
Modeling Web Sources for Information Integration�

Craig A. Knoblock, Steven Minton, Jose Luis Ambite, Naveen Ashish
Pragnesh Jay Modi, Ion Muslea, Andrew G. Philpot, and Sheila Tejada

Information Sciences Institute, Integrated Media Systems Center,
and Department of Computer Science
University of Southern California

4676 Admiralty Way,
Marina del Rey, CA 90292

Abstract

The Web is based on a browsing paradigm that makes
it di�cult to retrieve and integrate data from multi-
ple sites. Today, the only way to do this is to build
specialized applications, which are time-consuming to
develop and di�cult to maintain. We are addressing
this problem by creating the technology and tools for
rapidly constructing information agents that extract,
query, and integrate data from web sources. Our ap-
proach is based on a simple, uniform representation
that makes it e�cient to integrate multiple sources.
Instead of building specialized algorithms for handling
web sources, we have developed methods for mapping
web sources into this uniform representation. This ap-
proach builds on work from knowledge representation,
machine learning and automated planning. The re-
sulting system, called Ariadne, makes it fast and cheap
to build new information agents that access existing
web sources. Ariadne also makes it easy to maintain
these agents and incorporate new sources as they be-
come available.

Introduction

The amount of data accessible via the Web and in-
tranets is staggeringly large and growing rapidly. How-

ever, the Web's browsing paradigm does not support
many information management tasks. For instance,
the only way to integrate data from multiple sites is

to build specialized applications by hand. These ap-
plications are time-consuming and costly to build, and
di�cult to maintain.

This paper describes Ariadne,1 a system for extract-
ing and integrating data from semi-structured web
sources. Ariadne enables users to rapidly create \infor-

mation agents" for the Web. Using Ariadne's modeling
tools, an application developer starts with a set of web
sources { semi-structured HTML pages, which may be

located at multiple web sites { and creates a uni�ed

Copyright c1997, American Association for Arti�cial
Intelligence (www.aaai.org). All rights reserved.

1In Greek mythology, Ariadne was the daughter of Mi-
nos and Pasiphae who gave Theseus the thread that let him
�nd his way out of the Minotaur's labyrinth.

view of these sources. Once the modeling process is
complete, an end user (who might be the application
developer himself) can issue database-like queries as if
the information were stored in a single large database.

Ariadne's query planner decomposes these queries into
a series of simpler queries, each of which can be an-
swered using a single HTML page, and then combines

the responses to create an answer to the original query.

The modeling process enables users to integrate in-
formation frommultiple web sites by providing a clean,

well-understood representational foundation. Treating
each web page as a relational information source { as
if each web page was a little database { gives us a sim-

ple, uniform representation that makes query planning
straightforward. The representation is not very expres-
sive, but we compensate for that by developing intel-
ligent modeling tools that help application developers

map complex web sources into this representation.

Figure 1: A CIA Factbook page

We will illustrate Ariadne by considering an exam-

ple application that involves answering queries about
the world's countries. An excellent source of data is
the CIA World Factbook, which has an HTML page

for each country describing that country's geography,
economy, government, etc. The top of the factbook

page for the Netherlands is shown in Figure 1.2 Some
of the many other relevant sites include the NATO site,
which lists the NATO member countries, as shown in
Figure 2, and the World Governments site, which lists

the head of state and other government o�cers for each
country (not shown due to space limitations). Consider
queries such as \What NATO countries have popula-

tions less than 10 million?" and \List the heads of
state of all the countries in the Middle East". Since
these queries span multiple countries and require com-

bining information from multiple sources, answering
them by hand is time consuming. Ariadne allows us to
rapidly put together a new application that can answer

a wide range of queries by extracting and integrating
data from prespeci�ed web sources.

Figure 2: NATO members page

In the following section we describe our basic ap-
proach to query planning, where a unifying domain
model is used to tie together multiple information

sources. We then describe the details of our model-
ing approach: how we represent and query individual
web pages, how we represent the relationships among

multiple pages in a single site, and how we integrate
data that spans multiple sites. In each section, we also
describe the AI methods that are used in modeling

and query processing, and how the uniform represen-
tational scheme supports these methods.

Approach to Information Integration

Ariadne's approach to information integration is based

heavily on the SIMS mediator architecture (Arens et

al. 1996; Knoblock 1995). SIMS enables users to ob-
tain information from multiple heterogeneous informa-

tion sources. The framework consists of two parts: 1)
a query planner/executor that determines how to ef-
�ciently process a query given the set of available in-
formation sources and 2) wrappers that provide uni-

form access to the information sources so that they

2All the web sources in our examples are based on real
sources that Ariadne handles, but we have simpli�ed some
of them here for expository purposes.

can be queried as if they were SQL databases. The
SIMS framework was designed with speci�c types of
information sources in mind, primarily databases and
knowledge bases (and to some extent programs), but

as we will explain, the approach can be extended to
handle web sources.

One of the most important ideas underlying SIMS
is that for each application there is a unifying domain

model that provides a single ontology for the appli-
cation. The domain model is represented using the
Loom knowledge representation system (MacGregor

1988) and is used to describe the contents of each infor-
mation source. Given a query in terms of the domain
model, the system dynamically selects an appropriate

set of sources and then generates a plan to e�ciently
produce the requested data.

To illustrate this, let us �rst suppose that the in-
formation in the three web sites described earlier, the
CIAWorld Factbook, the World Governments site, and

the NATO members page, are each available in three
separate databases, along with a fourth database con-
taining a map for each country. To de�ne a new infor-

mation agent, one would �rst de�ne a domain model
that contains the set of terms that the user might want
to query about. An example domain model is shown

in Figure 3. The model contains four classes with
some relations between them, e.g., `NATO Country'
is a subclass of `Country', and `Country' has a relation

called `Head-of-State' which points to a class with the
same name. We then use the domainmodel to describe
each of the individual information sources. This pro-

vides the glue for answering queries that span multiple
sources. For example, the �gure shows that the CIA
factbook is a source for information about Countries,
and the World Governments database is a source for

Heads of State. Each class has a set of attributes (e.g.,
total area, latitude, population, etc.) which may be
available from one or more sources.

Head
 of
 State

Person

ISA

ISA

Map database
country nm
 map

country nm

Country

person nm
title
country nm

World Governments
 database

country nm
 total area
 latitude
 longitude
 population
 etc ...

CIA factbook database

 NATO
 Country

NATO Countries
 database

Figure 3: Domain Model with Database Sources

Query Processing

Queries are presented to the system in terms of the

domain model. For example, a query might be \List
the heads of state of all the countries whose popula-
tion is less than ten million."3 The system then de-

composes the query into subqueries on the individual
sources, such as the World Governments and Factbook
sources, producing a partially-ordered query plan con-
sisting of a series of relational operators, i.e., joins,

selects, projects, remote subqueries, etc.
The SIMS query planner (Knoblock 1995) was

designed primarily for database applications, but

database applications typically involve only a small
number of databases, while web applications can in-
volve accessing many more sources. Since the SIMS

planner did not scale well to large numbers of sources,
we developed an approach capable of e�ciently con-
structing very large query plans. We addressed this

problem by combining preprocessing techniques with
a local-search method for query planning.
In Ariadne, query processing is broken into a pre-

processing phase and a query planning phase. In the
�rst phase the system determines the possible ways
of combining the available sources to answer a query.

Since sources may be overlapping (i.e., an attribute
may be available from several sources) or replicated,
the system must determine an appropriate combina-

tion of sources that can answer the query. The Ari-
adne source selection algorithm (Ambite et al. 1998)
preprocesses the domain model so that the system can
e�ciently and dynamically select sources based on the

classes and attributes mentioned in the query.
In the second phase, Ariadne generates a plan us-

ing a method called Planning-by-Rewriting, developed

by Ambite and Knoblock (Ambite and Knoblock 1997;
1998). This approach takes an initial, suboptimal plan
and then attempts to improve it by applying rewrit-

ing rules. In the case of query planning, producing
an initial, suboptimal plan is straightforward; we can
generate an initial plan in O(n) time, where n is the

length of the query, based on a depth-�rst parse of the
query. The rewriting process iteratively improves the
query via a local search process that can change both

the sources used to answer a query and the order of
the operations on the data.
Consider the processing required to retrieve all

NATO countries that have a population of less than
10 million. Using the domain model in Figure 3, the
source selection step would determine that the NATO

source is the only source for the class of NATO coun-
tries. This source provides only the names of the
NATO countries and not their populations. However,

3In actuality, queries are phrased in the Loom KR lan-
guage, the same language used to express the domain the-
ory. We use English translations for clarity.

the population information can be extracted from the
Factbook source since it provides data for a superclass
of NATO countries. The reasoning to combine sources
in this way is done e�ciently by precomputing the way

sources can be combined before any queries are pro-
cessed.

The next step in the example is to construct a plan
for e�ciently retrieving and combining the data. In
this case, the system might �rst construct an initial

plan that retrieves the data from the NATO source,
separately retrieves the names and population for all
countries from the Factbook source, and then combines

the data locally, which is very costly since the Factbook
source is quite large. This initial, suboptimal plan is
then improved in a series of rewriting steps that would

order the retrieval of the NATO source before the fact-
book source so that only population data on the NATO
countries would need to be retrieved. The optimized
plan would then be executed, returning only Denmark,

which has a population of just over 5 million.

Because Ariadne combines an e�cient source selec-

tion algorithm with an e�cient, anytime planning al-
gorithm, the system can produce query plans for web
environments in a robust, e�cient manner. Ariadne's

development was aided by the fact that the relational
algebra is very simple and well understood, so that we
could concentrate on the issues involved in searching

for a plan, rather than on the underlying plan repre-
sentation, which simply consists of a partially ordered
set of relational operators. To move to the Web, we

only needed one extension to the basic representation,
which was the inclusion of \binding patterns" (Kwok
and Weld 1996). That is, unlike database sources,

web sources may have input/output constraints (e.g., a
stock quote server requires a ticker symbol in order to
retrieve a stock quote). This is a small extension that
is naturally handled by the source selection algorithm

and planning operators.

In the remainder of the paper we consider in more

detail the modeling issues involved in creating a
database-like view of the Web.

Modeling the Information on a Page

The previous section describes how the planner decom-

poses a complex query into simple queries on individ-
ual information sources. To treat a web page as an
information source so that it can be queried, Ariadne

needs a wrapper that can extract and return the re-
quested information from that type of page. While we
cannot currently create such wrappers for unrestricted

natural language texts, many information sources on
the Web are semistructured. A web page is semistruc-
tured if information on the page can be located using a

concise formal grammar, such as a context-free gram-
mar. Given such a grammar, the information can be

extracted from the source without recourse to sophisti-
cated natural language understanding techniques. For
example, a wrapper for pages in the CIA factbook
would be able to extract �elds such as the Total Area,

Population, etc. based on a simple grammar describing
the structure of factbook pages.

Our goal is to enable application developers to easily
create their own wrappers for web-based information
sources. To construct a wrapper, we need both a se-

mantic model of the source that describes the �elds
available on that type of page and a syntactic model,
or grammar, that describes the page format, so the

�elds can be extracted. Requiring developers to de-
scribe the syntactic structure of a web page by writ-
ing a grammar by hand is too demanding, since we

want to make it easy for relatively unsophisticated
users to develop applications. Instead, Ariadne has a
\demonstration-oriented user interface" (DoUI) where

users show the system what information to extract
from example pages. Underlying the interface is a ma-
chine learning system for inducing grammar rules.

Figure 4 shows how an application developer uses
the interface to teach the system about CIA factbook

pages, producing both a semantic model and a syntac-
tic model of the source. The screen is divided into two
parts. The upper half shows an example document, in

this case the Netherlands page. The lower half shows
a semantic model, which the user is in the midst of
constructing for this page. The semantic model in the

�gure indicates that the class Country has attributes
such as Total Area, Coastline, Latitude, Longitude,
etc. The user constructs the semantic model incremen-

tally, by typing in each attribute name and then �lling
in the appropriate value by cutting and pasting the
information from the document. In doing so, the user

actually accomplishes two functions. First, he provides
a name for each attribute. Notice that he can choose
the same names as used in the document (e.g., \To-
tal area") or he can choose new/di�erent names (e.g.,

\Latitude"). As we will explain later, the attribute
names have signi�cance, since they are the basis for
integrating data across sources.

The second function achieved by the user's demon-
stration is to provide examples so that the system can

induce the syntactic structure of the page. Ideally, af-
ter the user has picked out a few examples for each
�eld, the system will induce a grammar su�cient for

extracting the required information for all pages of
this type. Unfortunately, grammar induction methods
may require many examples, depending on the class of

grammars being learned. However, we have observed
that web pages have common characteristics that we
can take advantage of, so that a class of grammars suf-

�cient for extraction purposes can be rapidly learned
in practice.

Figure 4: Creating a Wrapper by Demonstration

More speci�cally, we can describe most semistruc-

tured web pages as embedded catalogs. A catalog is
either a homogeneous list, such as a list of numbers,
(1,3,5,7,8), or a heterogeneous tuple, such as a 3-

tuple consisting of a number, a letter, and a string,
(1,A,\test"). An embedded catalog is a catalog where
the items themselves can be catalogs. As an exam-

ple, consider a CIA factbook page (see Figure 1). The
top level consists of an 8-tuple distinguished by sec-
tion headings: Geography, People, etc. The Geogra-

phy section is a tuple consisting of Map References,
Area, Coastline, etc. These can be decomposed fur-
ther if necessary; Coastline is a tuple consisting of a
number and the string \km".

Because web pages are intended to be human read-
able, special markers often play a role identifying the
beginning or ending of an item in an embedded cat-

alog, separating items in a homogeneous list, and so
on. These distinguishing markers can be used as land-
marks for locating information on a page. For instance,

to �nd the longitude, simply skip down to the heading
\Geography", then to \Geographic Coordinates:", and
then skip past the �rst comma.

A landmark grammar describes the position of a �eld
via a sequence of landmarks, where each landmark is it-
self described by a deterministic �nite automaton. Our
recent work (Muslea et al. 1998) shows that in prac-

tice, a subclass of landmark grammars (linear, aug-
mented landmark grammars) can be learned rapidly
for a variety of web pages using a greedy covering al-

gorithm. There are several reasons for this. Firstly,
because web pages are intended to be human readable,
there is often a single landmark that distinguishes or

separates each �eld from its neighbors. Therefore the
number of landmarks for a �eld in an embedded cata-
log will generally be equal to its \depth" in the catalog.

Since most catalogs are very shallow, this means that
the length of the grammar rules to be learned will be

very small, and learning will be easy in practice. Sec-
ondly, during the demonstration process, users traverse
a page from top-to-bottom, picking out the positive ex-
amples of each �eld. Any position on the page that is

not marked as a positive example is implicitly a nega-
tive example. Thus, for every positive example identi-
�ed by the user, we obtain a huge number of negative

examples that the covering algorithm can use to focus
its search.
The modeling tool we have described enables un-

sophisticated users to turn web pages into relational
information sources. But it has a second advantage as
well. If the format of a web source changes in minor

respects, the system could induce a new grammar by
reusing examples from the original learning episode,
without any human intervention (assuming the under-

lying content has not changed signi�cantly). This is a
capability we are currently exploring.

Modeling the Information in a Site:
Connections between Pages

The previous section showed how Ariadne extracts in-
formation from a web page to answer a query. How-
ever, before extracting information from a page, Ari-

adne must �rst locate the page in question. Our ap-
proach, described in this section, is to model the infor-
mation required to \navigate" through a web site, so
that the planner can automatically determine how to

locate a page.
For example, consider a query to our example infor-

mation agent asking for the population of the Nether-

lands. To extract the population from the factbook's
page on the Netherlands, the system must �rst �nd
the URL for that page. A person faced with the same

task would look at the index page for the factbook,
shown in Figure 5, which lists each country by name to-
gether with a hypertext link to the page in question. In

our approach, Ariadne does essentially the same thing.
The index page serves as an information source that
provides a URL for each country page. These pages in

turn serve as a source for country-speci�c information.
To create a wrapper for the index page, the devel-

oper uses the approach described in the last section,

where we illustrated how a wrapper for the factbook's
country pages is created. There is only one di�erence:
this wrapper only wraps a single page, the index page.

The developer creates a semantic model indicating that
the index page contains a list of countries, each with
two attributes, country-nm and country-URL.4 The
learning system induces a grammar for the entire page

after the developer shows how the �rst few lines in the
�le should be parsed.

4During the demonstration, a special copy command is
used to obtain a URL from a hyperlink, as opposed to grab-
bing text.

Figure 5: CIA Factbook Index

As the wrappers for each source are developed, they

are integrated into the unifying domain model. Fig-
ure 6 shows the domainmodel for the completed geopo-
litical agent. (Notice that we have substituted web

source wrappers for the hypothetical databases used
previously.) To create the domain model, the devel-
oper speci�es the relationship between the wrappers

and the domain concepts. For instance, the developer
speci�es that the Factbook country wrapper and the
Factbook index wrapper are both information sources

for \country" information, and he identi�es which at-
tributes are keys (i.e., unique identi�ers). In the exam-
ple, \country-nm" and \country-URL" are both keys.

Binding constraints specify the input and output of
each wrapper (shown by the small directional arrows in
Figure 6). The country page wrapper takes a country-
URL, and acts as a source for \total area", \popula-

tion", \latitude", etc. The index wrapper takes a coun-
try name5 and acts as a source for \country-URL".
Given the domain model and the binding constraints,

the system can now construct query plans. For in-
stance, to obtain the population of a country given its
name, the planner determines that the system must

�rst use the country name to retrieve the country-
URL from the index page wrapper, and then use the
country-URL to retrieve the population data from the

country page wrapper.

Explicitly modeling `navigation' pages, such as the

factbook index, as information sources enables us to
reuse the same modeling tools and planning method-
ology underlying the rest of the system. The approach

works well in part because there are only two com-
mon types of navigation strategies used on the Web
{ direct indexing and form-based retrieval. We have
already seen how index pages are handled; form-based

5No URL is needed as input to the index page wrapper
since the URL of the index page is a constant.

Head
 of
 State

Person

ISA

ISA
Country

country nm
 map World Governments

 page wrapper

country nm

Factbook index wrapper

Map database

Factbook country page wrapper
 country url
 total area
 latitude
 longitude
 population

country nm
country url

country nm
person nm
title

 NATO
 CountryNATO page wrapper

Figure 6: Domain Model with Web Sources

navigation is also straightforward. A wrapper for an
HTML form simply mimics the action of the form, tak-
ing as input a set of attributes, each associated with

a form parameter name, and communicating with the
server speci�ed in the form's HTML source.

When the resulting page is returned, the wrapper
extracts the relevant attributes in the resulting page.
Imagine, for instance, a form-based front end to the

factbook, where the user types in a country name and
the form returns the requested country page. To create
a wrapper for this front end, the developer would �rst

specify that the parameter associated with the type-
in box would be �lled by a \country-nm". He would
then specify how the system should extract information

from the page returned by the form using the approach
described in the last section.

The Factbook example described in this section il-
lustrates our basic approach to modeling navigation
pages. Many web sites are more complex than the

factbook. The approach still works, but the models
become more involved. For instance, indexes can be
hierarchical, in which case each level of the hierarchy

must be modeled as an information source. Imagine
the top-level factbook index was a list of letters, so that
clicking on a letter \C" would produce an index page

for countries starting with \C" (a \subindex"). We
would model this top level index as a relation between
letters and subindex-URL's. To traverse this index, we
also need an information source that takes a country

name and returns the �rst letter of the name (e.g., a
string manipulation program). Thus, altogether four
wrappers would be involved in the navigation process,

as shown in Figure 7. Given a query asking for the
Netherlands' population, the �rst wrapper would take
the name \Netherlands", call the string manipulation

program, and return the �rst letter of the name, \N".
The second wrapper would take the letter \N", ac-
cess the top level index page, and return the subindex-

URL. The third wrapper would take the subindex-URL
and the country name, access the subindex page for

countries starting with \N", and return the country-
URL. Finally, the last wrapper would take the country-
URL and access the Netherlands page. The advan-
tage of our approach is that all these wrappers are

treated uniformly as information sources, so the query
planner can automatically determine how to compose
the query plan. Furthermore, the wrappers can be

semi-automatically created via the learning approach
described earlier, except for the string manipulation
wrapper, which is a common utility.

Country

Factbook country page wrapper
 country url
 total area
 latitude
 longitude
 population

String Manipulation
program wrapper

 country nm
 first letter

 subindex url
 country nm
 country url

Subindex wrapper Top level index wrapper
country nm
first letter
subindex url

Figure 7: Domain Model with Hierarchical Index

Modeling Information Across Sites

Within a single site, entities (e.g., people, places, coun-
tries, companies, etc.) are usually named in a consis-
tent fashion. However, across sites, the same entities

may be referred to with di�erent names. For example,
the CIA factbook refers to the \Vatican City" while
the World Governments site refers to \The Holy See".

Sometimes formatting conventions are responsible for
di�erences, such as \Denmark" vs. \Denmark, King-
dom of". To make sense of data that spans multiple
sites, we need to be able to recognize and resolve these

di�erences.

Our approach is to select a primary source for an
entity's name and then provide a mapping from that
source to each of the other sources where a di�erent

naming scheme is used. An advantage of the Ariadne
architecture is that the mapping itself can be repre-
sented as simply another wrapped information source.

One way to do this is to create a mapping table, which
speci�es for each entry in one data source what the
equivalent entity is called in another data source. Al-

ternatively, if the mapping is computable, it can be
represented by a mapping function, which is a program
that converts one form into another form.

Figure 8 illustrates the role of mapping tables in our

geopolitical information agent. The Factbook is the
primary source for a country's name. A mapping table
maps each factbook country name into the name used

in the World Governments source (i.e., WG-country-
nm). The mapping source contains only two attributes,

the (factbook) country name and the WG-country-nm.
The NATO source is treated similarly. So, for exam-
ple, if someone wanted to �nd the Heads of State of the
NATO countries, the query planner would retrieve the

NATO country names from the NATO wrapper, map
them into (factbook) country names using the NATO
mapping table, then into the World Government coun-

try names using the World Governments mapping ta-
ble, and �nally retrieve the appropriate heads of state
from the World Governments wrapper.

Head
 of
 State

Person

ISA

ISA
Country

country nm
 map World Governments

 page wrapper

Factbook index wrapper

Map database

Factbook country page wrapper
 country url
 total area
 latitude
 longitude
 population

country nm
country url

World Governments
 mapping table

country nm
WG country nm

WG−country nm
person nm
title

Nato country nm

 NATO
 CountryNATO page wrapper

NATO mapping table

country nm
NATO country nm

Figure 8: Domain Model with Mapping Tables

Currently, mapping tables and functions must be
created manually, but we are developing a semi-
automated method for building mapping tables and

functions by analyzing the underlying data in advance.
The basic idea is to use information retrieval tech-
niques to provide an initial mapping (e.g., (Cohen

1998)), and then use additional data in the sources to
resolve any remaining ambiguities via statistical learn-
ing methods (e.g., (Huang and Russell 1997)). For ex-

ample, both the Factbook and the World Governments
sources list the title of the Heads of State.6 This infor-
mation can help determine that the Factbook's \North

Korea" and \South Korea" refer respectively to the
World Government's \Democratic Republic of Korea"
and \Republic of Korea", rather than the other way

around. Our approach can also be used to automat-
ically update mapping tables when new sources are
released. For instance, each year a new version of the
CIA factbook is released, and sometimes countries have

new names, or countries merge or split. These name
confusions can often be resolved using geographical in-
formation (e.g., land area, latitude and longitude).

Applications

Below we list some Ariadne applications we are devel-
oping, illustrating the generality of our approach:

6The Factbook lists the name of the Heads of State as
well but, unlike the World Governments site, the informa-
tion is often out of date. This is one reason why the World
Governments site is useful.

World-Wide Geographic Information Server:

We are collaborating with another group that is build-
ing a geographic information system that integrates
a variety of map-based information sources. These

sources include satellite images, detailed street maps,
parcel data, historical aerial photographs, etc. We
are using Ariadne to extract geographically referenced

data from the Web and integrate it with map data.
We have built a system using Ariadne that extracts
restaurant data from the Zagats Restaurant Reviews

site, feeds the restaurant address into a geocoder, and
then places the restaurant on an aerial map. Other
web sources that we plan to incorporate include cen-

sus data, US Geological Survey data, and real estate
data from the Multiple Listing Service.

Electronic Catalog Access: We are applying Ari-

adne to provide access to online electronic catalogs for
the Defense Logistics Agency. One implemented appli-
cation provides real-time access to pricing and avail-

ability data from the General Services Administration
web pages. This application accesses only a single site,
but retrieves pricing data for parts by extracting and

integrating data from multiple pages in the site.

Financial Information Agent: We have done ini-

tial work on an agent that accesses stock quote servers,
stock exchange sources, and the SEC's EDGAR
Archives (which contains copies of �nancial �lings,
such as annual reports, by publicly traded companies

and mutual funds). By integrating these sources, the
agent could answer queries such as \Find all airline
companies whose stock has risen more than thirty per-

cent in the last year" and \Find all people who serve
as directors of two or more companies located in Los
Angeles". Using the modeling tools described earlier,

users could also include their own personal �nancial
data sources, tailoring the system to their needs.

Related Work

There is large body of relevant literature on infor-

mation integration (Wiederhold 1996), but the most
closely related work focuses speci�cally on the prob-
lems of information integration on the Web, such as In-
formation Manifold (Levy et al. 1996), Occam (Kwok

and Weld 1996), Infomaster (Genesereth et al. 1997),
and InfoSleuth (Bayardo Jr. et al. 1997). These sys-
tems focus on a variety of issues, including the prob-

lems of representing and selecting a relevant set of
sources to answer a query, handling binding patterns,
and resolving discrepancies among sources. All of this

work is directly relevant to Ariadne, but the issue ad-
dressed in this paper that has not been addressed pre-
viously is how one represents the information within a

single page, across pages at a site, and across sites to
support web-based information integration.

Another closely related body of work is on the ex-
traction of data fromweb sources (Hammer et al. 1997;
Doorenbos et al. 1997; Kushmerick 1997). The fo-
cus of all of these systems are on building wrappers

for semi-structured sources. The systems either take a
template-based speci�cation of a source, as in (Ham-
mer et al. 1997), or learn the structure of the source by

example and then compile a wrapper that provides ac-
cess to the source, as in (Kushmerick 1997). Our work
on inducing wrappers takes the latter approach. The

induction method is not only very general, but is also
integrated into the larger Ariadne development system
so that the learned wrappers can be used directly by

the query planner.

Discussion

There are many examples of impressive AI systems
based on relatively simple representational schemes. In

the realm of planning, recent examples include SAT-
plan (Kautz and Selman 1996) and Graph-plan (Blum
and Furst 1995); the former employs a propositional

CSP approach, the latter, a graph-based search. In
machine learning, propositional learning schemes (e.g.,
decision trees) have been dominant. Though it is often

di�cult to understand exactly what a simple represen-
tational scheme buys you computationally, one thing
seems clear: systems with simple representations are

often easier to design and understand.

We believe that Ariadne is successful, in terms of

the broad applicability of the approach, because it
combines a simple representation scheme with sophisti-
cated modeling tools that mapweb information sources

into this simple representation. Ariadne capitalizes on
a representation scheme adopted from database sys-
tems, where the world consists of a set of relations (or
tables) over objects, and simple relational operators

(retrieve, join, etc.) are composed to answer queries.
This representation makes it straightforward to inte-
grate multiple databases using an AI planner. Ari-

adne's planner can e�ciently search for a sequence of
joins, selections, etc. that will produce the desired re-
sult without needing to do any sophisticated reasoning

about the information sources themselves.

The Web environment is much richer than the

database world, of course. What makes Ariadne possi-
ble are the modeling tools that enable a user to create
a database-like view of the Web. Where our approach

becomes challenging (and could break down) is in sit-
uations where the \natural" way to represent a web
source is not possible due to limitations of the under-
lying representation.

One such limitation is that Ariadne cannot reason
about recursive relations. (To do this properly would

require query plans to contain loops.) This has many
practical rami�cations. For example, consider web

pages that have a `more' button at the bottom, such
as Alta Vista's response pages. It would be natural to
represent each `more' button as a pointer to the next
page in a list, but there is no way to do this without

a recursive relation. Instead, we can build knowledge
about `more' buttons in our wrapper generation tools,
so the process of following a `more' buttons is done

completely within a wrapper, hiding the complexity
from the query planner.

Another rami�cation of the planner's inability to
reason about recursive relations shows up with hierar-

chical indexes like Yahoo, where there is no �xed depth
to the hierarchy. The natural way to model such pages
is with a parent-child relation. Instead, the alternative

is to build a more sophisticated wrapper that computes
the transitive closure of the parent-child relationship,
so that we can obtain all of a node's descendants in

one step.

There is an obvious tension between the expressive-
ness of the representation and the burden we place on
the modeling tools. Our approach has been to keep

the representation and planning process simple, com-
pensating for their weaknesses by relying on smarter
modeling tools. As we have described, the advantage

is that we can incrementally build a suite of modeling
tools that use machine learning, statistical inference,
and other AI techniques, producing a system that can
handle a surprisingly wide range of tasks.

Acknowledgements

This work was supported in part by USC's Integrated
Media Systems Center (IMSC) - an NSF Engineering
Research Center, by the U.S. Air Force under contract

number F49620-98-1-0046, by the Rome Laboratory
of the Air Force Systems Command and the Defense
Advanced Research Projects Agency (DARPA) under
contract number F30602-97-2-0352, by the Defense Lo-

gistics Agency, DARPA, and Fort Huachuca under con-
tract number DABT63-96-C-0066, and by a research
grant from General Dynamics Information Systems.

The views and conclusions contained in this paper are
the authors' and should not be interpreted as repre-
senting the o�cial opinion or policy of any of the above

organizations or any person connected with them.

References

Ambite, J.L. and Knoblock, C.A. 1997. Planning by
rewriting: E�ciently generating high-quality plans.
In Proceedings of AAAI-97.

Ambite, J.L. and Knoblock, C.A. 1998. Flexible and
scalable query planning in distributed and heteroge-
neous environments. In Proceedings of AIPS-98.

Ambite, J.L.; Knoblock, C.A.; Muslea, I.; and
Philpot, A. 1998. Compiling source descriptions for

e�cient and exible information integration. Techni-
cal report, USC Information Sciences Inst.

Arens, Y.; Knoblock, C.A.; and Shen, W.M. 1996.
Query reformulation for dynamic information inte-
gration. Journal of Intelligent Information Systems,

6(2/3):99{130.

Bayardo Jr., R.J.; Bohrer, W.; Brice, R.; Cichocki,

A.; Fowler, J.; Helal, A.; Kashyap, V.; Ksiezyk, T.;
Martin, G.; Nodine, M.; Rashid, M.; Rusinkiewicz,
M.; Shea, R.; Unnikrishnan, C.; Unruh, A.; and

Woelk, D. 1997. Infosleuth: Agent-based semantic
integration of information in open and dynamic envi-
ronments. In Proceedings of ACM SIGMOD-97.

Blum, A. and Furst, M. 1995. Fast planning through

planning graph analysis. In Proceedings of IJCAI-95.

Cohen, W.W. 1998. Integration of Heterogeneous

Databases without Common Domains using Queries
Based on Textual Similarity. In Proceedings of ACM

SIGMOD-98.

Doorenbos, R.B.; Etzioni, O.; and Weld, D.S. 1997.

A scalable comparison-shopping agent for the world-
wide web. In Proceedings of the First International

Conference on Autonomous Agents.

Genesereth, M.R.; Keller, A.M.; and Duschka, O.M.
1997. Infomaster: An information integration system.

In Proceedings of ACM SIGMOD-97.

Hammer, J.; Garcia-Molina, H.; Nestorov, S.; Yer-
neni, R.; Breunig, M.; and Vassalos, V. 1997.
Template-based wrappers in the TSIMMIS system.

In Proceedings of ACM SIGMOD-97.

Huang, T. and Russell, S. 1997. Object ldenti�cation

in a bayesian context. In Proceedings of IJCAI-97.

Kautz, H. and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search.
In Proceedings of AAAI-96.

Knoblock, C.A. 1995. Planning, executing, sensing,
and replanning for information gathering. In Proceed-

ings of IJCAI-95.

Kushmerick, N. 1997. Wrapper Induction for Infor-

mation Extraction. PhD thesis, Computer Science
Dept., University of Washington.

Kwok, C.T. and Weld, D.S. 1996. Planning to gather
information. In Proceedings of AAAI-96.

Levy, A.Y.; Rajaraman, A.; and Ordille, J.J. 1996.

Query-answering algorithms for information agents.
In Proceedings of AAAI-96.

MacGregor, R. 1988. A deductive pattern matcher.
In Proceedings of AAAI-88.

Muslea, I.; Minton, S.; and Knoblock, C.A. 1998.
Wrapper induction for semistructured, web-based in-
formation sources. In Proceedings of the CONALD-98
Workshop on Learning from Text and the Web.

Wiederhold, G. 1996. Intelligent Integration of Infor-

mation. Kluwer.

