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ABSTRACT
Many Web sites, especially those that dynamically generate
HTML pages to display the results of a user’s query, present
information in the form of list or tables. Current tools that
allow applications to programmatically extract this infor-
mation rely heavily on user input, often in the form of la-
beled extracted records. The sheer size and rate of growth
of the Web make any solution that relies primarily on user
input is infeasible in the long term. Fortunately, many Web
sites contain much explicit and implicit structure, both in
layout and content, that we can exploit for the purpose of
information extraction. This paper describes an approach
to automatic extraction and segmentation of records from
Web tables. Automatic methods do not require any user
input, but rely solely on the layout and content of the Web
source. Our approach relies on the common structure of
many Web sites, which present information as a list or a
table, with a link in each entry leading to a detail page con-
taining additional information about that item. We describe
two algorithms that use redundancies in the content of table
and detail pages to aid in information extraction. The first
algorithm encodes additional information provided by detail
pages as constraints and finds the segmentation by solving a
constraint satisfaction problem. The second algorithm uses
probabilistic inference to find the record segmentation. We
show how each approach can exploit the web site structure
in a general, domain-independent manner, and we demon-
strate the effectiveness of each algorithm on a set of twelve
Web sites.

1. INTRODUCTION
The World Wide Web is a vast repository of information.
The amount of data stored in electronic databases accessi-
ble to users through search forms and dynamically gener-
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ated Web pages, the so-called hidden Web [26], dwarfs the
amount of information available on static Web pages. Un-
fortunately, most of this information is presented in a form
accessible only to a human user, e.g., list or tables that vi-
sually lay out relational data. Although newer technologies,
such as XML and the Semantic Web, address this problem
directly, only a small fraction of the information on the Web
is semantically labeled. The overwhelming majority of the
available data has to be accessed in other ways.

Web wrappers are popular tools for efficiently extracting in-
formation from Web pages. Much of the research in this
area over the last decade has been concerned with quick
and robust construction of Web wrappers [14], usually with
the help of machine learning techniques. Because even the
most advanced of such systems learn correct wrappers from
examples provided by the user, the focus recently has been
on minimizing the number of examples the user has to la-
bel, e.g., through active learning [21]. Still, even when user
effort is significantly reduced, the amount and the rate of
growth of information on the Web will quickly overwhelm
user resources. Maintaining wrappers so that they continue
to extract information correctly as Web sites change, re-
quires significant effort, although some progress has been
made on automating this task [18]. Heuristic techniques
that may work in one information domain are unlikely to
work in another. A domain-independent, fully automatic
solution that requires no user intervention is the Holy Grail
of information extraction from the Web. Despite the inher-
ent difficulty of the problem, there are general principles
and algorithms that can be used to automatically extract
data from structured web sites. In this paper, we present
new novel techniques that are applicable to a broad range
of hidden Web sources.

Extraction of records or tuples of data from lists or tables in
HTML documents is of particular interest, as the majority
of Web sites that belong to the hidden Web are presented in
this manner. Record extraction is required for a multitude
of applications, including web data mining and question-
answering. The main challenge to automatic extraction of
data from tables is the great variability in HTML table
styles and layout. A naive approach based on using HTML
<table> tags will not work. Only a fraction of HTML tables



are actually created with <table> tags, and these tags are
also used to format multi-column text, images, and other
non-table applications. The vast majority of HTML doc-
uments use non-standard tags to format tables, including
text separators, such as ~, to separate fields and <br> to
separate different items as well as fields. More sophisticated
automatic approaches to table recognition and information
extraction have been suggested which rely on the Document
Object Model [13] or regularities in HTML tags [8, 7]. These
approaches are not robust and will fail for some sites. It is
our experience that the variability in HTML tags is often too
great to rely on them for table recognition and information
extraction.

Fortunately, dynamically generated Web pages contain much
explicit and implicit structure, both in layout and content,
that we can exploit for purposes of automatic information
extraction. Previous approaches have focused on exploiting
structure within a page [17, 8, 1]; here we use the Web site’s
structure to improve information extraction.

Web sites belonging to the hidden Web have a surprisingly
uniform structure. The entry point is an HTML form for the
user to input her query. The result of the query is a list of
items or a collection of records from a database. The results
are usually displayed as a list or a table on an automatically
generated page. We call such a results page the list page.
Each item or record often has a link to a detail page that
contains additional information about that entry. Detail
pages are also generated automatically and populated with
results of database queries. Some of the item attributes are
likely to appear on the list page as well as on the detail page.

As others have noted, there is important structure in the
layout of the list page: some HTML tags are used to sep-
arate records, and other HTML tags or text symbols are
used to separate columns. In addition to similarities in lay-
out, we expect similarities in the content of data: data in
the same column should be of the same type, name or phone
number for instance. Of course, the underlying structure of
real world data may not be immediately clear: an item may
have missing columns; column separators may be different,
depending on whether the attribute value is present or miss-
ing, or attribute values may be formatted in different ways;
a data field may have a lot of variability that we are not able
to capture if we assume a uniform layout for each row.

In this paper we propose methods that allow us to efficiently
segment data on the list page into records using information
contained in detail pages. We describe two approaches:
one formulates the task as a constraint satisfaction problem
(CSP) and the other uses a probabilistic inference approach.
Both techniques exploit the additional information provided
by the overlap in the content between list and detail pages.
The idea we are trying to leverage is the fact that each
detail page represents a separate record. The constraint
satisfaction-based technique encodes the relations between
data found on the list and detail pages as logical constraints.
Solving a constraint satisfaction problem yields a record seg-
mentation. In the probabilistic approach, the information
provided by detail pages is used to learn parameters of a
probabilistic model. Record segmentation is the assignment
of attributes to records that maximizes the likelihood of the

data given the model. In addition to computing the record
segmentation, the probabilistic approach produces a map-
ping of data to columns.

The approaches we describe are novel, in that unlike many
other techniques, they rely on the content of Web pages
rather than their layout (i.e., tags). The number of text
strings on a typical Web page is very small compared to the
number of HTML tags; therefore, inference algorithms that
rely on content will be much faster than the algorithms that
use layout features. Both of our approaches are fully auto-
matic, domain independent and unsupervised, i.e., they do
not require any training or user-labeled data. We have vali-
dated both methods on 12 sites from diverse information do-
mains, including white pages, property tax and corrections
domains. Despite the great variability in the appearance,
presentation, and data across these sites, both approaches
performed quite well.

2. RELATED WORK
Several researchers have addressed the problem of detecting
tables in Web and plain text documents and segmenting
them into records.

2.1 Table Extraction from HTML Documents
Existing approaches to extracting table data from Web doc-
uments can be classified as heuristic or machine learning.
Heuristic approaches to detecting tables and record bound-
aries in Web documents include using the Document Ob-
ject Model (DOM) and other features [13] to identify tables.
Domain-specific heuristic rules that rely on features such as
percent signs and date/time formats have also been tried
successfully [5].

Machine-learning approaches learn a model of data from
a set of labeled training examples using hand-selected fea-
tures. Borkar et al. [3] use multiple heuristic features, in-
cluding domain-specific controlled vocabularies, to learn a
Hidden Markov-based probabilistic model from a set of train-
ing examples. Hurst [11] trained a Naive Bayes classifier,
while Wang et al. [29] describe a domain-independent clas-
sifier that uses non-text layout features (average number
of columns/rows, average cell length and consistency) and
content features (image, form, hyperlink, alphabetic, digit,
others). The classifier achieves good performance after be-
ing trained on thousands of labeled examples. In a related
work, Wang et al. [31, 30] optimizes whole page segmen-
tation probability over spatial layout features, much as it
is done in document image analysis, to find correct tables
in Web documents. Cohen et al. [6] present another exam-
ple of an approach that combines alternate representations,
text, DOM and non-text layout features, with a learning
algorithm to improve the wrapper learning process. These
methods require many training examples in order to learn a
useful model of data.

Clearly, the methods listed above suffer from being domain-
specific or requiring user-labeled training examples. Re-
cently, several unsupervised learning approaches, which re-
quire no training examples, have been investigated. Yoshida
[32] automatically recognized table structures on the basis of
probabilistic models where parameters are estimated using
the Expectation Maximization algorithm. This approach



was validated on two domains on the information extrac-
tion and integration task with 78% accuracy.

The RoadRunner system [8, 7] automatically extracts data
from Web sites by exploiting similarities in page layout. The
premise behind the system is that many Web pages are gen-
erated by a grammar, which can be inferred from exam-
ple pages. Thus, RoadRunner can learn the table template
and use it to automatically extract data from the Web site.
RoadRunner’s authors focus on a subclass of Web pages that
can be generated by union-free grammar and describe the
algorithm to learn the grammar. The learning algorithm
is exponential, and further simplifications are necessary to
keep it computationally tractable. Although the RoadRun-
ner system uses an elegant approach and method for auto-
matic extraction of data, its applicability is limited, because
union-free grammars do not allow for disjunctions, and dis-
junctions appear frequently in the grammar of Web pages.
Disjunctions are necessary to represent alternative layout
instructions often used by Web sites for a same field. Our
approach, in contrast, is able to handle disjunctions.

Chang & Lui [4] present an algorithm based on PAT trees
for detecting repeated HTML tag sequences that represented
rows of Web tables. They then apply the sequences to au-
tomatically extract data from Web search engine pages. Al-
though they show good performance in this domain, search
engine pages are much simpler than HTML pages containing
tables that are typically found on the Web. We have tried a
similar approach and found that it had limited utility when
applied to most Web pages. Other recent layout-based au-
tomatic extraction algorithms, such as [1], have been shown
to work well on detail pages, but cannot handle lists.

2.2 Table Extraction from Plain Text
Automatic table extraction from plain text documents is a
line of research parallel to the work on HTML table extrac-
tion. There are differences between plain text and HTML
tables that make the two fundamentally different problems.
Plain text documents use white space and new line for the
purpose of formatting tables: new lines are used to sepa-
rate records and white spaces are used to separate columns,
among other purposes. Record segmentation from plain text
documents is, therefore, a much easier task. Closely linking
format and content in plain text documents also gives rise to
new challenges. In plain text tables, a long attribute value
that may not fit in a table cell will be broken between two
lines, creating a non-locality in a text stream. An auto-
matic algorithm will have to associate part of a string with
another string that will appear arbitrarily later in the text
stream. This problem does not usually arise in HTML doc-
uments. On the other hand, HTML tables vary widely in
their layout and formatting conventions, making it difficult
to rely on any set of features to be good row or column sep-
arators. Although one may employ the same set of tools for
extracting from HTML and plain text tables, specialized al-
gorithms that address the conventions of each domain may
outperform a general algorithm.

Despite these differences, a similar variety of techniques has
been used in table extraction from plain text and for HTML
documents, from heuristic rules [12] to machine learning al-
gorithms that learn a feature or a combination of features

that predict a table and its elements [22, 23]. Pyrredy et
al. [24] propose a unique approach that uses structural fea-
tures, such as alignment of characters on a page, to identify
the tables and its main elements. As we do, Pinto et al. [23]
capitalize on recent developments in probabilistic models,
and examine their use in extracting tables from plain text
documents and identifying their structure. The authors are
interested in identifying header and data rows, not in seg-
menting data into individual records and attributes. Their
probabilistic models are trained on user-labeled examples
using a feature set that includes white space, text and sep-
arator features. White spaces are used heavily to format
tables in plain text documents. In HTML documents, on
the other hand, white space is almost never used for this
purpose. Although their methods may, in principle, work
for HTML pages, the authors have not applied them for
this purpose. It is likely that they will need a wide vari-
ety of training examples to capture the range of variability
in Web documents. Our approach, in contrast, requires no
training data.

3. OVERVIEW OF THE PROBLEM
In this section we give an overview of the problem of record
extraction and segmentation using the structure of a Web
site to aid in extraction. As we discussed above, many Web
sites that present information contained in databases follow
a de facto convention in displaying information to the users
and allowing them to navigate it. This convention affects
how the Web site is organized, and gives us additional in-
formation we can leverage for information extraction. Such
Web sites generate list and detail pages dynamically from
templates and fill them with results of database queries. Fig-
ure 1 shows example list and detail pages from the Verizon
Superpages site. The Superpages site allows customers to
search over 16 million yellow page listings and a national
white pages database by name, phone number or business
type. As shown in the figure, the results returned for a
search include the fields, name, address, city, state, zip and
phone. Here the text “More Info” serves as a link to the de-
tail page. Note that list and detail pages present two views
of the record. Using automatic techniques, we can poten-
tially combine the two views to get a more complete view of
the record. For example, maps of the addresses are shown
on the detail pages in Figure 1, but absent from the list
pages.

We envision an application where the user provides a pointer
to the top-level page — index page or a form — and the sys-
tem automatically navigates the site, retrieving all pages,
classifying them as list and detail pages, and extracting
structured data from these pages. We are already close to
this vision [19]. The current paper addresses the techni-
cal issues involved in the problem of structured information
extraction from list pages.

3.1 Page Templates
Consider a typical list page from a Web site. As the server
constructs the list page in response to a query, it generates a
header containing the company logo, followed in most cases
by an advertisement, then possibly a summary of the re-
sults, such as ‘‘Displaying 1-10 of 214 records.’’, ta-
ble header and footer, followed by some concluding remarks,
such as a copyright information or navigation aids. In the



Figure 1: Example list and detail pages from the Superpages site (identifying information has been removed
to preserve confidentiality).

above example, the header includes Results, 3 Matching

Listings, Search Again and the associated HTML. The
footer includes advertisement and navigational links. We
call this part of the page the page template. The page tem-
plate of a list page contains data that is shared by all list
pages and is invariant from page to page. A different page
template is used to generate detail pages. As the server
writes out records to the table, it uses a table template.
This template contains layout information for the table,
that is the HTML tags or ASCII characters used to sep-
arate columns and rows, or format attribute values.

Given two, or preferably more, example list pages from a
site, we can derive the template used to generate these pages
and use it to identify the table and extract data from it. The
process starts with a set of list pages from a site and a set
of detail pages obtained by following links from one of the
list pages. The pages are tokenized — the text is split into
individual words, or more accurately tokens, and HTML es-
cape sequences are converted to ASCII text. Each token is
assigned one or more syntactic types [16, 18], based on the
characters appearing in it. The three basic syntactic types
we consider are: HTML, punctuation, and alphanumeric. In
addition, the alphanumeric type can be either numeric or al-
phabetic, and the alphabetic can be capitalized, lowercased
or allcaps. This gives us a total of eight (non-mutually ex-
clusive) possible token types. A template finding algorithm
(e.g., one described in [1, 18]) is used to extract the main
page template.

Slots are sections of the page that are not part of the page
template. If any of the tables on the pages contain more

than two rows, the tags specifying the structure of the table
will not be part of the page template, because they will
appear more than once on that page. Likewise, table data
will also not be part of the page template, since it varies
from page to page. Therefore, the entire table, data plus
separators, will be contained in a single slot. Considering
that tables usually contain a significant amount of data, we
use a heuristic that the table will be found in the slot that
contains the largest number of text tokens.

3.2 Data Extraction
Next, we extract data from the table. We do this simply
by extracting, from the slot we believe to contain the ta-
ble, the contiguous sequences of tokens that do not con-
tain separators. Separators are HTML tags and special
punctuation characters (any character that is not in the
set “.,()-”). Practically speaking, we end up with all vis-
ible strings in the table. We call these sequences extracts,
E = {E1, E2, . . . , EN}. These are the attribute values that
the records in the table contain, and possibly some extra-
neous data, such as “More Info”, “Send Flowers” as shown
in Figure 1. Our goal is to segment these extracts into indi-
vidual records.

The CSP and probabilistic approaches share the same basic
premise: detail and list pages present two views of the same
record and each detail page corresponds to a distinct record.
The labels for detail page are: {r1, r2, . . . , rK}.

For each extract Ei, we record all detail pages on which it



was observed, Di.
1 The extracts are checked in the order

they appear in the text stream of the list page. If an extract
appears in all the list pages or in all the detail pages, it is
ignored: such extracts will not contribute useful information
to the record segmentation task.

The methods presented below are appropriate for tables that
are laid out horizontally, meaning that the records are on
separate rows. A table can also be laid out vertically, with
records appearing in different columns; fortunately, few Web
sites lay out their data in this way. In horizontally laid out
tables, the order in which records appear in the text stream
of the page is the same as the order in which they appear in
the table. In other words, any attribute of the second record
will appear in the stream after all the attributes of the first
record and before any of the attributes of the third record
have been observed.

Table 1 is an example of a table of observations of extracts
on detail pages from the Superpages site (see Figure 1).2

The columns correspond to extracts and they are displayed
in the order they appear on the list page.

As can be seen from the table, the same extract can ap-
pear on multiple detail pages. In the Superpages site, for
example, several people may have the same name or the
phone number. Note that only the extracts or record at-
tributes that appear in both the list and detail pages are
used. There may be other potential attributes, but if they
do not appear on any of the details pages, they will not be
considered in the analysis. This works to our advantage by
reducing the need to precisely identify the table slot.

3.3 Record Segmentation
Extracts common to list and detail pages give us an ad-
ditional source of information that we can use to segment
data into individual records. An extract (attribute value)
belongs to a record only if it appears on the detail page
corresponding to that record. The same extract cannot be
assigned to more than one record or more than once to the
same record. Thus, in the table above, we can use these
rules to assign E1, E2, E3 and E4 to the first record, and
E5, E6, E7 and E8 to the second record, as shown in Table 2,
even though E1 and E4 appear in both records. These rules
can be easily encoded in both the CSP and the probabilistic
framework. Solving this problem yields an assignment of
data to records.

3.4 Column Extraction
The probabilistic model is more expressive than the CSP. In
addition to record segmentation, we can learn a model for
predicting the column of an extract, based not only on its
token type, but also on the neighboring columns. We can
learn a probabilistic model of the data given the column la-
bel: i.e., first attribute of the record is of alphabetic type,
the second a numeric type, etc. The inference algorithm es-
timates parameters of the model from the observations of

1The string matching algorithm ignores intervening separa-
tors on detail pages. For example, a string “FirstName Last-
Name” on list page will be matched to “FirstName <br>
LastName” on the detail page.
2All identifying information has been changed to preserve
anonymity.

extracts on details pages. The parameters are then used to
find a column assignment that maximizes the total prob-
ability of the observations given the model. The column
labels will be L1, . . . , Lk (we can find k by the longest po-
tential sequence of ri in the data). To provide them with
more semantically meaningful labels, we can use other auto-
matic extraction techniques, such as those described in the
Roadrunner system [2].

4. A CSP APPROACH TO RECORD SEG-
MENTATION

CSPs are stated as logical expressions, or constraints, over
a set of variables, each of which can take a value from
a finite domain (Boolean, integer, etc.). The case where
the variables and logical formulas are boolean is known as
Boolean satisfiability, the most widely studied area of CSP.
In a pseudo-boolean representation, variables are 0-1, and
the constraints can be inequalities. The CSP problem con-
sists of finding the value assignment for each variable such
that all constraints are satisfied at the same time. When
constraints are inequalities, the resulting problem is an op-
timization problem.

4.1 Structure Constraints
We encode the record segmentation problem into pseudo-
boolean representation and solve it using integer variable
constraint optimization techniques. Let xij be the assign-
ment variable, such that xij = 1 when extract Ei is assigned
to record rj . and xij = 0 when the extract Ei is not part
of the record rj . The assignment of extracts to records will
look something like the table in Table 2. Blank cells in table
correspond to xij = 0. By examining this table, we see that
there are two logical constraints it makes sense to impose
on the assignment variables. First, there has to be exactly
a single “1” in each column of the assignment table. This is
the uniqueness constraint.

Uniqueness constraint: Every extract Ei belongs to ex-
actly one record rj .

Mathematically, the uniqueness constraint can be stated as∑
j xij = 1. If necessary, we can make the constraint less

rigid by requesting that every extract appear in at most one
record. The relaxed constraint can be written as

∑
j xij <=

1.

The assignment table, Table 2, suggests a second constraint,
what we call the consecutiveness constraint.

Consecutiveness constraint: only contiguous blocks of
extracts can be assigned to the same record.

These constraints can be expressed mathematically in the
following way: xij + xkj ≤ 1 when there is n, k < n < i,
such that xnj = 0. In other words, we cannot assign extract
E1 in Table 1 to r2 along with extracts E4, E5, and E6

because neither E2 nor E3 can be assigned to r2. A better
choice is to assign E1 E2 E3 E4 to r1 and E5 E6 E7 E8 to
r2.



E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

John 221 Wa New (740) John 221R Wa Wash (740) George W. Findlay, (419)

Smith ington... Holland... 335-5555 Smith shington... ington... 335-5555 Smith OH... 423-1212

Di r1,r2 r1 r1 r1,r2 r1,r2 r2 r2 r1,r2 r3 r3 r3

Table 1: Observations of extracts on detail pages Di for the Superpages site

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

John 221 Wa New (740) John 221R Wa Wash (740) George W. Findlay, (419)

Smith ington... Holland... 335-5555 Smith shington... ington... 335-5555 Smith OH... 423-1212

r1 1 1 1 1
r2 1 1 1 1
r3 1 1 1

Table 2: Assignment of extracts to records

The observations and assignment tables are closely linked.
If extract Ei was not observed on detail page rj (rj �∈ Di),
then xij = 0, in other words, Ei cannot be assigned to rj .
If Ei was observed on detail page rj , then xij is either 1
or 0. The constraints on the assignment variables can be
easily written down from the observations data. For the
Superpages site data shown in Table 1 the uniqueness and
consecutiveness constraints are written below:

x11 + x12 = 1 x11 + x81 <= 1

x21 = 1 x21 + x81 <= 1

x31 = 1 x31 + x81 <= 1

x41 + x42 = 1 x31 + x81 <= 1

x51 + x52 = 1 x41 + x81 <= 1

x62 = 1 x12 + x42 <= 1

...
...

4.2 Position Constraints
Detail pages present another source of constraints we can
exploit, because in addition to the occurrence of an extract
on a page, they provide information about the position of
that extract. This information is summarized in Table 3 for
the Superpages site. The horizontal rows are the positions
on page j (e.g., token number of the starting token) where
the extracts were observed. Note that in Table 3 the first
four positions are from detail page r1, while the next four
are from r2. If extract Ei was observed in position posj

k(Ei)
on detail page rk, the (i, j) cell in table has an entry “1”;
otherwise, it is empty. It is clear that no two extracts as-
signed to the same record can appear in the same position
on that page. The collorary is: if two extracts appear in the
same position on the detail page, they must be assigned to
different records. We express it more formally as

Position Constraint: if posj(Ei) �= posj(Ek), then Ei and
Ek cannot both be assigned to rj

In the example in Table 3, the position constraints are

x11 + x51 = 1

x12 + x52 = 1

x41 + x81 = 1

...

These constraints can also be relaxed to produce inequali-
ties.

After we have constructed the uniqueness, consecutiveness
and position constraints on the assignment variables for a
particular Web page, we solve them using WSAT(OIP) [27],
an integer optimization algorithm [28]. The solution is the
assignment of extracts to records. Results are presented in
Section 6.

5. A PROBABILISTIC APPROACH
TO RECORD SEGMENTATION

An alternate approach is to frame the record segmenta-
tion and extraction task as a probabilistic inference prob-
lem. Common probabilistic models for information extrac-
tion include hidden Markov models (HMMs) [25], and con-
ditional random fields (CRFs) [15, 23]. In these approaches,
a labeled training set is provided and the model is learned
using standard probabilistic inference techniques; because
the state is hidden, the common approach to learning the
models is to use the expectation maximization (EM) algo-
rithm. While these approaches have their computational
limitations, they have been applied successfully to a wide
range of problems beyond information extraction including
speech recognition and robot navigation.

Unfortunately, here we are faced with a more challenging
problem. We do not have a labeled training set to start
from. The key to our success will be to:

Factor: We will factor the state space and observation
set of the HMM to allow for more efficient learning
(because fewer parameters will be required).

Bootstrap: We will use the information from the detail
pages to help bootstrap the learning algorithm. The
constraints from the detail extracts will provide useful
information that can keep our learning algorithm on
track.

Structure: We will use a hierarchical model to capture
global parameters such as the length of the record, or
the period, to make our inference more tractable. Note
that while there is a global record length, the record
lengths of the individual records may vary; for some
records not all columns will be presented.



E1 E2 E3 E4 E5 E6 E7 E8

pos730
1 1 1

pos772
1 1

pos812
1 1

pos846
1 1 1

pos536
2 1 1

pos578
2 1 1

pos608
2 1

pos642
2 1

Table 3: Positions of extracts on detail pages. Entry of 1 means extract Ei was observed at position k on
page j (posk

j ).

Ti-1Ti-1

Di-1Di-1

Ci-1Ci-1

Si-1Si-1

Ri-1Ri-1

TiTi

DiDi

CiCi

SiSi

RiRi

… …

Figure 2: A probabilistic model for record extrac-
tion from list and detail pages.

We begin by describing the probablistic model that we will
use (Section 5.1), then describe how the model is used to do
record segmentation. (Section 5.2).

5.1 Probabilistic Model for Record Extraction
Figure 2 shows a graphical model representation for our
problem. The basic variables in the model are the following:

T = {T1, . . . , Tn}: token types of extract Ei. Examples
of token types are alphanumeric, capitalized, punctu-
ation, as described earlier. We have 8 token types, so
each Ti is represented as a vector Ti1 , Ti2 , . . . , Ti8 .

D = {D1, . . . , Dn}: record numbers of the detail pages
Di ⊆ 1, . . . ,K on which Ei occurred.

The above variables are observed in our data — given a list
and set of detail pages, we can compute the values for the
above variables.

In addition, we have the following set of unobserved vari-
ables:

R = {R1, . . . , Rn}: the record number of the extract. We
assume these range from 1 . . .K (these correspond to
detail pages).

C = {C1, . . . , Cn}: the column label of the extract. We
assume these range from L1, . . . , Lk (a bound on this
is the largest number of extracts found on a detail
page).

S = {S1, . . . , Sn}: Si is true if Ei is the start of a new
record, false otherwise.

Of course, in addition to the variables, our model describes
the dependencies between them. Rather than using the stan-
dard HMM representation, we use a factored representation
[10, 20], which allows us to more economically model (and
learn) the state transition probabilities. We have defined
the factored structure of the model, as shown in Figure 2.
Arrows indicate probabilistic dependencies. In some cases
these dependencies are deterministic — for example if an
extract appears on only one detail page, then we know the
record to which it belongs. In other cases the dependencies
are probabilistic — for example, the starting token type of a
column might usually be a capitalized string, but occasion-
ally will be an HTML tag. Here, we assume the structure of
the dependencies (and where reasonable, the functional form
for the dependencies) and we will learn the probabilities for
the model using our observed data.

Our model assumes the following dependencies:

P (Ti|Ci): The token type for extract i depends on the
column label. For example, for the name field, the
token type is likely to be capitalized token, but this is
a probabilistic relationship.

P (Ci|Ci−1): The column label for extract i depends on the
column label of the previous column. For example, the
address field is likely to follow the name field. Note
that because the token type in turn depends on the
column label, it will also provide information to help
us determine the column label. For example, if the
previous column label is name, and the current token
is numeric, we may think the column label address is
most likely. However if the token is all-caps, we might
think the column label is more likely to be state. Note
that while we used the values name and address above,
we really only have the column labels L1, . . . , Lk. As
mentioned earlier, we may be able to automatically
create semantically meaningful names for them using
other automatic extraction techniques.

P (Si|Ci): Si, whether extract i starts a new record, de-
pends on the column label. It turns out that while later
columns may be missing from a record, in all of the do-
mains that we have examined the first column, which
usually contains the most salient identifier, such as the
Name, is never missing. This allows us to make a very



useful simplification: rather than needing to learn the
transition probabilities for the data, it makes sense to
assume a deterministic relationship: P (Si = true|Ci =
L1) = 1.0 and P (Si = true|Ci = Lj , j �= 1) = 0. Note
that since Ci is not observed, in order to do segmenta-
tion we will still need to do probabilistic inference to
compute Ci.

P (Ri|Ri−1, Di, Si): The record number for extract i will
depend on the record number of the previous extract,
whether or not Si is the start of a new record, and
Di, the detail pages on which Ei has been observed.
In general, this is a deterministic relationship: if Si is
false, then P (Ri = Ri−1) = 1.0 and if Si is true, then
P (Ri = Ri−1 + 1) = 1.0 However Di also constrains
Ri. Ri must take one of the values of Di.

The task of record segmentation boils down to finding values
for the unobserved R and C variables. As is commonly
done in probabilistic models for sequence data, we compute
maximum a posteriori (MAP) probability for R and C and
use this as our segmentation:

arg maxP (R,C|T,D)

Because we are assuming a Markov model, we can write:

P (R,C|T,D) =
n∏

i=1

P (Ri, Ci|Di, Ti, Ri−1, Ci−1)

and using the structure of the graphical model above, this
simplifies to:

P (R,C|T,D) =

n∏

i=1

∑

Si

P (Ri|Di, Si)P (Si|Ci)P (Ci|Ti)

5.2 Learning the Model
At this point, we could apply a standard off-the-shelf prob-
abilistic inference algorithm to learn the model parameters
and to make the appropriate inferences. Unfortunately, our
model is so unconstrained, we would have little luck inferring
anything useful. We will use two ideas: bootstrapping and
structure to make successful inferences.

5.2.1 Bootstrapping
The key way in which information from detail pages helps
us is it gives us a guide to some of the initial Ri assignments.
It turns out this little bit of information can be surprisingly
informative.

Recall that Di is the set of detail pages on which extract Ei

occurs. This provides invaluable evidence for the record
assignment for Ri. We make use of this information by
setting:

P (Ri = ri) =
1

|Di|
and P (Ri = ri) = 0) for all ri �∈ Di.

In addition, we make the following initial assumptions for
the parameters of the model: P (Tij = true|Ci) = 1/8, in
other words, without observing any of the data, we assume
that the probability of a token type occurring, given the
column, is 1/8. Note that this does not preclude an extract

ππ

Ti-1Ti-1

Di-1Di-1

Ci-1Ci-1

Si-1Si-1

Ri-1Ri-1

πjπj

TiTi

DiDi

CiCi

SiSi

RiRi

… πj-1πj-1 …

… …

Figure 3: A probabilistic model for record extrac-
tion from list and detail pages which includes a
record period model π.

being of more than one token type. While we begin with
this uniform assumption, we will be updating the model
parameters as we go along, so the parameters will quickly be
updated in accordance with the frequency that we observe
the different tokens and column labels.

We also make use of the Di to infer values for Si. If Di−1 ∩
Di = ∅, then P (Si = true) = 1. As a simple example, if
extract i only appears on detail page j and extract i − 1
only appears on detail page j − 1, then Si = true.

5.2.2 Structure
Besides the information from the detail pages, another im-
portant piece of information we can make use of is the record
length, or the period π of the table; π is the number of
columns in the table. Recall, however, that not every record
will have all π columns. Instead, for each record rj , there
will be an associated πj , which is the number of fields in
record j. This approach allows for missing fields in a record
— a common occurrence in Web data.

One way of allowing this is simply to make use of the Si.
If Si = true and Ri = j and Si′ is the next record start
indicator that is true, then we can simply compute πj =
i−i′. But this fails to capture the correlations among record
lengths. In our example, there are 4 fields possible in a full
record, perhaps most often we will have all 4 fields, Name,
Address, City, Phone, but another common occurrence is to
just have the 3 fields Name, City and Phone. We want to be
able to learn this. Now, the columns Ci will be conditioned
on the corresponding πj . We can learn for example that
Ci = City is much more likely if πj = 3 (and Ci−1 = Name).

The difficulty here is that until we know the correspondence
of extract i to rj ; we do not even know which πj to depend
on. This could make inference even more complex. It turns
out however, that there are only a small number of possi-
bilities, so this is in fact feasible. Furthermore this more
complex model does in fact give us improvements in accu-
racy. Figure 3 shows a graphical model representation of
the updated model.



5.2.3 Implementation
We use EM to implement the probabilistic inference algo-
rithm. We have developed a variant of the forward-backward
algorithm that exploits the hierarchical nature of the record
segmentation problem. By explicitly modeling the period
probabilities, we can constrain the structure of the model
and in turn use this structure to guide the inference pro-
cess.

The basic components of the algorithm are:

1. Compute initial distribution for the global period π
using the current values for the Si. Because of the
constraints the detail pages offer, our initial Si will
provide us with some useful information for π.

2. Now, having updated π, we compute the πk for each
record j.

3. For each potential starting point and record length, we
update the column start probabilities, P (Ci|Ti, Ci−1).

4. Next we update P (Si|Ci).

5. And finally we update P (Ri|Ri−1, Di, Si)

In the end we output the most likely assignment to R and
C. This gives us the segmentation for the list page. While
in theory, the running time of this algorithm is potentially
exponential in the length of the extract sequence, by using
the period probabilities to structure the inference we get
enormous savings. In practice the algorithm is very efficient
and took just a few seconds to run on each of our test cases.

6. RESULTS
We now present results of automatic segmentation of records
using the CSP and probabilistic approaches described in the
sections above.

6.1 Experimental Setup
The data set consisted of list and detail pages from 12 Web
sites in four different information domains, including book
sellers (Amazon, BNBooks), property tax sites (Buttler,
Allegheny, Lee counties), white pages (Superpages, Y ahoo,
Canada411, SprintCanada) and corrections (Ohio, Min-
nesotta, Michigan) domains. From each site, we randomly
selected two list pages and manually downloaded the detail
pages. In this work, we were not concerned with the task
of automatically determining detail pages. In fact, there are
often other links from the list page that point to advertise-
ments and other extraneous data. Such data may or may
not influence the segmentation results. In future work, we
will attempt to automate detail page identification. One ap-
proach is to use heuristic rules, such as “follow links in the
table” or “follow a link whose text field is More Info.” Alter-
natively, one can download all the pages that are linked on
the list pages, and then use a classification algorithm [9, 19]
to find a subset that contains the detail pages only. The de-
tail pages, generated from the same template, will look sim-
ilar to one another and different from advertisement pages,
which probably don’t share any common structure.

In addition to displaying different data, the pages varied
greatly in their presentation and layout. Some used grid-

like tables, with or without borders, with easily identifi-
able columns and rows. Others were more free-form, with
a block of the page containing information about an item,
followed by another block containing information about an-
other item. Within the block, attributes could appear in
separate columns, rows, or in a formatted table. The en-
tries could be numbered or unnumbered. Commercial sites
had the greatest complexity and more likely to be free-form
than government sites.

The CSP and probabilistic algorithms were exceedingly fast,
taking only a few seconds to run in all cases.

6.2 Evaluation
Table 4 shows results of automatic record segmentation for
these 12 sites using two different approaches, probabilistic
and constraint satisfaction. Both approaches share a com-
mon step, the page template finding algorithm. In cases
where the template finding algorithm could not find a good
page template, we have taken the entire text of the list page
for analysis. Only the strings that appeared on both list and
detail pages were used in record segmentation. The rest of
the table data are assumed to belong to the same record as
the last assigned extract. The reason for this is that each
row of the table usually starts with the most important at-
tribute, such as the name or ID number. This attribute will
almost always appear on the detail page as well.

We manually checked the results of automatic segmentation
and classified them as correctly segmented (Cor) and in-
correctly segmented (InCor) records, unsegmented records
(FN) and non-records (FP). Precision and recall are defined
below. We used the F measure to gauge the accuracy of the
task.

P = Cor/(Cor + InCor + FP )

R = Cor/(Cor + FN)

F = 2PR/(P + R)

We calculated P = 0.74, R = 0.99 and F = 0.85 for the
probabilistic approach and P = 0.85, R = 0.84 and F =
0.84 for the CSP approach. This is an exceedingly good
performance for automatic algorithms. Using heuristics, as
described below, we can further improve on the results.

6.3 Discussion
Each approach has its benefits and drawbacks, which make
them suitable in different situations. The CSP approach
is very reliable on clean data, but it is sensitive to errors
and inconsistencies in the data source. One such source
of data inconsistency was observed on the Michigan correc-
tions site, where an attribute had one value on the list pages
and another value on the detail pages. This by itself is not
a problem; however, the list page string appeared on one
detail page in an unrelated context. The CSP algorithm
could not find an assignment of the variables that satisfied
all the constraints. The probabilistic approach, on the other
hand, tolerates such inconsistencies and is more expressive
than the CSP representation. Its expressiveness gives us the
power to potentially assign extracts to individual attributes,
and, when combined with a system that automatically ex-
tracts column labels [2] from tables, reconstruct the rela-
tional database behind the Web site. Both techniques (or a



Probabilistic CSP
Wrapper Cor InC FN FP Cor InC FN FP notes
Amazon 4 6 0 1 0 0 10 0 a, b
Books 2 5 3 4 0 0 10 0
BN 5 5 0 0 2 0 8 0 a, b, c, d
Books 5 5 0 0 0 0 10 0
Allegheny 20 0 0 0 20 0 0 0
County 16 4 0 0 20 0 0 0
Butler 15 0 0 0 15 0 0 0
County 12 0 0 0 12 0 0 0
Lee 16 0 0 0 16 0 0 0
County 5 0 0 0 5 0 0 0
Michigan 7 0 0 0 4 3 0 0
Corrections 12 4 0 0 2 8 6 0 c, d
Minnesota 11 0 0 0 4 7 0 0 a, b, c, d
Corrections 17 2 0 0 8 9 0 2
Ohio 8 2 0 0 10 0 0 0
Corrections 10 0 0 0 10 0 0 0
Canada 18 7 0 0 25 0 0 0
411 1 4 0 0 1 4 0 0 c, d
Sprint 17 3 0 0 20 0 0 0
Canada 8 12 0 0 20 0 0 0
Yahoo 0 10 0 0 5 5 0 0 a, b, c, d
People 10 0 0 0 10 0 0 0 b
Super 3 0 0 0 3 0 0 0 a, b
Pages 9 6 0 0 15 0 0 0

Precision 0.74 0.85
Recall 0.99 0.84
F 0.85 0.84
Notes
a. Page template problem; b. Entire page used; c. No solution found;
d. Relax constraints

Table 4: Results of automatic record segmentation of tables in Web pages using the probabilistic and CSP
approaches

combination of the two) are likely to be required for robust
and reliable large-scale information extraction. We stress
that the approaches are novel in that they are domain in-
dependent, unsupervised, and rely on the content of Web
pages rather than their layout.

The page template finding algorithm performed poorly on
five of the 12 sites: Amazon, BnBooks, Minnesota Correc-
tions, Yahoo People and Superpages. In the first three sites,
the entries were numbered. Thus, sequences such as “1.”,
will be found on every page. If the tables are of different
lengths, the shortest table will limit what is to be considered
a page template, and the remainder of data on the longer
tables will be extracted. When we encountered a problem
with the page template algorithm, we use the entire page
as the table slot — in other words, we used the entire con-
tent of the list page for matching with the detail page. At
times, using the entire list page led to problems (Amazon,
first Yahoo People list page), as many strings that were not
part of the table found matches on detail pages, although in
some cases this approach performed quite well (second list
in Yahoo People, Superpages). There are a number of ways
to circumvent this problem which were not explored in this
paper. One method is to simply follow the “Next” link, and
download the next page of results. The entry numbers of
the next page will be different from others in the sample.
Another approach is to build a heuristic into the page tem-
plate algorithm that finds enumerated entries. We will try
this approach in our future work.

The CSP approach performed extremely well on clean data;
however, it was prone to fail when there were errors and
inconsistencies in the data underlying the Web sites. For
example, on one Canada411 page, one of the records had
the town attribute missing on the detail page but not on
the list page. Since the town name was the same as in
other records, it was found on every detail page but the
one corresponding to the record in question. As a result,
WSAT(OIP) could not find a solution satisfying all con-
straints. Relaxing constraints by replacing equalities with
inequalities produced a solution, but it was a partial solu-
tion, because not every extract was assigned to a record. An-
other common data inconsistency that caused WSAT(OIP)
to fail was when the attribute had different values on list
and detail pages. For example, on the Amazon site, a long
list of authors was abbreviated as “FirstName LastName,
et al” on list pages, while the names appeared in full on
the detail page. On the Minnesota Corrections site, there
was a case mismatch between attribute values on list and
detail pages. On the Michigan Corrections site, status of
an paroled inmate was listed as “Parole” on list pages and
“Parolee” on detail pages. Unfortunately, the string “Pa-
role” appeared on another page in a completely different
context. As a result, all constraints could not be satisfied.
In such cases we relaxed the constraints, for example, by
requiring that an extract appear on at most one detail page.
WSAT(OIP) was able to find solutions for the relaxed con-
straint problem, but the solution corresponded to a partial
assignment. If we excluded from consideration those Web
pages for which the CSP algorithm could not find a solu-



tion, performance metrics on the remaining 17 pages were
P = 0.99, R = 0.92 and F = 0.95. This performance is
comparable to that obtained with hand-crafted heuristic or
domain-specific rules. [3, 5] The probabilistic approach was
less sensitive to data inconsistencies, but was slightly less
accurate overall. On the same 17 pages as above, its perfor-
mance was P = 0.78, R = 1.0 and F = 0.88.

Except for the two book sites, we were able to correctly seg-
ment at least one table using either method. The tables
on the book site pages presented challenges. The entries
in these lists were numbered. As a result, the page tem-
plate algorithm did not work, and we had to use the text
of the entire list page. Unfortunately, many of the strings
in the list page, that were not part of the list, appeared
in detail pages, confounding our algorithms. For the Ama-
zon site the problem was further compounded by the fact
that we downloaded the pages manually. The site offers the
user a useful feature of displaying her browsing history on
the pages. This led to title of books from previously down-
loaded detail pages to appear on unrelated pages, completely
derailing the CSP algorithm. Even relaxing constraints to
find a partial assignment did not produce good results for
these two sites. These observations do not apply to the
performance of the algorithm, only the data collection and
preparation steps. Adding domain-specific data collection
techniques should improve the final segmentation results.

The probabilistic approach allows us to assign extracts to
attributes, not only records. This remains an open problem
for future research. It may also be possible to obtain the
attribute assignment in the CSP approach, by using the ob-
servation that different values of the same attribute should
be similar in content, e.g., start with the same token type.
We may be able to express this observation as a set of con-
straints.

As discussed earlier in this paper, the RoadRunner system
uses an elegant approach to automatically extract data from
data-rich Web sites. RoadRunner assumes that the results
pages from a site were generated by a union-free grammar
and induces this grammar from example list pages. This
approach, however, fails for Web sites that use alternate
formatting instructions for the same field. Such alternate in-
structions are syntactically equivalent to disjunctions, which
are disallowed by union-free grammars. Consider Super-
pages list page in Fig. 1. If an address field is missing,
the text “street address not available” is displayed in gray
font; otherwise, an address is displayed in black. In each
alternative, different HTML tags are used to format the
address field. There is still an underlying grammar that
gave rise to this Superpages page, but this grammar admits
unions. Inferring such grammars from examples is an even
more computationally complex task than inferring union-
free grammars. Our approach, on the other hand, is more
computationally efficient, because rather than using a page’s
layout, it relies on the content of the page, which is often
much less than the layout. Both of our methods handle the
Superpages site very effectively, as shown in the results.

7. CONCLUSION
There are multiple ways to represent and leverage the addi-
tional information contained in the structure of Web sites.

In this work we investigated two of them: 1) a logic-based
approach in which we encode the information provided by
detail pages as constraints and solve them to obtain the
record segmentation, and 2) a probabilistic inference ap-
proach in which we represent the observations and structure
of the table as a probabilistic model and use an inference al-
gorithm to find appropriate segmentation. Both approaches
have widely used, efficient algorithms for solving problems.
Each has its benefits and drawbacks, that make them prefer-
able in different situations. The constraint-satisfaction ap-
proach is very reliable on clean data, but it is sensitive to
errors and inconsistencies in the data source. The proba-
bilistic approach on the other hand, tolerates inconsistencies
and is more expressive than the constraint-based approach,
and, beyond record segmentation, it can perform record ex-
traction. Both techniques (or a combination of the two)
are likely to be required for large-scale robust and reliable
information extraction.
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