
Automatic Data Extraction from Lists and Tables in Web Sources

Kristina Lerman1, Craig Knoblock1;2 and Steven Minton2

1. Information Sciences Institute
Univ. of Southern California

Marina del Rey, CA 90292-6695
2. Fetch Technologies

flerman,knoblock,mintong@isi.edu

Abstract

We describe a technique for extracting data from
lists and tables and grouping it by rows and
columns. This is done completely automatically,
using only some very general assumptions about
the structure of the list. We have developed a suite
of unsupervised learning algorithms that induce the
structure of lists by exploiting the regularities both
in the format of the pages and the data contained in
them. Among the tools used are AutoClass for au-
tomatic classification of data and grammar induc-
tion of regular languages. The approach was tested
on 14 Web sources providing diverse data types,
and we found that for 10 of these sources we were
able to correctly find lists and partition the data into
columns and rows.

1 Introduction
There is a tremendous amount of information available on-
line, but much of this information is formatted to be eas-
ily read by human users, not computer applications. Mod-
ern markup languages, like XML, have been advanced to
simplify the exchange of information between applications,
including software agents; however, XML is not yet in
widespread use, it will not help with the legacy data sources
not converted to the new standard, and even in the best
case it will only address the problem within application do-
mains where all interested parties can agree on the semantic
schemas. Until XML becomes ubiquitous, most users will
rely on the existing data extraction technologies, the most
popular of which are Web wrappers.

A wrapper is a piece of software that turns a Web source
into a source that can be queried as if it were a database.
The types of sources that this applies to are what are called
semistructured sources. The pages that come from such
sources have no explicit structure or schema, but have an im-
plicit underlying structure. Even text sources such as email
messages have some structure in the heading that can be ex-
ploited to extract the date, sender, addressee, title, and body
of the messages. Other sources, such as online catalogs,
have a very regular structure that can be exploited to ex-
tract the data. Extraction rules, which the wrapper uses to

identify the beginning and end of the data field to be ex-
tracted, form an important part of the wrapper. Quick and
efficient generation of extraction rules, so-called wrapper in-
duction, has been an active area of research in recent years [8;
9]. The most advanced of such wrapper induction systems use
machine learning techniques to learn extraction rules by ex-
ample. Using a graphical user interface a user marks up data
to be extracted on several pages from an online source, and
the system generates a set of extraction rules that accurately
extract the required information. The wrapper induction sys-
tem developed at USC [8; 11] is able to efficiently generate
extraction rules from a small number of examples. Moreover,
it can extract data from pages that contain lists, nested struc-
tures, and other complicated formatting layouts.

Figure 1: A fragment of a Web page containing a list. The
page was downloaded from the Borders Books web site.

Wrapper induction for sources containing lists and tables
presents a special challenge from the user interface point of
view. Consider a Web source, e.g., Borders Books (Figure 1),
which provides information about books for sale. The page in
the example contains two listings, each consisting of the title,
availability, author, format, year of publication, and price of
the book. The first listing also contains information about the
discount. In order to learn accurate extraction rules for data
from this source, the wrapper induction system requires that
the user label first, last and at least two consecutive listings.
Since this has to be done for several pages, the labeling task
quickly becomes tedious and time intensive. However, we
have certain expectations about the structure of lists and ta-

bles that we can exploit for automatic extraction of data from
such sources. For example, each column (e.g., author, avail-
ability) of a table usually contains the same type of data, and
each row corresponds to a tuple — e.g., (title, availability, au-
thor, format, year, price, savings) tuple describing the book —
that is repeated in different rows. Moreover, each list from the
Borders book site starts after the heading “In Stock/Available
for Advance Order” and ends before the string “Page 1 of
x—Result pages: x.”

In this paper we describe a technique for extracting data
from lists and tables and grouping it by rows and columns.
This is done completely automatically, using only some very
general assumptions about the structure of a list. Lists and
tables are alternate ways to present multiple sets of data, and
we won’t make a distinction between the two. Data on the
page is not always laid out in a grid-like pattern; however, it
is almost always arranged with a certain amount of regularity
we can exploit. For example, in the Borders page containing
book listings (see Fig. 1), the title of the book comes first,
followed by author, availability, price, followed by the next
listing, one listing or tuple per row. Moreover, the tuple el-
ements are arranged in the same order for each listing, so if
the author follows the title in one row, it usually follows the
title in all other rows. Likewise, we never expect the author
in a book listing to appear after the title of the next listing.
While these principles may not apply universally, we have
found them to be valid for most online sources we studied,
including airport listings, online catalogs, hotel directories,
etc. We tested our approach on 14 Web sources providing di-
verse types of data and found that for 10 of these sources we
were able to correctly find lists and partition the data on the
lists into columns and rows.

2 The Approach and Challenges
We have developed a suite of unsupervised learning algo-
rithms that induce the structure of lists by exploiting the regu-
larities both in the format of the pages and the data contained
in them. The list below describes the approach at a high level,
along with the learning techniques used at each step.

� Extract all data from lists

– Compute the page template and identify the list on
each page

– Compute a set of features (separators and content)
for each data extract

� Identify columns
Classification of data

� Identify rows
Grammar-induction on a sequence of class labels

We begin by tokenizing Web pages, that is, splitting the
text of the Web pages into individual words or tokens. We
analyze pages to find common structure. Many types of Web
sources, especially those that return lists, generate the page
from a template and fill it with results of a database query. For
example, Borders source in the figure above puts book listings
after the header “In Stock/Available for Advance Order.” By
comparing several pages, we are able to deduce the template
used to generate them and identify the section of the template

that contains the list. Next, we extract all data from the list. If
the HTML table has been carefully formatted, this step would
amount to extracting all visible text. However, in addition
to HTML tags, punctuation characters, such as the tilde in
the Borders example, are often used to separate data fields
(columns); therefore, we define a column/row separator as
a set of sequential HTML tags or any punctuation character
excluding the set “(-)’.%” (the choice of the excluded set is
discussed in Section 3.1). In the end, the extracted data are all
sequences of tokens that occur between separators. We refer
to these sequences of tokens as extracts.

As we mentioned above, we expect all data in the same
column to be of the same type, book price for instance, and
its content have the same or similar format. In addition to
content, layout features, such as separators, may be useful
hints for arranging extracts by columns. However, we can-
not rely solely on separators — the table may have missing
columns, separators before the first row and after the last
one may be different from those separating rows within the
list, etc. Likewise, we cannot rely solely on content — data
has a lot of variability, and our representation scheme, like
many others, may not be capable of fully capturing distinc-
tions between data. Rather than using each type of evidence
separately, we combine them by describing each extract by
a set of features that include the separators as well as fea-
tures that capture the content of data. We use AutoClass [6;
4] to cluster extracts. AutoClass is an unsupervised classi-
fication algorithm that finds the optimal number of classes
and the best assignment of extracts to classes. In the result-
ing assignment, each data type ends up in a separate class, or
column.

The final step of the analysis is to partition the list into
rows. Ideally, it should be easy to identify rows from the
class assignment, because a row corresponds to a tuple of
data, which is repeated for every row. However, real lists
and tables have missing columns, and AutoClass assignment
may include errors; therefore, identifying the repeated row
pattern is a non-trivial task. We use a grammar induction
algorithm for this task. Each list, or rather the sequence of
AutoClass-assigned column labels for the extracts in the list,
can be thought of as a string generated by a regular language,
which we try to learn from the examples of the language. The
language captures the repeated structure in the sequences that
corresponds to rows. We use this information to partition the
list into tuples.

The end result of the application of the suite of algorithms
is a complete assignment of data in the list to rows and
columns. It is possible to do a meta-analysis of the assign-
ment and fix any errors made along the way, but we have not
done so at this point.

3 Algorithms for Automatic Data Extraction
In this section we present details of the algorithms for auto-
matic data extraction. The input is a set of unlabeled Web
pages containing lists.

3.1 Finding the page template
During the tokenization step, the text of each Web page is
split into individual words, or more accurately tokens, and

each token is assigned one or more syntactic types [10], based
on the characters appearing in it. Thus, a token can be an
HTML token, an alphanumeric, or a punctuation token. If
it’s an alphanumeric token, it may also belong to one of two
categories: numeric or alphabetic, which is further divided
into capitalized or lowercased types, and so on. The syntactic
token hierarchy is described in [10].

Many Web sources use templates to automatically generate
pages and fill them with results of a database query. Given
two or more example pages from the same source, we can
induce the template used to generate them. Our template
finding algorithm looks for all sequences of tokens — both
HTML tags and text — that appear exactly once on each page.
The algorithm works in the following way: we pick the small-
est page in the set as the template seed. Starting with the first
token on this page, we grow a sequence by appending tokens
to it, subject to the condition that the sequence appears on ev-
ery page. If we managed to build a sequence that’s at least k
tokens long,1 and this sequence appears exactly once on each
page, it becomes part of the page template. Figure 2 contains
the details of the template finding algorithm.

If any of the lists contains more than two rows, the tags
specifying the structure of the list will not be part of the page
template, because they will appear more than once on that
page. We can use this to our advantage. We look for sections
of the page where these sequences of tokens appear more than
once, because that’s where we expect the list to be. The tem-
plate finding algorithm has the following pitfall: it can happen
that every list starts with exactly the same data; therefore, the
beginning of the list will be improperly included in the page
template. We can minimize this problem by including diverse
pages in the set.

Once we identify the section of the page that contains the
list, we extract all data from it. If the HTML table was care-
fully formatted, this step would amount to extracting all vis-
ible text. However, in addition to HTML tags, punctuation
characters are often used to separate data fields (columns);
therefore, we define a column/row separator as a set of se-
quential HTML tags or any punctuation character excluding
the set “.(-)’%”. The excluded set was chosen empirically.
Sometimes a dash (-) is a good separator, but for many fre-
quently encountered data types, such as phone numbers and
zip codes, dash is part of data and not a separator. Like-
wise, comma (,) is sometimes a separator (e.g., “123 Main St.,
Pasadena”) and sometimes part of data (e.g., in “1,000,000”),
though we generally chose to treat it as a separator. In princi-
ple, there should be a less ad hoc method for choosing separa-
tors, which will be the subject of future research. In the end,
we extract every sequence of text tokens between separators.

3.2 Identifying columns
We expect all data in the same column to be of the same
type, e.g., book prices; therefore, we may be able to identify
columns by grouping extracts by similarity of content. In ad-
dition to content, layout hints and separators, may be useful
evidence for helping arrange extracts by column. However,

1In our experiments, we have found that k = 3 worked best as a
minimum length for the page template element.

input:
P = set of N Web pages

output:
T = page template

begin
p = minimum(P)
T = null
s = null
for t = firsttoken(p) to lasttoken(p)

s0 = concat(s; t)
if (s0 appears on every page in P)
s = s0

continue
else
n =
PN

page=1 count(s, page)
if (n = N AND length(s)� 3)

add(s; T)
end if
s = null

end if
end for

end

Figure 2: Pseudocode of the template finding algorithm

we cannot rely on either type of evidence by itself. Most
methods for representing the content of data, including our
own, would be hard pressed to distinguish restaurant names
from cities. Likewise, examples of the same data type may
contain lots of variability and may be erroneously separated
into different columns. While we cannot, for the above rea-
sons, rely on content information when making column as-
signment, neither can we rely solely on separators. If the table
has missing columns, they will affect the separators surround-
ing visible data. In addition, separators before the first row of
the list and after the last row may be different from the ones
around the rows within the list. Rather than using either of the
two types of evidence alone, we decided to combine them by
describing each extract by a set of features that include both
the separators and those that capture the content of data.

Each unique separator is assigned an integer. Every extract
is described by a set of features, two of which are integers,
one for the separator that precedes the extract, and one for the
separator that immediately follows it. The content of data is
captured by the data prototype, or patterns of specific tokens
and syntactic token types that describe the common begin-
nings and ends of a set of examples of data [10]. For example,
a set of street addresses may be well described by the starting
pattern “NUMBER CAPS” and the ending pattern “Street”,
meaning that a significant fraction of addresses start with a
number followed by a capitalized word and end in the word
“Street.” The algorithm (DataPro) that learns the patterns that
describe data from positive examples of the field is presented
in reference [10].

Our first approach to computing content features was to
use all extracts as examples for DataPro. However, the al-
gorithm tended to overgeneralize by producing patterns that
describe more than one column, e.g., addresses and zip codes,

input:
X = set of data extracts from the list

output:
V = set of vectors describing extracts

begin
for each x in X

(Vx)1 = leftseparator(x)
(Vx)2 = rightseparator(x)

end for
C = cluster(V)
P = null
for each c in C

addpatterns(patterns(c), P)
end for

for each x in X
for i=firstpattern(P) to lastpattern(P)

if (matches(x, patterns(i; P))
(Vx)i+2 = 1

else
(Vx)i+2 = 0

end if
end for

end for
end

Figure 3: Pseudocode of the algorithm

which affected the subsequent performance of the classifica-
tion algorithm. Instead, we adopted a two-step approach, as
illustrated in Figure 3. First, we group the extracts by separa-
tors, so that the extracts that share at least one separator are in
the same cluster. This already does a decent job of separating
some of the extracts into columns, though many columns are
split among different clusters, and not every extract ends up
in a cluster. Extracts within a cluster belong to the same col-
umn, and we use the DataPro algorithm to learn the patterns
that describe each cluster. Next, we evaluate every extract to
see whether it is similar to any cluster. If any of the patterns
associated with the nth cluster describe the extract, the value
of the nth content feature is one; otherwise, it is zero. Thus,
there are as many binary content features as there are clusters.

The two types of evidence are expressed in different units;
therefore, standard clustering algorithms that use geometri-
cally based similarity measure (e.g., K-means) would not
be appropriate for this purpose. We use AutoClass [6;
4] instead to cluster the extracts. This tool gives us the flexi-
bility to combine different kinds of evidence: class instances
may be described by continuous, discrete, and binary values
at the same time. AutoClass is a mixture model-based unsu-
pervised classification algorithm that finds both the optimal
number of classes and the best (MAP-based) assignment of
extracts to classes. It has been used for automatic discovery
of classes in diverse data — from DNA to astronomical data
sets [4]. In the resulting assignment, each data type ends up
in a separate class, or column. Because it starts from a ran-
dom initial assignment which serves as a starting point for the
search for both the optimal number of classes and the model
that explains the distribution of instance values in each class,

AutoClass does not always converge on the same model of
data. Thus, it is necessary to run AutoClass several times
from different initial random assignments, and choose the
outcome that corresponds to the greatest classification like-
lihood.

3.3 Identifying rows
Finally, we want to find associations between the columns of
data by assigning data to tuples. If we anticipate using the
Web source in the future, it is more efficient to build a wrap-
per for it, rather than analyze pages each time information
from the source is required. In order to build a wrapper, we
need to label the first, last and several consecutive elements
of the list. The easiest way to guarantee that the required ele-
ments are labeled is to label every element of the list. It is for
this reason that we must break the list into rows.

Ideally, it should be easy to identify rows from the col-
umn assignment, because each row corresponds to a tuple of
data types, and the tuple is expected to be repeated in every
row. However, real lists and tables have missing columns, ad-
ditionally, AutoClass assignment may include errors; there-
fore, identifying rows is a non-trivial task. We use a gram-
mar induction algorithm to find the repeated cycles of col-
umn assignments that correspond to rows. If the extracts are
arranged sequentially as they appear in the list, the sequence
of their AutoClass-assigned column labels forms a string in a
language generated by a regular grammar. Our objective is to
learn this grammar from the example strings and to use it to
recognize the rows of the list.

Grammar induction, especially the identification of regu-
lar languages, has received a great amount of attention in the
past three decades [7; 1; 5]. Carrasco and Oncina proposed
an algorithm ALERGIA [2; 3] to learn grammars of stochas-
tic regular languages using a state-merging method. The ad-
vantages of ALERGIA is that it learns from a set of positive
examples of the languages alone; moreover, its performance
is polynomial, and indeed has been shown to be linear [2], in
the size of the example set. However, when there are few
examples, ALERGIA tends to produce overly complicated
grammars, because statistical significance judgments it uses
to learn the grammar are less reliable for small data sets. We
adapt a simplified version of ALERGIA to learn the regular
grammars associated with lists (Figure 4). Like ALERGIA,
we start by constructing a prefix-tree acceptor from the exam-
ple strings and proceed by merging pairs of equivalent nodes
until we arrive at the minimum finite state automaton (FSA)
consistent with the language. We examine nodes in the same
lexicographic order as ALERGIA; however, unlike ALER-
GIA, we merge two nodes, i and j, if their incoming arcs,
Æk;i(a) and Æl;j(a), correspond to the same symbol a and at
least one of the outgoing arcs, Æi;k(b) and Æj;l(b), from each
node correspond to the same symbol. We add an another level
of generalization by merging two nodes if they have an in-
coming arc with the same symbol, and one node is a parent
of the other, thereby creating a loop. After a pair of states is
merged, we determinize the FSA by making sure all descen-
dents have at most one outgoing transition corresponding to a
given symbol. The motivation for the state merging approach
is the following: if a column B follows column A and pre-

cedes column C in one row, it is likely to follow the same
pattern in other rows. Therefore, observing a sequence ABC
more than once constitutes evidence that it forms a pattern for
a row.

Finally, we extract all cycles from the merged FSA, where
each cycle corresponds to a sequence of columns that could
constitute a row. This step consists of finding all closed paths
through the FSA, i.e., paths that start and end at the same
node. Loops, or states that accept a symbol, let’s say A, but
stay in the same state are represented as A* in the cycle. As
in a regular language, this expression means that the symbol
A may be repeated any number of times in the language.

To partition the list into rows, we begin at the first symbol
of the sequence and find the longest cycle that matches the se-
quence starting with that symbol. After we find a match, we
move to the first unmatched symbol and repeat the procedure
for the remaining part of the sequence. Below are the tuples
automatically extracted from the list shown in Figure 1 af-
ter applying the algorithm to several pages from the Borders
book site.
(b)Daughter of Fortune
(a)In stock - ships in 24 hours
(c)Allende , Isabel
(c)Peden , Margaret Sayers
(f)Hardcover
(g)1999
(d)Our Price
(e)13 . 00
(h)You Save
(i)13 . 00 (50 %)

(b)Daughter of Fortune , Unabridged
(a)In stock - ships in 24 hours
(c)Allende , Isabel
(c)Peden , Margaret Sayers
(c)Brown , Blair
(f)Audio Cassette
(g)1999
(d)Our Price
(e)27 . 97

4 Results
We have validated our approach by applying it to extract data
from 14 Web information sources containing a wide variety
of data types. We randomly selected three or four pages
from each source, with the only requirement being that the
pages contain a list with at least two elements. We applied
the extraction algorithm to each set of pages and manually
checked whether the data from the list was partitioned cor-
rectly into tuples. The table in Fig. 5 summarizes the results.
The approach worked for 10 of the 14 sources, though for
one source, Yahoo stock quotes, the algorithm made a mis-
take with two of the 20 tuples. Conceivably, a meta-analysis
of the final tuple assignments would be able to catch and cor-
rect any errors contained in the preceding steps.

Our approach failed in four cases for the following rea-
sons. In one case (MapQuest) all three lists began with the
same data; therefore, the page template finding algorithm did

input:
S: set of example strings

output:
minimum FSA

begin
A = prefix tree acceptor from S
for j = successor(firstnode(A)) to lastnode(A)

for i = firstnode(A) to j
if compatible(i; j)

merge(A; i; j)
determinize(A)
exit(i-loop)

end if
end for

end for
return A

end main

COMPATIBLE(i, j)
input:

i, j nodes
output:

boolean
begin compatible

Æk;i = arc from node k to node i
Æi;m = arc from node i to node m
if symbol(Æk;i) = symbol(Æl;j) for some k and l

if symbol(Æi;m) = symbol(Æj;n) for some m and n
return true

end if
if i is parent of j

return true
end if

end if
end compatible

DETERMINIZE(A)
input:

FSA A
begin determinize

for i = firstnode(A) to lastnode(A)
for j = firstsuccessor(i) to lastsuccessor(i)

for (k = nextsuccessor(j) to lastsuccessor(i)
if symbol(Æi;j) = symbol(Æi;k)

merge(j; k)
determinize(A)

end if
end for

end for
end for

end determinize

Figure 4: Pseudocode of the grammar induction algorithm

source pages extracts columns classes result
airport 4 370 4 5 correct tuples
airport code,
location
Blockbuster 4 663 11 no tuples extracted
movies
Borders 4 186 9 9 correct tuples
books
Cuisinenet 3 535 17 15 no tuples extracted
restaurants
RestaurantRow 4 273 14 14 correct tuples
Yahoo people 3 126 8 8 correct tuples
whitepages
Yahoo quote 3 259 13 13 18/20 tuples correct
stocks
Whitepages 3 73 9 5 correct tuples
MapQuest 3 83 5 5 tuples begin in the
driving directions middle of the rows
hotel 4 163 6 6 correct tuples
CitySearch 4 204 4 6 correct tuples
restaurants
car rental 4 161 8+ 9 correct tuples
boston 4 174 4+ 6 correct tuples
restaurants
Arrow 3 366 10 no tuples extracted
electronic
components

Figure 5: Results of applying the automatic data extraction
algorithm to different Web sources.

not locate the correct start of list. In the three other cases,
the approach failed because the structure of the list and the
resulting FSA for these sources was too complex to extract
cycles. Our approach to breaking the list into rows by using
grammar induction is clearly not sufficient, and another ap-
proach or a modification of the grammar induction algorithm
is warranted.

5 Discussion

We have demonstrated that it is possible to accurately extract
data from semistructured Web pages containing lists and ta-
bles by exploiting the regularities both in the format of the
pages and the data contained in them. We have presented a
suite of algorithms that extract data from lists and tables and
automatically assign it to rows and columns. First, we assign
extracts to columns using AutoClass, an unsupervised classi-
fication algorithm, then a grammar induction algorithm finds
repeated patterns in the column assignments that correspond
to rows. The grammar induction may also correct some of
the mistakes made by the classification algorithm. It is possi-
ble to further analyze the assignment of extracts to tuples to
correct mistakes not caught in the preceding steps; however,
we have not done this step. We have been able to extract and
label data from lists with high accuracy for 10 out of the 14
sources to which we have applied our algorithm. Therefore,
we can easily create wrappers for these sources.

One limitation of our approach is that it requires several
pages to be analyzed before data can be extracted from a sin-
gle list. Often, we may have just a single page from a source.
Conceivably, there is enough structure in a single list for us to
exploit for the purposes of extraction. We are currently con-
sidering the extensions of our algorithm that will enable us to
extract data from a single list.

Acknowledgements
The research reported here was supported in part by the Rome
Laboratory of the Air Force Systems Command and the De-
fense Advanced Research Projects Agency (DARPA) under
contract number F30602-98-2-0109 and by the Air Force Of-
fice of Scientific Research under Grant Number F49620-01-
1-0053.

References
[1] D. Angluin. Identifying languages from stochastic ex-

amples. Technical Report YALEU/ DCS/RR-614, Yale
University, Dept. of Computer Science, New Haven,
CT, 1988.

[2] Rafael C. Carrasco and Jose Oncina. Learning stochas-
tic regular grammars by means of a state merging
method. In Rafael C. Carrasco and Jose Oncina, editors,
Proceedings of the Second International Colloqium on
Grammatical Inference and Applications (ICGI94), vol-
ume 862 of Lecture Notes on Artificial Intelligence,
pages 139–152, Berlin, September 1994. Springer Ver-
lag.

[3] Rafael C. Carrasco and Jose Oncina. Learning deter-
ministic regular grammars from stochastic samples in
polynomial time. RAIRO (Theoretical Informatics and
Applications), 33(1):1–20, 1999.

[4] P. Cheeseman and J. Stutz. Bayesian classification (AU-
TOCLASS): Theory and results. Advances in Knowl-
edge Discovery and Data Mining, 1996.

[5] E. A. Gold. Complexity of automaton identification
from given data. Information and Control, 37:302–320,
1978.

[6] J. Hanson,R., Stutz and P. Cheeseman. Bayesian classi-
fication theory. Technical report, NASA Ames TR FIA-
90-12-7-01, 1991.

[7] J. Hopcroft and J. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation. Addison-
Wesley, N. Reading, MA, 1980.

[8] Craig A. Knoblock, Kristina Lerman, Steven Minton,
and Ion Muslea. Accurately and reliably extracting data
from the web: A machine learning approach. Data En-
gineering Bulletin, 2001.

[9] N. Kushmerick, D. S. Weld, and R. B. Doorenbos.
Wrapper induction for information extraction. In
Intl. Joint Conference on Artificial Intelligence (IJCAI),
pages 729–737, 1997.

[10] Kristina Lerman and Steven Minton. Learning the com-
mon structure of data. In Proceedings of the 15=7th
National Conference on Artificial Intelligence (AAAI-
2000) and of the 10th Conference on Innovative Appli-
cations of Artificial Intelligence (IAAI-98), Menlo Park,
July 26–30 2000. AAAI Press.

[11] Ion Muslea, Steven Minton, and Craig A. Knoblock. Hi-
erarchical wrapper induction for semistructured infor-
mation sources. Autonomous Agents and Multi-Agent
Systems, 4:93–114, 2001.

