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Abstract 
 
Large amount of geospatial data are now available from public and private organizations in 
vector data formats. Users of these geospatial data usually require the data that are gathered from 
different sources to be integrated and fused for knowledge discovery. A vital step for fusion of 
the geospatial datasets is to identify the matched features among the datasets. There have been 
several efforts to automatically or semi-automatically detect matched features across different 
vector datasets. These solutions usually require the features to be in the same coordinate system 
so their spatial attributes can be compared. This renders these solutions impractical for the 
scenarios where the coordinate systems of the datasets are unknown. In this paper we propose 
several approaches that are based on utilizing the intersections of the lines as features, to 
efficiently and accurately detect the matched features across line vector datasets. We first discuss 
PPM, a brute-force approach to find the transformation of the intersections from one dataset to 
another. We then briefly discuss Geo-PPM, an improvement over PPM that utilizes some 
network properties to prune the search space. Finally, we discuss prioritized Geo-PPM where we 
can further improve the performance of Geo-PPM by first examining the features that have a 
higher possibility of locating the matching pattern. Our experiments show that prioritized Geo-
PPM provides a substantial improvement over Geo-PPM and hence, renders Geo-PPM practical 
for networks with large sizes.  
 
1 Introduction 
 
With the rapid improvement of geospatial data collection techniques, the growth of Internet and 
the implementation of Open GIS, a large amount of geospatial data are now readily available 
from public and private organizations as well as on the Internet. These datasets usually cover 
different areas, have different accuracy and levels of details, and are usually provided in the 
vector or raster data formats. Some examples of well-known vector datasets are US Census 
TIGER/Line files1 (covering most roads in the United States), NAVSTREETS from NAVTEQ2 
and DLG data from USGS3. The National Map,4 ESRI’s Geography Network,5 Yahoo Map 
                                                 
1 http://www.census.gov/geo/www/tiger/ 
2 http://www.navteq.com/ 
3 http://tahoe.usgs.gov/DLG.html 



Service,6 and Microsoft TerraService7 [1] are examples of repositories of raster data in form of 
map or satellite imagery. The users of these data products often need these geospatial data and 
other related data to be displayed in some integrated fashion for knowledge discovery. That is, 
the data must be fused to provide additional inferences that cannot be gathered from any single 
information source. Geospatial data fusion has been one of the central issues in GIS [3, 12]. 
Geospatial data fusion requires that the system integrates various datasets, and then creates a 
single composite dataset from the integrated elements. Towards geospatial data fusion, a vital 
step is identifying the matched features among multiple datasets.  
 
There have been a number of efforts to automatically or semi-automatically detect matched 
features across different road vector datasets [4, 7, 11, 13, 14, 15, 16]. Given a feature point from 
one dataset, these approaches utilize different matching strategies to discover the corresponding 
point within a predetermined distance (i.e., a localized area). This implies that these approaches 
can only handle the matching of vector datasets that are in the same coordinate system. There are 
also solutions that utilize non-spatial attributes of the points (e.g., point’s name) to compare and 
match vector dataset. However, there are scenarios in which the spatial attributes of the objects 
are intentionally transformed to a different, and usually unknown, (alien) system, or the datasets 
do not contain any common non-spatial attributes. An example of this scenario is when the 
spatial attributes of one dataset are intentionally transformed to an unknown system for security 
reasons. This renders the available solutions impractical for these scenarios.  
 
In this paper, we propose several approaches to automatically and efficiently handle the 
matching of diverse vector datasets, independent of their coordinate system. The basic idea of 
our approach is to find the transformation T between the layout (with relative distances) of the 
feature point set of one vector data and the feature point set of the other dataset. This 
transformation achieves global alignment between two feature point sets by locating the common 
point pattern among them. In particular, we utilize road intersections as the feature points to be 
matched. Road intersections are good candidates for being matched since road intersections are 
salient points to capture the major feature of the road network. In addition, various GIS 
researchers have shown that the intersection points on the road networks are good candidates to 
be identified as an accurate set of matched points [4, 5, 8, 9].  
 
We first discuss PPM, a brute-force method that can find the matching point (intersection) 
pattern by examining every pair of points in the first dataset S1 against every pair of points in the 
second dataset S2. Although accurate and resistance against noise, PPM is computationally 
complex and hence suffers from very poor performance. We then briefly discuss Geo-PPM that 
utilizes some network properties of the features to improve the performance of PPM. The 
intuition for Geo-PPM is to eliminate the examination of the point pairs that cannot possibly be a 
candidate for correctly locating the matching pattern. Geo-PPM cannot scale to very larger 
datasets, especially when the features of the datasets follow a pattern (e.g., a grid pattern in a 
Manhattan network). This is because in the presence of a pattern, there will be numerous features 

                                                                                                                                                             
4 http://seamless.usgs.gov 
5 http://www.geographynetwork.com/ 
6 http://maps.yahoo.com/ 
7 http://terraserver-usa.com/ 



in S2 that have the same network properties as a feature in S1. Hence, Geo-PPM cannot 
effectively prune the search space for a large number of features. Towards this end, we propose 
prioritized Geo-PPM, in which we first examine the features in S1 that have a higher possibility 
of locating the matching pattern sooner. These features are usually the outliers in the network 
(e.g., an intersection with the maximum number of intersecting streets, or an intersection with an 
outlier angle) and their matching features in S2 are also usually outliers. We then propose several 
outlier properties that can be utilized in prioritized Geo-PPM. Our experiments show that 
prioritized Geo-PPM can provide a substantial improvement over Geo-PPM for large networks 
when it utilizes the “minimum number of candidates with the same point angle” property.  
 
The remainder of this paper is organized as follows. We review the related work on conflation of 
vector data in Section 2. We then provide an overview of a brute-force algorithm to find the 
matching between two point patterns as well as Geo-PPM and prioritized Geo-PPM in Section 3. 
The results of our experiments that compare the performance of our proposed approaches are 
discussed in Section 4. Finally, we conclude the paper in Section 5.  
 
2 Related Work 
 
The idea of vector to vector conflation was first proposed and implemented in 1988 by Saalfeld 
[11], and the initial focus of conflation was to eliminate the spatial inconsistency between two 
overlapping vector datasets in order to improve the spatial accuracy of vector datasets. Once the 
spatial discrepancy is eliminated, it is possible and easier to transfer attributes among datasets to 
achieve geospatial data fusion. Several important application domains that can benefit from such 
data fusion are the crisis management, city traffic planning, and military intelligence 
applications. Towards vector to vector conflation, a vital step is identifying the matched features 
among multiple datasets. There have been a number of efforts to automatically or semi-
automatically detect matched features across different road vector datasets [7, 11, 13, 14].  
 
Walter and Fritsch [13] proposed a relational matching approach to find matched spatial objects 
based on the similarity of spatial objects at the geometry level (e.g., node to node matching based 
on distance) and based on the relations between the elements in a data set.  They investigated the 
“similarity” of spatial objects based on statistical information derived from a random sample of 
the vector datasets to be integrated. However, their approach requires human intervention to 
perform an initial affine transformation between datasets. In addition to performing feature 
matching at the geometry level, Cobb et al. in [7] proposed an approach to perform feature-
matching at the object level. For example, when comparing two road segments, their approach 
not only matches the road endpoints, but also matches the non-spatial properties such as street 
names and widths. Ware et al. [14] presented a technique for matching and aligning vector 
features in pairs of multi-date coverages. The main feature dealt with in their work is road 
segments. Their approach also supports the additions/deletions of road nodes in order to deform 
the matched road segments.  
 
There are also several commercial products such as MapMerger [15] and Conflex [16] that can 
support automatic vector to vector matching with limited human intervention to consolidate 
multiple vector datasets.  
 



The existing algorithms and products can only handle the matching of vector datasets that are in 
the same geometry system (i.e., the same coordinate system), or require non-spatial attributes 
(e.g., objects’ names) to match objects of two datasets. To the best of our knowledge, there is no 
solution to address the same problem when the spatial attributes of the datasets are in unknown 
geometry systems and hence, their spatial relations with each other cannot be compared easily. 
 
3 GeoMatchMaker: Finding the Matched Features  
 
In this section, we first describe the basic idea to identify two point patterns from two vector 
datasets and describe a brute-force algorithm, ppm, to match the point patterns and briefly 
discuss geo-ppm, which utilizes a number of auxiliary geospatial information to improve the 
performance of ppm. We then propose prioritized geo-ppm to further improve the performance 
of geo-ppm in order to address large size vector datasets.   
 
3.1 PPM: Point Pattern Matching 
 
Let U= {ui | ui= (xi, yi )} a set of coordinates, where (xi, yi ) are the locations of the intersections 
of the first vector dataset, and  V= {vi | vi= (mi, ni)}, where (mi, ni) are the locations of the 
intersections of the second vector dataset. Our objective is to find the set: RelPat={(ui,vi)} where 
ui is an intersection in the first vector dataset and vi is the corresponding intersection (if any) in 
the second vector dataset. That is, point ui and vi are formed by the same intersected vector 
segments. Consider identifying matched points between two road networks. If the system can 
recognize the names of road segments that meet at the intersections, it can use these road names 
to infer the set RelPat. However, road vector data may not comprise the non-spatial attribute, road 
name. Instead, our approach relies on some prominent geometric information of the road 
segments and their intersections to identify the matching point patterns. Hence, the problem of 
point pattern matching is to find the transformation T between the layout (with relative distances) 
of the point set U and V. 
 
The key computation of matching the two sets of points is calculating a proper transformation 
matrix T, which is a 2D rigid motion (rotation and translation) with scaling. Because the majority 
of vector datasets are oriented such that north is up, we only compute the translation 
transformation with scaling. Without loss of generality, we consider how to compute the 
transformation where we map from a fraction α of the points of U to the points of V. There are 
two reasons that only a fraction α of the points of U is considered: 1) One vector dataset may 
contain data that are not included in the second dataset, and 2) one vector dataset could be 
represented in detailed level while the other one is represented abstractly. The transformation T 
brings at least a fraction α of the points of U into a subset of V. This implies: 
∃ T and U’ ⊆ U , such that  T(U’) ⊆ V , where | U’ | ≥  α| U | and T(U’) denotes the set of  the 
points that results from applying T to the points of U’. Or equivalently, for a 2D point (x, y) in 

the point set U’ ⊆ U, ∃ T in the matrix form 
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 = [m, n, 1] , where  | U’ | ≥  α| U | and the 2D point (m, n) belongs to the 

intersection point set V on the second vector dataset. With this setting, we do not expect point 
coordinates to match exactly because of finite-precision computation or small errors in the 
datasets. Therefore, when checking whether a 2D point p belongs to the point set V, we declare 
that p ∈ V if there exists a point in V that is within the Euclidean distance δ of p for a small fixed 
positive threshold value δ, which controls the degree of inaccuracy. The minimum δ such that 
there is a match for U’ in V is called Hausdorff distance. Different computations of the minimum 
Hausdorff distance have been studied in great depth in the computational geometry literature [6]. 
We do not seek to minimize the value of δ, rather, we intend to adopt an acceptable threshold 
value for δ. The threshold is relatively small compared to the average inter-point distances in V. 
In fact, this sort of problem was categorized as “Nearly Exact” point matching problem in [2]. 
 
Given the parameters α and δ, to obtain a proper transformation T, we need to compute the 
values of the four unknown parameters Sx, Sy, Tx and Ty. This implies that at least four different 
equations are required. A straightforward (brute-force) method is first choosing a point pair (x1, 
y1) and (x2, y2) from U, then, for every pair of distinct points (m1, n1) and (m2, n2) in V, the 
transformation T’ that maps the point pair on U to the point pair on V is computed by solving the 
following four equations: 
 
Sx* x1  + Tx = m1   Sy* y1  + Ty = n1 
Sx* x2  + Tx = m2   Sy* y2  + Ty = n2 
 
Each generated transformation T’ is thus applied to the entire points in U to check whether there 
are more than α|U| points that can be aligned with some points on V within the threshold δ. This 
process is repeated for each possible point pair from U, which implies that it could require 
examining O(|U|2) pairs in the worst case. On the other hand, for each such pair, the algorithm 
needs to try all possible point pairs on V (i.e., O(|V|2 )) and the time required to examine each 
generated transformation T’ is O(|U| log|V|). This implies that the worst case running time of this 
approach has complexity of O(|U|3 |V|2 log|V|). The advantage of ppm is that we can find a 
mapping (if the mapping exists) with a proper threshold δ even in the presence of very noisy 
data. However, it suffers from high computation time. One way to improve the efficiency of the 
algorithm is to utilize randomization in choosing the pair of points from U as proposed in [10], 
thus achieving the running time of  O(|V|2 |U| log|V|). However, this approach is not appropriate 
for all vector datasets since it is possible that one vector dataset is represented in detailed level 
while the other vector dataset is represented abstractly. Instead, we developed some efficient 
techniques discussed in the next sections to prune the search space of possible point pattern 
matches by reducing the numbers of potential matching point pairs needed to be examined.  
 
In more recent work, we extended the PPM algorithm by exploiting additional information about 
the geographic sources to improve the efficiency of the algorithm.  The resulting algorithm is 
called Geo-PPM and the details of this algorithm are described in [17]. 
 
 



3.2 Prioritized Geo-PPM 
 
The intuition behind prioritized Geo-PPM is that in real world datasets, it is very likely that the 
matching feature for an outlier feature in one dataset is also an outlier in the other dataset. This 
means that the number of possible matching features for an outlier feature is most likely very 
small. Hence, if we can locate the outlier features in the first dataset and then start the Geo-PPM 
by first examining these features, we can most likely find the matching features faster as 
compared to when we execute Geo-PPM for a randomly selected feature.  
 
We further describe prioritized Geo-PPM using Figure 1. As shown in the figure, the majority of 
the lines in the blue dataset follow a grid pattern while lines L1, L2, L3 and L4 (shown with thick 
lines) are the outliers in this dataset. This means that the intersections of these lines are also 
outliers (i.e., have uncommon angles). As shown in the figure, the lines in the red dataset that 
have similar angles as the angles of (L1, L2, L3, L4) are also outliers in the red dataset. Hence, it 
is likely that we can find the matching line for L1 (or in other words, the matching intersections 
for the intersections of L1) faster than the matching line for L5. This is because there are 
numerous lines in the red dataset that follow the grid pattern and have the same angles as L5.  
 

 
We can utilize the properties that are used in Geo-PPM to specify the outliers of a dataset. Some 
examples of the outlier features we can infer from these properties are: 
1. Angles between the points: directly connected intersections that have outlier angles (e.g., 

intersections of the lines L1 to L4 in Figure 1).  
2. Angles of the points: intersections that have the minimum number of candidates (i.e., number 

of candidate intersections in the second dataset that have the same angles as these 
intersections is minimum).  

3. Point connectivity: intersections that have the maximum number of connectivity.  
4. Distances between the points: directly connected intersections with the maximum distance 

(i.e., longest road in the network)  
 
Our experiments showed that intersections that have the minimum number of candidates (i.e., the 
second item above) can provide a better improvement in the performance of Geo-PPM as 
compared to the other outliers. 
 
 

 
Figure 1: Example of outliers in 2 road network datasets 



4 Experiments 
 
We performed several experiments with real world datasets to examine and compare the 
performance of Geo-PPM and prioritized Geo-PPM. For our experiments, we used three datasets 
obtained from USGS, NGA and US Census, covering the streets in the area of (-122.5015, 37.78) 
to (-122.3997, 37.8111). The 3 datasets are shown in Figure 2, where the green lines (i.e., most 
accurate data) represent the streets obtained from USGS, the red lines are from NGA, and the 
blue lines represent the streets obtained from US Census. As shown in the figure, while the data 
from USGS and NGA have almost similar granularity, the US Census data is represented in 
abstract level. Moreover, in order to examine the scalability of our approaches, we filtered the 
south west quarter of the datasets to generate 3 datasets with smaller sizes. Finally, we only used 
the combination of “connectivity of the points” and the “angles of the points” properties in Geo-
PPM. 
 

 
Table 1 shows the results of the second set of our experiments. The first column of the table 
shows the combination of the datasets that were used and the second column indicates the 
number of intersections in each combination. As shown in the table, the average number of the 
candidates for each intersection (i.e., the number of intersections in the second dataset with the 
same connectivity and angles as compared to that of an intersection in the first dataset) varies 
between 371 and 637. This shows that the possibility of selecting 2 pairs from the candidate pool 
which are exactly matched to 2 intersections selected from the first dataset is very low, meaning 
that the random selection of points in Geo-PPM will result in a very large number of possibilities 
and hence, to a very large processing time. For example, for the USGS+NGA combination (with 
larger area), the possibility that randomly selected pair of points from the pool of candidates is 

exactly matched to the pair of points selected from the first dataset is 
405769

1
637
1

637
1

=× . That 

is, in worst case, to find the right matching pairs, up to 405,769 combinations (on average) must be 
examined. However, as shown in the table, with Geo-PPM, we can achieve an acceptable level of 
precision and recall by examining between 33 and 52 candidate pairs, an improvement of up to 4 orders 
of magnitude over Geo-PPM.  
 

 
Figure 2: Coverage area of the test data for the second set of the experiments  



 
5 Conclusion 
 
In this paper, we discussed PPM, a brute-force approach to locate the matched points between 
two line vector datasets. We then discussed Geo-PPM in which some network information are 
utilized to reduce the computational complexity of PPM. In addition, Geo-PPM is independent of 
the spatial attributes of the datasets, rather, it only depends on the objects’ relative locations in 
the space. Hence, it can be applied to the vector datasets that are in unknown geometry systems. 
Moreover, we proposed prioritized Geo-PPM, in which we start by examining the pairs of points 
that have the minimum number of candidates. Our experiments showed that prioritized Geo-
PPM can achieve an acceptable level of precision and recall by examining only a very small 
number of pairs of points and hence, render Geo-PPM applicable even for large datasets.  
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