
SEPTEMBER/OCTOBER 1998 17

The Ariadne approach to Web-
based information integration
Craig A. Knoblock and Steven Minton,
University of Southern California

The rise of hyperlinked networks has
made a wealth of data readily available.
However, the Web’s browsing paradigm
does not strongly support retrieving and
integrating data from multiple sites. Today,
the only way to integrate the huge amount
of available data is to build specialized
applications, which are time-consuming,
costly to build, and difficult to maintain.
Mediator technology offers a solution to
this dilemma. Information mediators,1–4

such as the SIMS system,5 provide an inter-
mediate layer between information sources
and users. Queries to a mediator are in a
uniform language, independent of such
factors as the distribution of information
over sources, the source query languages,
and the location of sources. The mediator
determines which data sources to use, how
to obtain the desired information, how and
where to temporarily store and manipulate
data, and how to efficiently retrieve infor-
mation from the sources.

One of the most important ideas under-
lying information mediation in many sys-
tems, including SIMS, is that for each ap-
plication there is a unifying domain model
that provides a single ontology for the ap-
plication. The domain model ties together
the individual source models, which each
describe the contents of a single informa-
tion source. Given a query in terms of the
domain model, the system dynamically
selects an appropriate set of sources and
then generates a plan to efficiently produce
the requested data.

Information mediators were originally
developed for integrating information in
databases. Applying the mediator frame-
work to the Web environment solves the
difficult problem of gaining access to real-
world data sources. The Web provides the
underlying communication layer that
makes it easy to set up a mediator system,
because it is typically much easier to get
access to Web data sources than to the un-
derlying databases systems. In addition, the
Web environment means that users who
want to build their own mediator applica-
tion need no expertise in installing, main-
taining, and accessing databases.

We have developed a Web-based version
of the SIMS mediator architecture, called

Ariadne.6 In Greek
mythology, Ariadne
was the daughter of
Minos and Pasiphae
who gave Theseus the
thread with which to
find his way out of the
Minotaur’s labyrinth.
The Ariadne project’s
goal is to make it simple for users to create
their own specialized Web-based media-
tors. We are developing the technology for
rapidly constructing mediators to extract,
query, and integrate data from Web
sources. The system includes tools for con-
structing wrappers that make it possible to
query Web sources as if they were data-
bases and the mediator technology required
to dynamically and efficiently answer
queries using these sources.

A simple example illustrates how Ariadne
can be used to provide access to Web-based
sources (also see the “Ariadne” sidebar).
Numerous sites provide reviews on restau-
rants, such as Zagats, Fodors, and Cuisine-
Net, but none are comprehensive, and
checking each site can be time consuming.
In addition, information from other Web
sources can be useful in selecting a restau-
rant. For example, the LA County Health
Department publishes the health rating of all
restaurants in the county, and many sources
provide maps showing the location of res-
taurants. Using Ariadne, we can integrate
these sources relatively easily to create an
application where people could search these
sources to create a map showing the restau-
rants that meet their requirements.

With such an application, a user could
pose requests that would generate a map
listing all the seafood restaurants in Santa
Monica that have an “A” health rating and
whose typical meal costs less than $30. The
resulting map would let the user click on
the individual restaurants to see the restau-
rant critic reviews. (In practice, we do not
support natural language, so queries are
either expressed in a structured query lan-
guage or are entered through a Web-based
graphical user interface.) The integration
process that Ariadne facilitates can be com-
plex. For example, to actually place a res-
taurant on a map requires the restaurant’s
latitude and longitude, which is not usually
listed in a review site, but can be deter-
mined by running an online geocoder, such
as Etak, which takes a street address and
returns the coordinates.

Figure 3 outlines our general framework.
We assume that a user building an applica-
tion has identified a set of semistructured
Web sources he or she wants to integrate.
These might be both publicly available
sources as well as a user’s personal sour-
ces. For each source, the developer uses
Ariadne to generate a wrapper for extract-
ing information from that source. The
source is then linked into a global, unified
domain model. Once the mediator is con-
structed, users can query the mediator as if
the sources were all in a single database.
Ariadne will efficiently retrieve the
requested information, hiding the planning
and retrieval process details from the user.

Research challenges in Web-based
integration

Web sources differ from databases in
many significant ways, so we could not
simply apply the existing SIMS system to
integrate Web-based sources. Here we’ll
describe the problems that arise in the Web
environment and how we addressed these
problems in Ariadne.

Converting semistructured data into
structured data.Web sources are not data-
bases, but to integrate sources we must be
able to query the sources as if they were.
This is done using a wrapper, which is a
piece of software that interprets a request
(expressed in SQL or some other structured
language) against a Web source and returns
a structured reply (such as a set of tuples).
Wrappers let the mediator both locate the
Web pages that contain the desired informa-
tion and extract the specific data off a page.
The huge number of evolving Web sources
makes manual construction of wrappers
expensive, so we need the tools for rapidly
building and maintaining wrappers.

For this, we have developed the Stalker
inductive-learning system,7 which learns a
set of extraction rules for pulling informa-
tion off a page. The user trains the system
by marking up example pages to show the
system what information it should extract

from each page. Stalker can learn rules
from a relatively small number of examples
by exploiting the fact that there are typi-
cally “landmarks” on a page that help users
visually locate information.

Consider our restaurant mediator exam-
ple. To extract data from the Zagats restau-
rant review site, a user would need to build
two wrappers. The first lets the system ex-
tract the information from an index page,
which lists all of the restaurants and con-
tains the URLs to the restaurant review
pages. The second wrapper extracts the
detailed data about the restaurant, includ-
ing the address, phone number, review,
rating, and price. With these wrappers, the
mediator can answer queries to Zagats,
such as “find the price and review of
Spago” or “give me the list of all restau-
rants that are reviewed in Zagats.”

In his companion essay on the Informa-
tion Manifold, Alon Levy claims that the
problem of wrapping semistructured
sources will soon be irrelevant because
XML will eliminate the need for wrapper
construction tools. We believe that he is
being overly optimistic about the degree
that XML will solve the wrapping problem.
XML clearly is coming; it will significantly
simplify the problem and might even elimi-
nate the need for building wrappers for
many Web sources. However, the problem
of querying semistructured data will not
disappear, for several reasons:

• There will always be applications where
the providers of the data do not want to
actively share their data with anyone
who can access their Web page.

• Just as there are legacy Cobol pro-
grams, there will be legacy Web appli-
cations for many years to come.

• Within individual domains, XML will
greatly simplify the access to sources;

however, across domains people are
unlikely to agree on the granularity that
information should be modeled. For
example, for many applications, the
mailing address is the right level of
granularity to model address, but if you
want to geocode an address, it needs to
be divided into street address, city,
state, and zip code.

Planning to integrate data in the Web
environment.Another problem that arises
in the web environment is that generating
efficient plans for processing data is diffi-
cult. For one, the number of sources to be
integrated could be much larger than in the
database environment. Also, Web sources
do not provide the same processing capa-
bilities found in a typical database system,
such as the ability to perform joins. Finally,
unlike relational databases, there might be
restrictions on how a source can be ac-
cessed, such as a geocoder that takes the
street address returns the geographic coor-
dinates, but cannot take the geographic
coordinates and return the street address.

Ariadne breaks down query processing
into a preprocessing phase and a query-
planning phase. In the first phase, the sys-
tem determines the possible ways of com-
bining the available sources to answer a
query. Because sources might be overlap-
ping—an attribute may be available from
several sources—or replicated, the system
must determine an appropriate combina-
tion of sources that can answer the query.
The Ariadne source-selection algorithm8

preprocesses the domain model so that the
system can efficiently and dynamically
select sources based on the classes and
attributes mentioned in the query.

In the second phase, Ariadne generates a
plan using a method called Planning-by-
Rewriting.9,10This approach takes an ini-

tial, suboptimal plan and attempts to im-
prove it by applying rewriting rules. With
query planning, producing an initial, sub-
optimal plan is straightforward—the diffi-
cult part is finding an efficient plan. The
rewriting process iteratively improves the
initial query plan using a local search
process that can change both the sources
used to answer a query and the order of the
operations on the data.

In our restaurant selection example, to
answer queries that cover all restaurants,
the system would need to integrate data
from multiple sources (wrappers) for each
restaurant review site and filter the result-
ing restaurant data based on the search pa-
rameters. The mediator would then geo-
code the addresses to place the data on a
map. The plans for performing these opera-
tions might involve many steps, with many
possible orderings and opportunities to
exploit parallelism, in minimizing the over-
all time to obtain the data. Our planning
approach provides a tractable approach to
producing large, high-quality information-
integration plans.

Providing fast access to slow Web
sources.In exploiting and integrating Web-
based information sources, accessing and
extracting data from distributed Web sour-
ces is also much slower than retrieving
information from local databases. Because
the amount of data might be huge and the
remote sources are frequently being up-
dated, simply warehousing all of the data is
not usually a practical option. Instead, we
are working on an approach to selectively
materialize (store locally) critical pieces of
data that let the mediator efficiently per-
form the integration task. The materialized
data might be portions of the data from an
individual source or the result of integrat-
ing data from multiple sources.

To decide what information to store lo-
cally, we take several factors into account.
First, we consider the queries that have
been run against a mediator application.
This lets the system focus on the portions
of the data that will have the greatest im-
pact on the most queries. Next, we consider
both the frequency of updates to the sour-
ces and the application’s requirements for
getting the most recent information. For
example, in the restaurant application, even
though reviews might change daily, provid-
ing information that is current within a
week is probably satisfactory. But, in a

18 IEEE INTELLIGENT SYSTEMS

Query
planning

Application user
Queries Answers

Source modeling
and wrapper
construction

Application
developer

Constructing a mediator Using a mediator

Web
pages

Models and
wrappers

Figure 3. Architecture for information integration on the Web.

SEPTEMBER/OCTOBER 1998 19

finance application, providing the latest
stock price would likely be critical. Finally,
we consider the sources’ organization and
structure. For example, the system can only
get the latitude and longitude from the
geocoder by providing the street address. If
the application lets a user request the res-
taurants located within a region of a map, it
could be very expensive to figure out which
restaurants are in that region because the
system would need to geocode each restau-
rant to determine whether it falls within the
region. Materializing the restaurant ad-
dresses and their corresponding geocodes
avoids a costly lookup.

Once the system decides to materialize a
set of information, the materialized data
becomes another information source for
the mediator. This meshes well with our
mediator framework because the planner
dynamically selects the sources and the
plans that can most efficiently produce the
requested data. In the restaurant example, if
the system decides to materialize address
and geocode, it can use the locally stored
data to determine which restaurants could
possibly fall within a region for a map-
based query.

Resolving naming inconsistencies across
sources.Within a single site, entities—such
as people, places, countries, or compan-
ies—are usually named consistently. How-
ever, across sites, the same entities might be
referred to with different names. For exam-
ple, one restaurant review site might refer to
a restaurant as Art’s Deli and another site
might call it Art’s Delicatessen. Or, one site
might use California Pizza Kitchen and
another site could use the abbreviation
CPK. To make sense of data that spans mul-
tiple sites, our system must be able to rec-
ognize and resolve these differences.

In our approach, we select a primary
source for an entity’s name and then pro-
vide a mapping from that source to each of
the other sources that use a different nam-
ing scheme. The Ariadne architecture lets
us represent the mapping itself as simply
another wrapped information source. Spe-
cifically, we can create a mapping table,
which specifies for each entry in one data
source what the equivalent entity is called
in another data source. Alternatively, if the
mapping is computable, Ariadne can repre-
sent the mapping by a mapping function,
which is a program that converts one form
into another form.

We are developing a semi-automated
method for building mapping tables and
functions by analyzing the underlying data
in advance. The basic idea is to use informa-
tion-retrieval techniques, such as those de-
scribed in William Cohen’s companion
essay, to provide an initial mapping,11 and
then use additional data in the sources to
resolve any remaining ambiguities via statis-
tical learning methods.12 For example, res-
taurants are best matched up by considering
name, street address, and phone number, but
not by using a field such as city because a
restaurant in Hollywood could be listed as
either being in Hollywood or Los Angeles
and different sites list them differently.

The future of Web-based
integration

As more and more data becomes avail-
able, users will become increasingly less
satisfied using existing search engines that
return massive quantities of mostly irrele-
vant information. Instead, the Web will
move toward more specialized content-

based applications that do more than simply
return documents. Information-integration
systems such as Ariadne will help users
rapidly construct and extend their own
Web-based applications out of the huge
quantity of data available online.

While information integration has made
tremendous progress over the last few
years,13 many hard problems still must be
solved. In particular, two mostly overlooked
problems deserve more attention:

• Coming up with the models or source
descriptions of the information sources,
a time-consuming and difficult problem
that is largely performed by hand today.

• Automatically locating and integrating
new sources of data, which would be
enabled by solutions to the first prob-
lem. (This problem has been addressed
in limited domains, such as Internet
shopping,14 but the problem is still
largely unexplored.)

For more information on the Ariadne

Ariadne
This Restaurant Location

application of Ariadne
shown in the first image
integrates data from a vari-
ety of sources, including
restaurant review sites,
health ratings, geocoders,
and maps.

In response to a query for
all highly rated restau-
rants in Santa Monica
with an ‘A’ health rating,
the mediator finds the
restaurants that satisfy
the query by extracting
the data directly from the
relevant Web sites.

The mediator also
produces a map of the
restaurants (second
image) by converting the
street addresses into
latitute and longitude
coordinates using an
online geocoder.

Each point on the map
in the second image is click-
able. Selecting the point for
Chinois on Main returns the
detailed restaurant review
directly from the appropriate
restaurant review site (third
image).

project and example applications that were
built using Ariadne, see the Ariadne home-
page at http://www.isi.edu/ariadne.

References
1. G. Wiederhold, “Mediators in the Architecture

of Future Information Systems,” Computer,
Vol. 25, No. 3, Mar. 1992, pp. 38–49.

2. H. Garcia-Molina et al., “The Tsimmis Ap-
proach to Mediation: Data Models and Lan-
guages,” J. Intelligent Information Systems,
1997.

3. A.Y. Levy, A. Rajaraman, and J.J. Ordille,
“Querying Heterogeneous Information
Sources Using Source Descriptions,” Proc.
22nd Very Large Databases Conf., Morgan
Kaufmann, San Francisco, 1996, pp. 251–262.

4. M.R. Genesereth, A.M. Keller, and O.M.
Duschka, “Infomaster: An Information Integra-
tion System,” Proc. ACM Sigmod Int’l Conf.
Management of Data, ACM Press, New York,
1997, pp. 539–542.

5. Y. Arens, C.A. Knoblock, and W.-M. Shen,
“Query Reformulation for Dynamic Informa-
tion Integration,” J. Intelligent Information
Systems, Special Issue on Intelligent Informa-
tion Integration, Vol. 6, Nos. 1 and 3, 1996, pp.
99–130.

6. C.A. Knoblock et al., “Modeling Web Sources
for Information Integration,” Proc. 11th Nat’l
Conf. Artificial Intelligence, AAAI Press,
Menlo Park, Calif., 1998, pp. 211–218.

7. I. Muslea, S. Minton, and C.A. Knoblock,
“Stalker: Learning Extraciton Rules for Semi-
structured Web-Based Information Sources,”
Proc. 1998 Workshop AI and Information
Integration, AAAI Press, 1998, pp. 74–81.

8. J.L. Ambite et al., Compiling Source Descrip-
tions for Efficient and Flexible Information
Integration, tech. report, Information Sciences
Institute, Univ. of Southern California, Marina
del Rey, Calif., 1998.

9. J.L. Ambite and C.A. Knoblock, “Planning by
Rewriting: Efficiently Generating High-Qual-
ity Plans,” Proc. 14th Nat’l Conf. Artificial
Intelligence, AAAI Press, 1997, pp. 706–713.

10. J.L. Ambite and C.A. Knoblock, “Flexible and
Scalable Query Planning in Distributed and
Heterogeneous Environments,” Proc. Fourth
Int’l Conf. Artificial Intelligence Planning
Systems, AAAI Press, 1998, pp. 3–10.

11. W.W. Cohen, “Integration of Heterogeneous
Databases without Common Domains Using
Queries Based on Textual Similarity,” Proc.
ACM Sigmod-98, ACM Press, 1998, pp.
201–212.

12. T. Huang and S. Russell, “Object Identification
in a Bayesian Context,” Proc. 15th Int’l J.
Conf. AI, Morgan Kaufmann, 1997, pp.
1276–1283.

13. Proc. 1998 Workshop on AI and Information
Integration, AAAI Press, 1998.

14. R.B. Doorenbos, O. Etzioni, and D.S. Weld, “A
Scalable Comparison-Shopping Agent for the
World-Wide Web,” Proc. First Int’l Conf.
Autonomous Agents, AAAI Press, 1997, pp.
39–48.

The Whirl approach to information
integration
Willia m W. Cohen, AT&T Labs-Research

Search engines such as AltaVista and
portal sites such as Yahoo! help us find
useful online information sources. What
we need now are systems to help use this
information effectively. Ideally, we would
like programs that answer a user’s ques-
tions based on information obtained from
many different online sources. We call such
a program an information-integration sys-
tem, because to answer questions it must
integrate the information from the various
sources into a single, coherent whole.

For example, consider consumer infor-
mation about computer games. Many Web
sites contain information of this sort. As
this essay will show, in addition to the ob-
vious benefit of reducing the number of
sites a user must visit, integrating this in-
formation has several important and
nonobvious advantages.

One advantage is that often, more ques-
tions can be answered using the integrated
information than using any single source.
Consider two sources containing slightly
different information: one source catego-
rizes games into children’s games and adult
games, and another categorizes games into
arcade games, puzzle games, and adventure
games. In this case, the sources must be
integrated to find, say, a list of children’s
adventure games. Conversely, integration
can help exploit overlap among sources;
for instance, one might be interested in
finding games that three or more sources
have rated highly, or in reading several
independent reviews of a particular game.

A second and more important advantage
of integration is that making it possible to
combine information sources also makes it
possible to decompose information so as to
represent it in a clean, modular way. For
example, suppose we wished to create a
Web site providing some new sort of infor-
mation about computer games—say, infor-
mation about which games work well on
older, slower machines. The simplest way
of representing this information is exten-
sionally, as a list of games having this prop-
erty. By itself, however, such a list is not
very valuable to end users, who are proba-
bly interested in games that not only work
on their PC, but also satisfy other proper-
ties, such as being inexpensive or well-
designed. To make the list more useful, we

are tempted to add additional structure—for
instance, we might organize the games in
the list into categories and provide, for each
game, links to online resources, such as
pricing information and reviews.

From the standpoint of computer sci-
ence, augmenting the list of games in this
way is clearly a bad idea, because it leads
to a structure that lacks modularity. The
original structure was a static, easily main-
tained list of computer games. In the aug-
mented hypertext, this information is inter-
mixed with orthogonal information about
game categories, possibly ephemeral infor-
mation concerning the organization of ex-
ternal Web sites, and possibly incorrect
assumptions about the readers’ goals. The
resulting structure is hard to maintain and
hard to modify in certain natural ways,
such as by changing the set of categories
used to organize the list of games.

To summarize, the simple, modular en-
coding of this information will be difficult
for users to exploit, and the easy-to-use
encoding will be difficult to create, modify,
and maintain. By contrast, it is trivial to
encode this information in a relational
database in a manner that is both modular
and useful: we simply create a relation list-
ing all old-PC-friendly games, and stan-
dard query languages let users find, say,
reviews of inexpensive old-PC-friendly
arcade games. (This example assumes that
information about game prices and reviews
is also available in the database.) Relational
databases thus provide a more modular
encoding of the information.

Unfortunately, conventional databases
assume information is stored locally, in a
consistent format—not externally, in di-
verse formats, as is the case with informa-
tion on the Web. Hence they do not solve
the problem of organizing information on
the Web. To use modular, maintainable
representations for information, while still
exploiting the power of the Web—its dis-
tributed nature, large size, and broad
scope—we need practical ways of integrat-
ing information from diverse sources.

Why integrating information is hard
Unfortunately, integrating information

from multiple sources is very hard. One
difficulty is programming a computer to
understand the various information sources
well enough to answer questions about
them. Surprisingly, this is often difficult
even when information is presented in sim-

20 IEEE INTELLIGENT SYSTEMS

