a plan, resulting a complexity per node to be
O((N � P )3). Overall, the complexity of tweak is:

O(max( b new+ b oldtweak; rttweak)
m � Ttweak

where m = ftweak � N � P � ttweak � vtweak and Ttweak =
(N � P )3:

In the next section, we discuss how these parameters change
with certain domain features.

3.2 Systematicity

snlp is systematic, which means that no redundant plans are
generated in the search space. In contrast, neither tweak
nor nonlin are systematic. However, a planner that is sys-
tematic is not necessarily more e�cient. The systematicity
property reduces the branching factor by avoiding redundant
plans. However, systematicity is achieved in snlp by pro-
tecting against both the negative and positive threats, which
increases the factor t, a multiplicative factor in the exponent.
Thus, snlp reduces the branching factor at a price of increas-
ing the depth of search. Therefore, one can get a systematic,
but less e�cient planning system.
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eb e�ective branching factor
ed e�ective search depth

Tnode average time per node
N total number of operators in a plan
P total number of preconditions per operator
fA fraction of (p; Sneed) pairs examined by algorithm A

vA average number of times a (p; Sneed) pair is visited by A

tA average number of threats found by A at each node
rtA average number of ways to resolve a threat by A
b new average number of new establishers for a precondition
b old average number of existing (or old) establishers for a precondition

Table 1: Parameters used in complexity analysis.

4 Domain Features and Search

Performance

The analysis in the previous section can be used to predict the
relative performance of the three planning algorithms in dif-
ferent types of domains. An important feature of a domain
that determines the relative performance of any two algo-
rithms is the ratio between the number of positive threats and
number of negative threats. The ratio is an important factor
in di�erentiating the algorithms because the major di�erence
between any two algorithms is the way they handle positive
and negative threats. Among the three algorithms, tweak
only avoids some negative threats, snlp protects against all
positive and negative threats, and nonlin protects against
all negative threats but not the positive ones.

4.1 Predictions

The major di�erence between the algorithms manifest them-
selves in the execution of Step 1, the termination subroutine,
and Step 4, threat detection. To see their e�ect on search e�-
ciency, let t+ denote the average number of positive threats,
and let t� be the average number of negative threats de-
tected by Step 4 of snlp. Let R denote the ratio of t� to t+:

R =
t
�

t+
. In this section we predict the performance of the

three planning algorithms based on the value of R.

Case 1: R� 1

Since snlp resolves all positive threats, it imposes more con-
straints on a plan. Thus, on the average an snlp plan is
more linearly ordered than either a tweak plan or a nonlin
plan. A more linearly ordered plan has a smaller number of
existing establishing operators for a given precondition, and
thus a smaller branching factor. Thus, the branching fac-
tor of snlp is likely to be the smallest among the three, and
that for tweak is the largest due to its conservative stand
in resolving threats.

When t+ is relatively large, the total number of threats t re-
solved by snlp is large, which in turn increases snlp's search
depth. Also, for both nonlin and snlp, a causal link has
to be built for every precondition in a plan, a behavior that
�xes a lower bound on their search depths. With many pos-
itive threats in a plan, a precondition is more likely to be
achievable by an existing step. Therefore tweak will be
able to skip many more preconditions compared to nonlin

and snlp. Thus the search depth of tweak will be much less
than both nonlin and snlp, and the search depth of nonlin
will be smaller than snlp because it does not resolve positive
threats.

As R decreases below one, the branching factor for tweak
and nonlin increase, while the search depth for snlp in-
creases. The time complexity for the former go up polynomi-
ally, while for the latter it goes up exponentially. Moreover,
the depth of nonlin is greater than the depth of tweak.
Therefore, we predict that when R� 1 tweak will perform
better than nonlin, which in turn will perform better than
snlp.

Case 2: R � 1

As with the previous case, the additional constraints imposed
by snlp and nonlin over tweak imply that snlp will have a
smaller branching factor then nonlin, and nonlin will have
a smaller branching factor than tweak. However, the dif-
ference in the number of threats t resolved by tweak, snlp,
and nonlin will be reduced since there are fewer positive
threats and more negative threats. The reduced number of
positive threats will reduce the depth for snlp and nonlin

and the increased number of negative threats increases the
chance that tweak will be forced to revisit the same precon-
dition/step pair. As a result, the performance of the di�erent
planners could be very close and will depend on depth and
branching factors for the problems being solved.

Case 3: R� 1

tweak is likely to have the largest branching factor because
every time a negative threat occurs, all existing and new
operators are considered as establishers again. This e�ect
increases the factor b old for tweak, resulting in the e�ective
branching factor for tweak being greater than both snlp

and nonlin. Also due to its resolution of positive threats,
a snlp plan is likely to be more linearized than a nonlin

plan, thus the branching factor of snlp will be smaller than
nonlin.

Each negative threat creates a chance for tweak to revisit
the same precondition/step pair. Since in the R � 1 case,
there is a large number of negative threats, the number of
times each precondition is visited, vtweak, is likely to increase.
Since tweak is expected to have a larger branching factor
and depth greater than both snlp and nonlin, when R� 1
tweak is expected to perform the worst. snlp will outper-
form nonlin slightly due its smaller branching factor.

4.2 Empirical Results

In order to verify our predictions by comparing snlp, nonlin
and tweak on problems with di�erent ratios of negative and
positive threats, we constructed an arti�cial domain where we
could control the value of R. In this domain, each goal can
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be achieved by a subplan of two steps in a linear sequence.
Each step either achieves a goal condition or a precondition
of a later step. The preconditions of the �rst step always hold
in the initial state. In addition, we also added extra operator
e�ects to create threats in planning. The di�culty of the
problems in this domain can be increased by increasing the
number of goal conditions and the total number of threats.

(defstep :action Ai1 :precond Ii :equals fg
:add fPi; Ii+1 if i < n+; I0 if i = n� 1 and n+ > 0g
:delete fIi�1; if 0 < i < n�; In�1 if i = 0
and n� > 0g)

(defstep :action Ai2 :precond Pi :equals fg
:add fGi;Pi+1 if i < n+;P0 if i = n� 1 and n+ > 0g
:delete fPi�1; if 0 < i < n�;Pn�1 if i = 0
and n� > 0g)

We used this arti�cial domain to run a set of experiments to
compare the performance of the di�erent planners. In these
experiments we simultaneously varied the number of posi-
tive and negative interactions, such that the total number
of interactions remained the same, but the ratio R changes
from zero to in�nity; the number of negative interactions in-
creased from 0 to 9 while the number of positive interactions
decreased from 9 to 0. Below, we present the results of our
empirical tests on di�erent points of the spectrum of as de-
�ned by the ratio R.

In the experiments, each problem was run in snlp [1], a ver-
sion of nonlin and a version of tweak that were modi�ed
from snlp. The problems were solved using a best-�rst search
on the solution size in order to fairly compare the size of the
problem spaces being searched by each system. All the prob-
lems were run on a SUN IPC in Lucid Common Lisp with a
120 CPU second time bound.

For each value of ratio R, we ran the systems on 20 randomly
generated problems. The points shown in the graphs below
are an average of the 20 problems. For the graphs showing
branching factor and depth, the averages are underestimated
for those systems that did not solve all the problems within
the time limit. Figure 1 shows the number of problems that
were solved within the time limit for each of the systems.
Despite the fact that some points on the graph underestimate
the actual numbers, the resulting graphs clearly illustrate
the tradeo�s in the di�erent design choices in the planning
algorithms.

4.2.1 Time per Node

The time per node result is shown in Figure 2. As can be
seen from the �gure, as R increases, the time per node for
tweak increases slightly, while for snlp and nonlin it de-
creases slightly. The increase in tweak's time per node is as
expected, since as R increases, the number of positive threats
decreases. This results in increasingly larger plans. Since
tweak's MTC has a complexity of O(n3) for a plan with n
operators, the time per node for tweak should increase as n
increases.

However, the decrease of time per node for both snlp and
nonlin is unexpected. It turns out that the reason for this
behaviour is due to the fact that both snlp and nonlin use
a more conservative method of goal protection. When R is
large, the number of negative threats is large, and the plans
generated by snlp and nonlin are more constrained or linear
as a result. Unlike the MTC, the threat detection routines for
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Figure 2: Comparison of the Average Time per Node of each
of the Algorithms

snlp and nonlin runs more e�ciently in this case, leading
to a lower cost of threat detection per node.

4.2.2 Branching Factor

The branching factor results are shown in Figure 3. Most
of our predictions for branching factors are observable in the
�gure. For example, due to its conservative stand in resolving
both positive and negative threats, snlp imposes the most
constraints onto a plan, and as a results it generally has the
lowest branching factor. Also, as the number of negative
threats increases, which constrains the possible plans, the
branching factor decreases to one.

However, there are a few surprises shown in the �gure. When
R � 1, we had predicted that tweak would have a larger
branching factor than snlp and would be similar to nonlin.
This prediction cannot observed from the �gure. In order
to explain this e�ect we have broken the branching factor
into the two parts described in the analysis, the establish-
ment branching factor and the declobbering branching fac-
tor, which are combined to form the overall branching fac-
tor. These graphs are shown in Figures 4 and 5. As shown
in the graphs, the smaller than expected branching factor
for tweak is due to a smaller than expected establishment
branching factor.
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Figure 4: Comparison of the Average Establishment Branch-
ing Factor of each of the Algorithms

Careful analysis of the data shows that this discrepancy with
the predictions is due to the assumption that the branching
factor is uniform across an entire problem-solving episode.
In fact, where there are many positive interactions, tweak
quickly narrows in on a plan and reduces the establishment
branching factor. In contrast, because both snlp and nonlin
build explicit causal links and resolve more threats they
spend more time in the early plan formation stage when the
branching factor is higher. Thus overall, snlp and nonlin

expand a larger part of the search space that has a large
branching factor, while tweak uses it ability to exploit pos-
itive threats to rapidly traverse that part of the search space.

4.2.3 Depth

The comparison of the search depths is shown in Figure 6
and they are as predicted. The only apparent discrepancy
is that the di�erence between snlp and tweak should be
larger when R � 1. However, the graph is a bit misleading
in this case because it includes problems that could not be
solved within the time bound by nonlin and snlp and so it
underestimates their search depth.

The overall search depth is composed of a number of factors
described in the analysis, which includes the fraction of the
preconditions considered, the average number of times each
precondition is visited,a and the average number of threats
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Figure 5: Comparison of the Average Declobbering Branch-
ing Factor of each of the Algorithms
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Figure 6: Comparison of the Average Depth of each of the
Algorithms

detected by each algorithm. Figure 7 shows the fraction of
preconditions considered. This number should be one for
both snlp and nonlin but again the graphs are distorted
by the fact that these two systems did not complete all of
the problems within the time limit. In that case, there are a
number of preconditions of operators that had not yet been
considered. Note that for most of the problems, tweak only
expanded roughly 60-80% of the preconditions and as the
problems had fewer positive interactions, it was forced to
expand more and more of the preconditions.

Figure 8 shows the average of number of times each precon-
dition is visited. As predicted, snlp and nonlin visit every
precondition exactly once, while tweak visits some precondi-
tions more than once. As the number of negative interactions
increase, the value for tweak increases because it does not
protect the conditions that have already been achieved.

Figure 9 shows the average number of threats detected by
each of the systems. The fact that snlp detects a much larger
number of threats than both nonlin and tweak comes as
no surprise. However, the fact that the number of threats de-
tected by nonlin is less than the number detected by tweak
when R� 1 was not predicted by the analysis. This appears
to be due to the fact that the negative threats that nonlin
protects against impose additional ordering constraints on
the plan and a more linearly ordered plan has fewer poten-

Planning Agents 6 SIGART Bulletin, Vol. 6, No. 1



0

0.2

0.4

0.6

0.8

1

0/9 1/8 2/7 3/6 4/5 5/4 6/3 7/2 8/1 9/0

F
r
a
c
t
i
o
n
 
o
f
 
P
r
e
c
o
n
d
i
t
i
o
n
s
 
V
i
s
i
t
e
d

R = (negative interactions / positive interactions)

SNLP
NONLIN
TWEAK

Figure 7: Comparison of the Average Fraction of Precondi-
tions Considered by each of the Algorithms
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Figure 8: Comparison of the Average Number of Times each
Precondition is Visited by each of the Algorithms

tial threats.

4.2.4 Average CPU Time

The average CPU time for solving problems in the arti�cial
domain is shown in Figure 10. The result �ts exactly with
our predictions. One thing to note is that no system performs
absolutely the best throughout the entire spectrum de�ned
by R. Another is that although nonlin did well as compared
to snlp when R is small, it is never signi�cantly better than
snlp. In the case where it does outperform snlp it is dramat-
ically worse than tweak. This e�ect should lend credibility
to the protection against positive threats as used in snlp.
Although protection of positive threats seemed clumsy when
R is small, when the number of negative threats is relatively
large the protection method used by snlp imposes more con-
straints on a plan. The resulting plans in snlp's search space
are more linear due to the additional constraints. The com-
putational advantage of dealing with a more linear plan com-
pensates for the loss of e�ciency due to the protection of
positive threats.

5 Related Work

As we stated in the introduction, little work has been done
on comparing di�erent partial order planners. An exception
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Figure 9: Comparison of the Average Number of Threats
Detected by each of the Algorithms
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Figure 10: Comparison of the Average CPU Time of each of
the Algorithms

is the work by Kambhampati[3, 4], who (concurrently with
our work) carried out a set of experiments to test the merits
of di�erent partial-order planners. In that work, a pair of
partial-order planners MP and MP-I are proposed that build
upon snlp and nonlin by making use of multiple contribu-
tors to achieve a precondition. Experiments in a set of closely
related domains were conducted, and the resulting compari-
son of snlp, nonlin, tweak, MP, and MP-I show that MP-I
outperforms all of the rest, and that nonlin in one test per-
formed much better than both snlp and tweak(Figure 8,
[3]).

Contrasting Kambhampati's results to ours, we note that
the former is based on a small set of �xed domains. Our
results clearly demonstrate that varying the ratio R of posi-
tive to negative threats experienced by a planner, almost any
comparison result can be obtained; when R � 1 the com-
parison results should be dramatically di�erent from that
when R � 1. Thus, it is not surprising that there exists
domains, with a speci�c R value, where snlp and/or tweak
perform worse than nonlin. From this perspective, the work
by Kambhampati can be seen as orthogonal to ours; while we
search for domain features by which to determine the relative
performance of each system, Kambhampati looks for the best
planner on a single point in the spectrum of features.

Kambhampati [5] has also developed a general framework for
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comparing the di�erent design choices in a partial-order plan-
ning algorithm. His paper provides an excellent analysis of
the di�erent design tradeo�s, but does not provide an empir-
ical validation for his conclusions. More recently, we merged
the work described here [7] with the design framework de-
veloped by Kambhampati to provide a comprehensive frame-
work, analysis, and evaluation [6].

6 Conclusions

In summary, we have presented a detailed comparison of three
speci�c versions of the snlp, nonlin, and tweak planning
algorithms. We have classi�ed their di�erences along several
dimensions, including termination check, subgoal selection
and causal-link protection. In addition, we analyzed how
their search performance can be a�ected by these di�erences.
The analysis provides a foundation for predicting the condi-
tions under which di�erent planning algorithms will perform
well. As the results show, the particular versions of snlp and
nonlin performed better than our implementation of tweak
in our arti�cial domain when the ratio of negative threats to
positive threats is large, and tweak performs signi�cantly
better than snlp and nonlin in the opposite case.

The implications of these results for someone building a prac-
tical planning system is that the most appropriate design
strategy to choose depends on the characteristics of the prob-
lem being solved. This paper provides an important step
in building useful planners by identifying a feature of plan-
ning domains that has a major impact on the performance
of di�erent planning algorithms. Our future work will in-
clude identifying additional domain features and eventually
constructing a framework in which a planning algorithm can
automatically adapt to the domain features.
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