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ABSTRACT
The existing methods for assessing the likelihood of exploitation
for software vulnerabilities are found to have many limitation -
preventing them from being useful tools for prioritization of vul-
nerability remediation. We present a method that combines social
network analysis with machine learning techniques to predict the
vulnerability exploitability. Our method harnesses features based
on user connectivity in darkweb/deepweb sites as well as features
derived from the vulnerability data. Our results suggest that the
features computed from the user social connections are highly in-
dicative of future cyber attacks. We conduct a suite of experiments
on real-world hacker and exploit data and demonstrate that social
network data improves recall by about 19%, F1 score by about 6%
while maintaining precision. We believe this is because social net-
work structure related to certain exploit authors is indicative of
their ability to write exploits that are subsequently employed in an
attack.

1 INTRODUCTION
The majority of cyber-attacks across the world leveraged exploits
for vulnerabilities known to the cybersecurity community. As a
recent example, consider the ransomware WannaCry, which lever-
ages vulnerabilities described in MS17-010. It was launched with
high attack volume on May 12, 2017. Microsoft has released patches
for that vulnerability weeks before the attacks were carried out.
However, at least 230,000 computers in over 150 countries have been
infected by that attacks [24]. In the same week when WannaCry’s
vulnerability was released by the National Institute of Standards
and Technology (NIST) (with CVE-2017-0144), over 370 other vul-
nerabilities were also released. The WannaCry’s vulnerability was
assigned a Common Vulnerability Scoring System (CVSS) [11] base
score v3.0 of 8.1 while 60 other vulnerabilities, released in the same
week, were assigned CVSS scores more than 8.1, which explains
why this vulnerability has not received much of attention at the
time of disclosure, weeks before the attacks. The existing vulner-
ability severity scoring systems are known not to be useful for
prioritization of vulnerability remediation. They are known to as-
sign high severity scores to many vulnerabilities that will never be
exploited [2]. Recent studies show that less than 3% of the vulnera-
bilities reported are ever exploited in wild [1, 2, 20]. Therefore, the
cybersecurity researchers have used alternative methods leverag-
ing machine learning techniques on features computed from social
media feeds with explicit vulnerability mentions [6, 20]. In both
studies, the dynamics of user connectivity have not been analyzed

nor have they quanti�ed as predictors. Additionally, while other
studies suggest that darkweb/deepweb (D2web) sites are among the
best sources for gathering cyber threat intelligence [2, 12, 14, 22],
the value of such intelligence in predicting the vulnerability likeli-
hood of exploitation was not quanti�ed.

In this paper, we introduce our method that leverage machine
learning models trained on features derived from the social network
of users participating in D2web forums as well as features derived
from the vulnerability information. We evaluate our method us-
ing ground truth obtained from attack signatures reported from
a large cybersecurity �rm, namely Symantec1. In this paper, we
provide three case studies illustrating that the vulnerability men-
tions recorded on D2web indicate that exploits are being developed
and recirculated. These exploits are employed in real-world attacks
detected in the wild short time after the recorded events. We also
propose an approach for generating a social network graph from
the discussions on D2web forums, and provide analysis on the dy-
namics of connectivity. Furthermore, we demonstrate the viability
of the features derived from the social network of D2web users
in predicting cyber threats, and we use the task of predicting the
likelihood of exploitation to show that these features, combined
with other features, result in machine learning model that achieves
F1 measure of 0.67 and generalize well with the biased ground truth.

2 BACKGROUND
2.1 Vulnerability Lifecycle
In this subsection, we provide a general description of the typi-
cal vulnerability lifecycle and note that vulnerabilities may have
variations on their lifecycle depending on di�erent factors.
Vulnerability Reporting. Researchers are encouraged to report
security �ows they discover to any CVE Numbering Authorities
(CNAs)2. Once a new �ow is reported to a CNA, the CNA reserves
a new Common Vulnerabilities and Exposures (CVE) number after
validating that the �ow can be exploited in a way that violates the
security policies, and it has not been previously assigned a CVE
number. Once it is established that the �ow is a software vulnera-
bility, the software vendor is noti�ed and allowed a period of time
to release patches before any information about the vulnerability
is publicly disclosed. To allow for validating the vulnerability, a
Proof-of-Concept (PoC) exploit might be developed as part of the
reporting process. PoCs are scripts written by white-hat hackers or
software vendors with limited functionality aiming to show that a

1https://www.symantec.com
2For a complete list of CNAs, see https://cve.mitre.org/cve/cna.html.



�ow is exploitable. Some researchers and software vendors choose
to make PoCs exploits available for the public community; hence,
submitting them to PoC public archives such as Exploit-DB3. Possi-
bly, some PoCs are also developed such that they can be integrated
with penetration testing tools (e.g., MataSploit4) to allow pen testers
to identify vulnerable systems within their organizations to plan
remediations.
Vulnerability Disclosure. Once a legitimate vulnerability is val-
idated and the time period provided to the vendor is over, the
National Institute of Standards and Technology (NIST)5 releases
information about the vulnerability to the cybersecurity commu-
nity through the National Vulnerability Database (NVD)6- which
is known to be the comprehensive reference vulnerability database
with over 92,000 disclosed vulnerabilities as of July 2017. Along
with the CVE number of the vulnerability, other details are provided
(e.g., description, e�ected system/software, CVSS severity score).
Vulnerability Exploitation. After a vulnerability is disclosed by
NIST, ideally, organizations start patching their systems to avoid
any risks. However, with the ever-increasing number of disclosed
vulnerabilities, many organizations fall behind on vulnerability
mitigation and become exposed to a wide range of newly deployed
exploits exist in the wild. Recent studies show that only a small
fraction of vulnerabilities are found to be exploited in the wild
(1-3% [2, 10, 15, 20]); nonetheless, exploits are being detected in
the wild short-time after disclosure. For example, exploits for the
well-known vulnerability (“Heartbleed”, with CVE-2014-0160) were
detected in the wild less than a day after its public disclosure [9].
Therefore, organizations look for methods help in assessing the
exploitability likelihood better than the existing severity scoring
systems, which have been criticized for their tendency towards
assigning high scores for most vulnerabilities, resulting in high
false positive rates (i.e., long lists of vulnerabilities to patch - the
vast majority will never be exploited) [2].

2.2 Case Study: D2web Vulnerability Events
Di�erent reactions from the cybersecurity communities are spot-
ted in the online social networking platforms (e.g., blogs, Twitter,
deepweb/darkweb (D2web) forums) after a vulnerability is publicly
disclosed. Here, we only focus on the events appeared in D2web
with explicit reference to known vulnerabilities. We include three
timelines that trace the events surrounding three di�erent vulnera-
bilities to show that D2web vulnerability events might be recorded
across multiple sites and by di�erent users.

The �rst of these timelines, depicted in Figure 1, has many events
that can be traced across multiple D2web sites over a long period.
In late January, 2016, the vulnerability in question was posted by
users 1, 2, and 3 on forums A, B, and C respectively. By the next
day, it had been posted by another user 4 on another D2web forum
D. On February 7th, 2016, NIST formally disclosed the vulnerability
(with CVE-2016-0728). On the same day, another post regarding
the vulnerability was made by user 5 on forum D. Exactly one week
later, on February 14th, Symantec �rst detected an exploit that
targets CVE-2016-0728. Then, over four months later, an exploit
3https://www.exploit-db.com.
4https://www.metasploit.com.
5https://www.nist.gov.
6https://nvd.nist.gov.
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Figure 1: A vulnerability (with CVE-2016-0728) that has been
posted by many users on various di�erent darkweb sites.
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Figure 2: A vulnerability (with CVE-2017-0822) that has only been
posted on one darkweb site by just one user.

targeting the vulnerability �rst appeared on a D2web marketplace.
Few days later, the vulnerability was posted by user 6 on D2web
forum E. Much later, the vulnerability was posted by user 7 on
D2web forum F three times in the second week of March 2017.

Figure 2 shows an example of a vulnerability that has very little
activity surrounding it. It was �rst posted by user 10 on D2web
forum D late March 2017. Later, within the same week, NIST re-
leased the vulnerability information (with CVE-2017-0822). These
two events are the only known activities regarding this particu-
lar vulnerability. It has not been detected any exploits in the wild
targeting CVE-2017-0822.

The third and �nal timeline, illustrated in Figure 3 is an exam-
ple of a vulnerability that has only been posted and discussed by
a few users. Hence, it can be traced over only a select few sites.
This timeline begins on September 18th, 2016 when the vulnerabil-
ity was �rst disclosed by NIST (with CVE-2016-6415). A few days
later, on September 24th, the vulnerability was posted by user 8
on a darkweb forum D. Just two days following this (September
26th), it was posted again on darkweb forum D but this time by a
di�erent user 9. This vulnerability exists in the server IKEv1 imple-
mentation in Cisco IOS. Although this vulnerability does not have
an attack signature reported by Symantec, some reports indicate
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Figure 3: A vulnerability that has been posted multiple times on
the same darkweb site by di�erent users.
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Figure 4: An overview of the prediction model.

that this vulnerability was exploited in the wild 7– though the ex-
act exploitation date is not known. This supports the observation
discussed in previous work [20] regarding the bias of Symantec’s
attack signatures.

While higher number of vulnerability mentions across D2web
sites is an indicative of possible risks (as illustrated in the �rst
timeline), vulnerabilities with lower number of mentions may also
be targeted (e.g, third timeline). Meta-data about the vulnerability
mentions on D2web such as the importance of the user who refer-
enced the vulnerability and the textual content of the posts are also
other measures we use for assessing the likelihood of exploitation.

3 METHOD
We view the task of predicting the vulnerability likelihood of ex-
ploitation as a binary classi�cation problem, where the positive
class is exploited, and the negative class is not exploited. Our ap-
proach is based on supervised learning with features computed
from the social network of users posting in D2web forums as well
as other features derived from data feeds from NVD. Figure 4 gives
an overview of our proposed approach for predicting the vulnera-
bility exploits in the wild.

7See http://www.securityfocus.com/bid/93003/exploit.
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Figure 5: Number of vulnerabilities disclosed on NVD, vulnerabili-
ties mentioned on D2web, and vulnerabilities reported as exploited
on Symantec by NVD publication year vs. the number of vulnera-
bility each data source reported.

3.1 Data Collection
Our machine learning models use features derived from two sources,
vulnerability data feeds collected from NVD, and a D2web database
of posts with cybersecurity-related content collected and �ltered
from 151 D2web forums [17]. The class labels are determined based
on a ground truth set of attack signatures of exploits detected in the
wild, and reported by the well-known cyber defense corporation,
Symantec8. For the purpose of this paper, we focus our study on
data collected from all the mentioned sources between January
2010- March 2017. Here we provide details on the data collection
process for the three sources we use. Figure 5 shows the number
of vulnerabilities published on NVD per year as well as the num-
ber of these vulnerabilities mentioned on D2web and reported by
Symantec.
NVD. Every vulnerability in NVD is assigned a unique CVE number.
To collect vulnerability data, we use the JSON data feeds provided
by NVD and extract information about the vulnerabilities we study
(extracted information is discussed in Section 3.2). Further, a web
scrapper is developed to retrieve from the vulnerabilities’ webpages
the data elements that are missing from the JSON �les (e.g., the
disclosure date).
D2web Forums. We use a database of posts collected from 151
darknet and deepnet forums. The data collection system is origi-
nally described in [17]. D2web sites are periodically scraped by the
system to collect postings with hacking-related content. A team
of experts �rst identify D2web sites that have content of interest.
After it is determined that a website is of interest, a customized
crawler and parser is developed, and it is put forward for peri-
odic data collection. Although the focus is only on sites with rich
hacking-related content, some discussions irrelevant to hacking
(e.g., discussions related to illicit drugs, pornography) are also col-
lected. To �lter data relating to hacking from other data, a machine
learning model with high classi�cation accuracy is used on features
derived from the content of posts. The database we use contains
over 2,290,000 posts under 223,074 distinct topic in 151 distinct
forums. From these posts, only 3,082 have explicitly mentioned
624 distinct vulnerabilities by referencing their CVE-ID. Of those,
8https://www.symantec.com
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502 are within the time period we focus on, and they are found on
46 di�erent forums. We only use these forums to build the social
network of users, as described in Section 4.
SymantecAttack Signatures.We label vulnerabilities as exploited
in the wild if the CVE-ID is mentioned in the description of the
attack signatures reported by Symantec’s anti-virus9 or Intrusion
Detection Systems’ attack signatures10. The fraction of exploited
vulnerabilities is found to be very small as shown in Figure 5, and
it varies from year to another. The maximum value for the fraction
of exploited vulnerabilities is 2.7% (for vulnerabilities published in
2016), and minimum value is less than 1% (for vulnerabilities pub-
lished in 2017) - previous work has reported fractions comparable
to our �ndings [2, 20].

3.2 Features Description
Features are extracted from both data sources we discussed in
Section 3.1. We summarize the features in Table 1. Here we provide
discussions on each of the sets of features.

Table 1: Summary of features

Source Feature Set Type

NVD

CVSS base score Numeric and Categorical

Description TF-IDF uni-grams

CWE Categorical

D2web
Social Network Features Numeric

Post content TF-IDF uni-grams

Combined D2web date - NVD date Numeric

CVSS Base Score. CVSS is a vulnerability severity scoring frame-
work designed to measure the exploitability and the impact of the
vulnerabilities. We use CVSS base score versions v2.0. There are
two main components for this set of features: (1) the base score
(numeric): a given severity score ranges from 0 to 10, and (2) the
CVSS vector: a vector of the metrics that determine the base score
(categorical). The measures in the vector are Access Vector, Access
Complexity, Authentication, Con�dentiality Impact, Integrity Impact,
and Availability Impact. Each of these measures can take one of
di�erent categories. For example, Access Vector indicates how the
vulnerability is exploited. It can take one of three possible levels:
Local (L), Adjacent Network (A) and Network (N)11.
NVD Description. NIST provides a textual description of the vul-
nerability when it is released. The description summarizes the sys-
tem/software in which the �ow exists and gives information on how
it can be exploited. The textual features derived from NVD descrip-
tion undergo preprocessing pipeline including stemming (reducing
the words to their root forms) and stop words removal (e.g., and,
or, then). Then the text is vectorized using Term Frequency-Inverse

9A complete list is found here https://www.symantec.com/security_re-
sponse/landing/azlisting.jsp. The detection date is labeled with “Discovered”. For
example, see https://www.symantec.com/security_response/writeup.jsp?docid=2017-
031318-1819-99.
10https://www.symantec.com/security_response/attacksignatures.
11see https://www.�rst.org/cvss/v2/guide for complete documentation.

Document Frequency (TF-IDF), which computes the importance of
words in a document by comparing the frequency of the word in a
document with the length of that document and comparing it with
the frequency of the word in all other documents. Thus, the more
times a word occurs is a document and less times it occurs in other
documents the higher TF-IDF score assigned. Only the 250 most
frequent words are used as features to limit computational cost.
CWE. Is a community-e�ort project comprising enumerating com-
mon software security weaknesses (categorical). These are cate-
gories of �ows that can be unintentionally made during the software
development and can exist in the software architecture, design, or
code12.
D2web Social Network Features. This set of features contains
measures computed from the social connections of users posting
hacking-related content. The basic social network features (e.g., in-
degree, out-degree) indicates how active a user is in the social graph.
More advanced features measure the centrality (can be viewed as
importance) of users in the social graph. Highly central users are
more important; thus the vulnerability mentions should take more
consideration. We compute the features for the set of users who
explicitly mentioned one or more CVE-IDs in their posts.
Post Content.We found evidence for many vulnerability mentions
with content ranging from exploit o�ers to content irrelevant of the
mentioned vulnerability. This set of features is extracted the same
way NVD description features are extracted except that for non-
English posts, we automatically translate the content to English
using Google Translate API13, then the TF-IDF are computed as
described earlier.

3.3 Classi�er Training and Prediction
We use a supervised machine learning approaches to train classi�ers
on the said features. The output of the classi�ers is a con�dence
score. A threshold can be set on the con�dence score to determine
the best decision boundary. The experimental settings and results
are described in Section 6.

4 HACKER SOCIAL NETWORK
Previous work proposed for predicting the vulnerability likelihood
of exploitation has mainly examined features derived from vulner-
ability data from NIST (e.g., number of references [6, 20], CVSS
score [2, 6, 20]), or from online mentions (e.g., tweets [6, 20], Exploit-
DB [20]). Features derived from the social network of users in these
platforms have not been examined on neither their correlation nor
causality of vulnerability exploitation. In this paper, we leverage
social network theory to analyze the social network of users who
are actively posting malicious hacking-related content in D2web.
Such features have been widely investigated in the literature in
applications of cyber threat intelligence, but for tasks other than
predicting threats (for details, see Section 7.2). In this paper, we
adopt the same assumption made in much of the previous work
on D2web data, where they consider the same usernames (case

12For example, CWE-119 refer to a very common vulnerability type, improper restric-
tion on the bounds of memory bu�ers. A hacker can exploit vulnerabilities of this type
by overwriting data in memory then the system will crash.
13https://cloud.google.com/translate. Amongst di�erent translation services examined,
this appears to be the best in our study.
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Figure 6: In-degree and out-degree distribution of users in G.

insensitive) across di�erent D2web sites to belong to the same per-
son(s) [19]. This allows for generating one network comprising a
large number of D2web sites as opposed to a social network for
each site [? ].

4.1 Users’ Social Graph
Formally, the users’ social graph G = (V ,E) is a weighted, directed
graph with no self-loops (i.e., there exists at most one edge between
any pair of nodes, every edge has a weight, and every edge points
away from one node to another node). V is the set of vertices
(D2web users) and E is the set of edges.

Considering only posts between January 2010- June 2016 (747,351
posts under 109,413 topics), and for every topic tx , posts under tx
are grouped together in a list lx ordered by the date and time of
posts. Then, an edge is created (with weight = 1) from user vi to vj
and labeled with the date of vi ’s posting date only if (1) vi , vj , (2)
both vi and vj have posts in lx , and vi has posted after vj , (3) the
number of posts between vi ’s post and vj ’s post in lx is less than
thr (it is set to be 10 in all experiments in this paper), and (4) there
is no existing edge originating from vi to vj and labeled with the
same date.

Hence, there is no self-loops, only one edge can be created from
vi to vj (i.e., vi posted after vj ) under topic ti on date d . Once the
edges are created, they are added to a multi-directed graph with
parallel edges of weights = 1. The multi-graph is then transformed
to a directed graphG by summing the weights of the parallel edges.

Degree distributions, for both incoming and outgoing edges,
of G are found to resemble power-law distribution as depicted in
�gure 6. This means that there exist very few users with a very
large number of connections, and many users with few connections
- this observation is known to be common for social media sites [25].

4.2 Social Network Measures
After creating the social network, we compute measures derived
from the network structure. In this paper, we consider three cate-
gories of social network measures:
Network Structure Measures: the measures under this category
are: (1) In-degree: the number of edges pointing to the user, (2)
Out-degree: the number of edges originated from the user, (3) Sum
of In-degree weights: the sum of the weights for all edges pointing
to the user, (4) Sum of out-degree weights: the sum of the weights
for all edges pointing away from user. These measures describe

the type of activities in which user engages. For example, higher
in-degree than out-degree may indicate the user tendency towards
creating new topics or posting under topics short time after they
are created.
Centrality Measures: three measures are computed: (1) In-degree
centrality: it measures the popularity of a user vi by normalizing
vi ’s in-degree by the maximum possible in-degree, (2) Out-degree
centrality: measures how actively a user vi replies to others by
normalizing vi ’s out-degree measure by the maximum possible
out-degree, (3) Betweenness centrality: for a user vi , Betweeness
centrality measures the importance ofvi by computing the fraction
of shortest paths between all pairs of users that pass through vi .
Importance Measures: the number of connections user vi has
with other users, by itself, may not be indicative of importance;
rather, vi is important if his/her posts make other important users
reply. Hence, in�uence metrics incorporate the centrality of users
with outgoing edges to vi into vi ’s centrality (i.e., if an important
user vj replies to vi , then the importance of vi increases). Two
measures are computed under this category: (1) Eigenvector cen-
trality: measures the importance of vi by assigning a centrality
proportional to the sum of in-neighbors’ centralities. Eigenvector
centrality ofvi is the ith value of the eigenvectorCe corresponding
to the largest eigenvalue of the network adjacency matrix At , and
(2) Pagerank centrality: measures the centrality of vi by incorporat-
ing fractions of the centralities of the in-neighbors such that each of
vi ’s in-neighbors passes the value of his/her centrality divided by
the number of outgoing edges. Pagerank is the algorithm used by
Google search engine to rank results, relevant to search keywords,
based on their importance [18].

5 SOCIAL NETWORK ANALYSIS
In this section, we report our observations on the computed mea-
sures. Table 2 shows statistics for the D2web social graph G cre-
ated according to our description, as well as statistics for (1) the
subset of users who have discussed vulnerabilities in D2web (s.t.,
vulnUsers ⊂ V ), (2) the subgraph of G induced by vulnUsers ,
Gvulns (vulnUsers,vulnEdдes), (s.t.,vulnEdдes ⊂ E), and (3), a sub-
graph induced by vulnUsers as well as all their in-neighborers and
out-neighbors GvulN ei (vulNeis,vulNeiEdдes), (s.t., vulNeis ⊂ V
andvulNeiEdдes ⊂ E). We create these three graphs to understand
the di�erences in the dynamics of user connectivity for the subset
of users mentioned vulnerabilities (s.t., vulnUsers , less than 1% of
the total population) as opposed to the total user population.

These individuals, or vulnUsers, are spread across many D2web
forums (46 forums out of 151). Further, they are generally more
active than other users in the same forums. As depicted in table 2,
the average in-degree (64.90) and out-degree (51.45) for the subset
of vulnUsers are orders of magnitude higher than the same measures
for all users in the graph (13.74)– about 5 times higher in-degree and
4 times higher out-degree. This shows that the average hacker in
vulnUsers is exposed to a larger population of hackers than a normal
hacker. Additionally, we observe that a hacker from vulnUsers is
more likely to engage in discussions with another hacker from
the same group than he/she does with others. For example, the
average in-degree and out-degree (4.08) for the subgraph Gvulns
indicates that, on average, a user has connections with about 4
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Table 2: Statistics for graph G with all users with at least one edge (in-edge or out-edge), the subset of users discussed vulnerabilities
vulnUsers, subgraph (Gvulns (vulnUsers,vulnEdдes))– induced by users vulnUsers, and subgraph (GvulN ei (vulNeis,vulNeiEdдes))– induced
by vulnUsers as well as all their in-neighborers and out-neighbors

Property D2web users Users mentioned vulnerabilities

as a subset of nodes as a subgraph as a subgraph with all 1-
hub neighborers

Nodes 53, 178 365 365 10469

Edges 730, 740 unde�ned 1, 492 202, 070

The average of:

In-degree 13.74 64.90 4.08 19.30

Out-degree 13.74 51.45 4.08 19.30

Sum of in-degree weights 35.80 250 48.07 75.73

Sum of out-degree weights 35.80 215 48.07 75.73

In-degree centrality 2.59e−4 1.22e−3 1.12e−2 1.84e−3

Out-degree centrality 2.59e−4 9.68e−4 1.12e−2 1.84e−3

Betweeness centrality 7.2e−5 1.29e−3 1.89e−4 2.35e−4

Eigenvector Centrality 2.18e−4 4.68e−4 5.95e−3 8.21e−4

Pagerank 1.90e−5 1.27e−4 2.74e−3 9.6e−5

Figure 7: The subgraph ofG induced by the set of users mentioned
vulnerabilities in their postings.

other vulnUsers (about 1%); whereas he/she would reply to posts
by about 51 users and make about 64 other users reply to his/her
post - in both cases, this is less than 0.1% of the total population.
For these reasons, vulnUsers generally, exhibit signi�cantly higher
centrality and importance measures as compared to normal users in
G. However, we observe that the distribution of network measures
vary largely within this group of users. We also observe that about
30% of the vulnUsers have no communication history with other
users within the same group. Figure 7 shows a visualization for the
subgraph Gvulns , which con�rms the two observations. Finally,
about 25% of vulnUsers joined the D2web community less than
three days before their �rst vulnerability mention.

6 EXPERIMENTAL SETUP
We perform experiments on the set of vulnerabilities mentioned
on D2web forums in the time period from January 2010 to March
2017. We exclude the vulnerabilities that were mentioned by users
with no communication history. We also exclude the vulnerabilities
that had been detected in the wild by Symantec before they were
mentioned in any of the D2web posts because these can be retrieved
by querying the database without prediction. Our resultant dataset
contains 157 distinct vulnerabilities, 24 of which have the class label
exploited.

Di�erent machine learning classi�ers are compared, but we only
report the performance achieved by the best performing classi-
�er, which is Random Forest (RF) [5]. RF generates an ensemble of
decision trees, each trained on a randomly sampled subset of the
training data - the achieved performance of di�erent runs slightly
di�ers; thus, for each of the experiments, we report the average of
�ve runs. The said decision trees are then used in combination to
classify vulnerabilities, each tree provides an independent classi-
�cation opinion; collectively producing the con�dence score. We
use a RF classi�er that combines bagging [5] for each tree with
random feature selection at each node of the tree to split the data.
The con�dence score, along with other measures (e.g., the cost of
patching, the estimated impact if the vulnerability is exploited)
can be used for patch prioritization, or a threshold can be set as a
decision boundary.

6.1 Performance Evaluation
We evaluate the performance of the models using precision, recall,
and the harmonic mean of precision and recall, which is F1 mea-
sure. Precision is the fraction of vulnerabilities that were actually
exploited from all vulnerabilities predicted as being exploited, and
recall the fraction of correctly predicted exploited vulnerabilities
from the total number of exploited vulnerabilities. Table 3 de�nes
how each metric is computed.
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Table 3: Evaluation metrics. TP - true positives, FP - false positives,
FN - false negatives, TN - true negative.

Metric Formula

Precision T P
T P+FP

Recall T P
T P+FN

F1 2 ∗ precision∗r ecall
precision+r ecall

We also report Receiver Operating Characteristics (ROC) curve
as well as Area Under Curve (AUC) of the classi�er. ROC graphi-
cally illustrates the classi�cation performance by plotting the true
positive rate (TPR) against the false positive rate (FPR) at various
thresholds of the con�dence scores the classi�er outputs.

6.2 Results
Experiments under Real-World Conditions. In this set of ex-
periments, we sort the vulnerabilities by their D2web date, then we
train our classi�ers on the vulnerabilities mentioned before June
2016 (125 vulnerabilities), and test on the vulnerabilities from June
2016 to March 2017 (32 vulnerabilities). The classi�cation perfor-
mance achieved by our RF model is at averaged precision of 0.57,
recall of 0.93, and F1 of 0.67. The same classi�er is able to achieve
an averaged AUC of 0.95. The lower score of precision is attributed
to the fact that Symantec’s data is biased towards reporting exploits
targeting vulnerabilities exist in software products from certain
software vendors such as Microsoft, Adobe [20]. Since our model
is found to predict vulnerabilities as being exploited from other
vendors as well, we believe that some false positives were actually
exploited in the wild but never detected by Symantec (the third
timeline in Section 2.2 is an example).
Ablation Test and Cross-Validation. Since the number of vul-
nerabilities in our testing dataset in the previous experiment is
relatively small, we further apply strati�ed 5-fold cross-validation
on the whole dataset - the samples are intermixed; hence these
conditions do not re�ect the conditions of real-world streaming
prediction (i.e., predicting the likelihood of exploitation at the time
of the vulnerability mention). The averaged F1 achieved is 0.72,
with a precision of 0.61 and a recall of 0.89, and with AUC of 88%.
To measure the impact of individual feature sets on the overall
classi�cation performance, we apply two tests: (1) an ablation test
(depicted in Figure 8) where the change in precision, recall, F1, and
AUC is recorded when each set of features is removed from the
prediction model, and (2) a test on individual feature sets (depicted
in Figure 9) where the classi�cation performance is reported for
models trained on only one set features at a time. In both tests, the
set of social network measures shows some performance decrease
when it is removed from model, and large improvement compared
to other sets of features and compared to the simple classi�er -
which labels all vulnerabilities are exploited, resulting in a precision
of 0.16, a recall of 1, at an F1 of 0.27 and an AUC of 0.5.

6.3 Discussion
In the ablation test, the largest drop in F1 occurred when CVSS
vector set of features were removed, followed by the removal of
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Figure 8: Classi�cation performance achieved by applying ablation
test with 5-fold cross-validation.

social network measures with comparable drop in F1. It is impor-
tant to note that CVSS vector is designed to assess the vulnerability
exploitability and impact, and assigning values to the di�erent com-
ponents of the vector is manually created by domain experts14.
Hence, being able to achieve performance comparable to the ex-
pensive CVSS vector when social network features are used is very
promising. However, we do note that even the experiments here
where we only use the CVSS vector di�er substantially from previ-
ous work - as we have selected a-priori on vulnerabilities that have
appeared on D2web - which account for the superior performance
of CVSS score in this paper when compared to previous work. Ad-
ditionally, when the individual feature sets were examined, the
best performing features were the TF-IDFs computed from both
the content of D2web postings and the vulnerability description
retrieved from NVD. The second best performing features were
the social network measures, scoring F1 that is signi�cantly higher
than F1 scores achieved by the other individual feature sets - ex-
cluding the textual features. The D2web textual content provides
rich information about the context in which the vulnerability is dis-
cussed. Furthermore, the software vendor (e.g., Microsoft, Adobe)
can be easily derived from the NVD description; leading the model
to potentially over-�t the biased ground truth. In all experiments,
social network measures demonstrated their viability as predictors
of potential cyber threats.

7 RELATEDWORK
7.1 Vulnerability Exploitation Prediction
Vulnerability remediation involves crucial decisions. For example,
applying patches can disrupt important business processes if it
involves taking some systems down to apply patches. Thus, apply-
ing unimportant patches is undesirable. A recent study found that
CVSS base score metrics, the most popular reference measures of
vulnerability severity, are poor indicators of exploitation [2]. Many
vulnerabilities are assigned high scores, resulting in very high false
positive rates (long lists of vulnerabilities to patch, most will never
be exploited). Additionally, methods have been proposed recently to
assess the vulnerability exploitation likelihood using vulnerability
disclosure data as well as other data sources, a problem we tackle in

14See https://www.�rst.org/cvss/v2/guide.
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Figure 9: Classi�cation performance achieved by individual feature
sets.

this work. Some of these methods leverage machine learning tech-
niques to predict whether a vulnerability will be exploited. Sabottle
et al. [20] proposed an SVM classi�er that leverages data feeds
from Twitter with explicit mentions to legitimate CVE identi�ers to
predict whether a vulnerability will have proof-of-concepts avail-
able in one experimental setup, and predict whether a vulnerability
will be detected in the wild in other experimental setup. Results in
their work are reported on time-intermixed samples (i.e., samples
in testing set may have appeared before samples in training set),
and including samples where the exploitation date is before any
of the tweets are posted. Both practices have been discussed in [6]
to measure their impact on real-world proactive exploitation pre-
diction settings. The work in [6] replicates the experiments done
in [20] (with data feeds spanning di�erent time period) to predict
the existence of proof-of-concepts from EDB. They found that the
experimental methodology highly in�uence the results. When ex-
amined under real-world conditions, the value of such data feeds is
found to be questionable [6]. In both papers, the dynamics of user
connectivity are not studied.

7.2 Social Network Analysis
An extensive amount of work has focused on usage of measures
computed from a social network of actors to identify malicious
actions [4, 8, 16, 23]. For example, Cao et al. [7] propose a method
called SybilRank that relies on social network measures to identify
fake accounts (Sybils) in large scale social media platform. Sybil-
Rank is demonstrated to outperform other used approaches by
Tuenti, a social media platform that was popular in Spain, by 18
times increase in recall. Across multi-disciplines, hacker communi-
ties in underground hacking forums have been widely studied to
understand the dissemination of information among hackers, the
motives for hacking, and the reputation and skill level of hackers
to detect threats [3, 13, 21]. However, the dynamics of connections
within the hacker communities have not been quanti�ed as pre-
dictors for vulnerability exploitation. We �nd that the measures
computed from social connections to be promising predictors of
future cyber attacks.

8 CONCLUSION
Our work contributes towards the understanding the dynamics of
user connectivity in D2web forums, and extracting measures that
serve as predictors of cyber attacks. We use the task of predicting
the vulnerability likelihood of exploitation to demonstrate the value
of these measures. Our experimental results also suggest that these
measures produce models that generalize well when the ground
truth is biased.
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