Automatically Labeling the Inputs and Outputs of Web Services

Kristina Lerman, Anon Plangprasopchok and Craig A. Knoblock
University of Southern California
Information Sciences Institute
4676 Admiralty Way
Marina del Rey, California 90292
{lerman,plangpra,knoblock } @isi.edu

Abstract

Information integration systems combine data from multiple
heterogeneous Web services to answer complex user queries,
provided a user has semantically modeled the service first.
To model a service, the user has to specify semantic types
of the input and output data it uses and its functionality. As
large number of new services come online, it is impractical to
require the user to come up with a semantic model of the ser-
vice or rely on the service providers to conform to a standard.
Instead, we would like to automatically learn the semantic
model of a new service. This paper addresses one part of the
problem: namely, automatically recognizing semantic types
of the data used by Web services. We describe a metadata-
based classification method for recognizing input data types
using only the terms extracted from a Web Service Definition
file. We then verify the classifier’s predictions by invoking
the service with some sample data of that type. Once we dis-
cover correct classification, we invoke the service to produce
output data samples. We then use content-based classifiers to
recognize semantic types of the output data. We provide per-
formance results of both classification methods and validate
our approach on several live Web services.

Introduction

Unprecedented growth in the amount of data available on-
line has led researchers to develop novel information inte-
gration tools that can answer complex queries using data
from online sources. In the bioinformatics domain, for ex-
ample, these tools can help biologists seamlessly combine
genomic, polymorphism and expression data with databases
of phenotypic measurements to look for the genetic basis of
diseases. In the geospatial domain, imagery, maps and vec-
tor data can be combined with other data to aid disaster man-
agement and recovery, among many possible applications.
An information mediator framework — e.g., Prometheus
(Thakkar, Ambite & Knoblock 2005) — provides uniform
access to heterogeneous online sources, such as Web ser-
vices, HTML pages or databases. A user must model the
source by specifying its semantic definition: the type of
data the source accepts and returns and the functionality the
source provides. Once the source has been modeled, it can
be used in an information integration plan to answer a spe-

Copyright (© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

cific query or composed with other sources to provide a new
information service.

As new sources come online, we would like the informa-
tion integration system to make full use of them without re-
quiring the user to model them. While various technolo-
gies, most notably the semantic Web, have been proposed to
enable programmatic access to new sources, they are slow
to be adopted, and at best will offer only a partial solution,
because information providers will not always agree on a
common schema. Rather than rely on standards to which
providers may or may not conform, we want to automati-
cally model the functionality of a new service: i.e., learn
the semantics of its inputs and outputs, and the operations it
applies to the data.

Web services come with a syntactic description, contained
in the Web Service Definition (WSDL) file. Unfortunately,
the WSDL file normally does not contain enough informa-
tion to allow the service to be used programmatically. We go
beyond previous work in this area in that, given a new ser-
vice (with a WSDL file), we automatically figure out how to
invoke it, collect output data and learn the functionality of
the service. Our approach is to formulate a hypothesis about
functionality of a Web service and actively test the hypothe-
sis by invoking the service and comparing the data it returns
with that produced by services with known functionality. We
divide the service modeling task into two problems: recog-
nizing the semantic types of data used by the service (seman-
tic labeling), and inducing the logical definition of the ser-
vice (learning functionality) given the data types (Carman
& Knoblock 2005). This paper addresses the first problem.
Specifically, we describe machine learning techniques that
leverage existing knowledge to learn the semantics of data
used by Web services. While others have used metadata in
the WSDL file to semantically classify the data types (Hess
& Kushmerick 2003), we go further and verify a classifier’s
predictions by invoking the service. We generate examples
for the input parameters using the predictions, and invoke
the Web service with these data. Successful execution of the
service both confirms the prediction and generates output
data. We can then use novel content-based classification al-
gorithms to semantically label the output data. In addition,
we can combine the predictions of metadata and content-
based classifiers to improve semantic labeling accuracy.

In the sections below we detail our solution to the prob-

lem of automatically labeling the input and output param-
eters used by Web services. This is an integral step to-
wards creating a semantic model of a Web service. Since the
methods for recognizing inputs and outputs exploit different
sources of evidence — metadata in WSDL file and actual
data returned by the service — we describe two classifica-
tion methods that exploit different sources of evidence. The
Section on “Automatically labeling input data” describes an
algorithm that classifies input and output parameters based
on terms in the Web Service Definition file. We call this
metadata-based classification. The Section on “Automati-
cally labeling output data” describes a novel content-based
algorithm that classifies Web service’s outputs based on
their content. We present extensive evaluations of both ap-
proaches. Finally, we apply our methods to semantically
label several live weather and geospatial Web services.

Related Work

The problem of identifying data types used by Web Services
based on metadata is similar to problems in Named Entity
Recognition, Information Extraction and Text Classification.
Approaches that exploit surrounding information, such as
adjacent tokens, local layout (Lerman et al. 2004a) and word
distributions (Baker & McCallum 1998), have been used to
assign a most likely class to the entity of interest. There
are some aspects to the problem of classifying semantic data
types of Web Services that make it distinct from those men-
tioned above. Usually, fewer tokens are used in naming a
data type compared to those in documents. Even if one uses
tokens from the corresponding Web Service messages and
operations, the number is still small. We are, therefore, short
on features useful for classifying data types. Secondly, texts
in a WSDL file are generally ungrammatical, noisy and var-
ied. Such situations cannot be tackled by previous solutions.

As information growth continues to yield abundant corpus
samples, statistical machine learning approaches have been
widely adopted. Various techniques have been developed to
address the problems of data sparseness, inconsistency and
noise. Several researchers have tried to categorize, or attach
semantic information to, Web Service operations and data
types. With respect to data type classification, rather than
use metadata from WSDL files directly, (Hess & Kushm-
erick 2003) used those from HTML forms and metaphori-
cally treated Web Form fields as the Web Service’s param-
eters. Their assumption was based on a stochastic gener-
ative model. For a particular data type (or form field) D,
Web Service developers use terms ¢ drawn from a proba-
bility distribution P(¢|D) to name the semantic data type.
Since it is infeasible to estimate parameters for P(¢|D) due
to the terms’ sparseness and huge vocabulary size, Hess and
Kushmerick used the Naive Bayes’ assumption to estimate
P(t|D): given a particular data type, terms are independent
of each other. In our opinion, the trained classifier using
this methodology is not accurate enough, probably due to
the independence assumption and data sparseness. (Dong
et al. 2004) proposed an unsupervised approach (Woogle)
to cluster data types. The method is based on agglomer-
ative clustering techniques which merge and split clusters
using cohesion and correlation scores (distances), computed

from the co-occurrence of terms within data types. This ap-
proach, however, has different a objective than ours: Woogle
can roughly identify similarities or differences of data types;
meanwhile, we need to still know the exact class in order
to actively query a Web Service. In the Woogle approach,
“Zip”, “City” and “State” data types might be in the same
group, Address, since they tend to occur together often.
Meanwhile, we need to know exactly whether the parameter
is “Zip” or “City” in order invoke the service correctly.

Our work is similar to schema matching or integra-
tion (Rahm & Bernstein 2001; Doan, Domingos, & Halevy
2003), where the objective is to produce a semantic map-
ping between instances of data from the two schemas.
This is an important task in information integration, since
queries expressed in some common language must be trans-
lated to the local schema of the database before they are
submitted to the database. Past work on schema match-
ing (Li & Clifton 2000; Doan, Domingos, & Halevy 2001;
2003) included machine learning techniques that learn to
classify new object instances based on features that include
local schema names and content features. The content fea-
tures used in these works are global in nature, such as word
frequencies and format. Our approach, on the other hand,
uses finer-grained descriptions enabled by the use of pat-
terns to describe the structure of data. Another distinction is
that in schema matching, the data is usually available, while
in our work, we retrieve the data by invoking services.

Semantic Labeling of Web Services

We use machine learning techniques to leverage existing
knowledge in order to learn the semantics of new informa-
tion sources. Our approach relies on background knowledge
captured in the domain model. The domain model contains
a hierarchy of semantic types, e.g., Temperature and Zip-
code. These types correspond to objects in an ontology or
their attributes. Our system knows how to populate the do-
main model with examples of each semantic type by query-
ing the known definition of sources. For example, queries to
yahooweather return tuples of the form (Zipcode, Temper-
ature, Wind, Humidity). The domain model is initially cre-
ated manually. It is populated semi-automatically by users
wrapping various data sources for their own applications
(unrelated to the research problem described in this paper)
and executing these Web wrappers. Our goal is to automati-
cally relate the input and output types of new sources to the
domain model.

Automatically Labeling Input Data

Web Services offer a natural domain for metadata-based
classification techniques, because each service comes with
a Web Service Definition file. The WSDL file specifies
the protocols for invoking the service, lists supported opera-
tions, and specifies the data types of the inputs and outputs
of the operations. Furthermore, an input may be constrained
to a set of values, or facets, enumerated in the WSDL file. In
most cases, however, operations, inputs and outputs carry no
semantic information — only descriptive names attached to
them by the Web service developer. We exploit these names

for classification. Our approach is based on the following
heuristic: similar data types tend to be named by similar
names and facets (if applicable), and/or belong to messages
and operations that are similarly named (Hess & Kushmer-
ick 2003; Dong et al. 2004). The classifier must be a soft
classifier: it should not rigidly assign one class to a particu-
lar data type; instead, it should order all possible classes by
likelihood scores, which will allow us to use examples from
the next runner up class to invoke the service.

Hess and Kushmerick (2003) used a Naive Bayes clas-
sifier to assign semantic types to the input and output pa-
rameters. They represented inputs and outputs by terms ¢
extracted from their names in the WSDL file. The classifier
assigns an object represented by a feature vector ¢ to class
D (semantic type) that maximizes P(D|t). P(D|t) cannot
be computed directly from data. Instead, we can estimate
P(ﬂD), P(f) and P(D) from data, and then use them to
compute P(D|t) by using Bayes rule. Unfortunately, it is
not feasible to compute P(Z|D) (or P(ty,to,ta, ..., tn| D)),
because the number of possible combinations of terms will
be exponentially large. To solve this problem an inde-
pendence assumption is introduced: terms are assumed to
be conditionally independent given a particular class D.
Thus, estimation of P(Z]D) is reduced to the estimation of
I, P(t;| D). Laplace smoothing is applied in this setting
to prevent zero-value estimation in the case that some terms
do not co-occur with a certain class.

Potentially, because the independence assumption may
not hold in this domain and Naive Bayes does not directly
estimate decision boundaries, classification does not yield
accurate enough results to enable the services to be success-
fully invoked. We thus ran another classification algorithm
using Logistic Regression.! Without the term-class indepen-
dence assumption, Logistic Regression directly estimates
parameters, namely input weights, for computing P(D|t)
from the data (Ng & Jordan 2002; Mitchell 2005). The
formula for computing P(D|t) is P(D|t) = logreg(t)
where 7 is a feature vector (occurrences of terms) and @
is a weight vector. In the training phase, the classifier ad-
justs the weight vector to maximize log data likelihood,
ST In(P(D; |ti;10)), where D is the class label of the j-th
sample. One way to find such a weight vector is to use a gra-
dient descent method. We use a logistic regression package
written by T. P. Minka (Minka 2003) for this.

Eq. (1) gives the Logistic Regression equation for binary
classification:

1

P(D = £1|t, %) = -
1 + exp(—DwTt)

ey

Here, i is a vector of features (terms), defined as t; = 1 if
feature ¢; exists among the terms associated with the param-
eter we are classifying; otherwise ¢t; = 0. D = 1 if the

"Logistic Regression and Naive Bayes classifiers are related:
One can prove that Naive bayes can be represented in Logistic Re-
gression form (Mitchell 2005). Also, if the independence assump-
tion holds and there are infinite training data, both classifiers will
give the same result (Ng & Jordan 2002).

parameter belongs to class D; otherwise D = —1, and o/ is
a vector of weights to be learned. We used Eq. (1) to learn
logistic classifiers for each input/output parameter.

Evaluation We evaluated metadata-based classification
on a data set that consisted of 313 Web Service Definition
files from web service portals (Bindingpoint and Webser-
vicex) that aggregate services from several domains. We
extracted names from several parts of the WSDL file —
operations, messages, data types and facets. Subsequently,
the names were decomposed into individual terms. Thus,
GetWeatherByZipRequest was decomposed into five terms
— get, by, request, weather, zip — where the first three
words are stopwords and are ignored. Each extracted term
was then stemmed with Porter Stemmer. Each input and
output parameter was represented by a set of features: terms
from its operation, message name and facets. We expanded
the complex data types to their leaf nodes and used those as
data types; meanwhile, terms from objects at higher levels
were collected as “auxiliary features.” In all, 12,493 data
types were extracted and labeled. Each was assigned to one
of 80 classes in the geospatial and weather domains: “lati-
tude,” “city,” “humidity,” etc. Other classes, e.g. “passen-
ger,” were treated as “unknown” classes.

Both Naive Bayes and Logistic Regression classifiers
were tested using 10-fold cross validation. Both classifiers
were trained using a one-against-all method, and predicted
classes for each data type were ordered by their probabili-
ties. Since data types from the same message generally tend
to contain similar terms, to avoid introducing classification
bias, data types from the same message were forced to be in
the same fold. Alternatively, we ensure that all data types
from a WSDL file are in the same fold, as it is likely the ser-
vice developer used similar terminology for different data
and operation names. Table 1 presents classification accu-
racy results for the two classifiers. Results are shown for
increasing tolerance levels. Zero tolerance (1" = 0) means
that highest ranked prediction was the correct one; T' = 3
means that correct class was among the top four guesses.
The logistic regression classifier significantly outperformed
Naive Bayes.

Automatically Labeling Output Data

We developed a domain-independent pattern language (Ler-
man, Minton, & Knoblock 2003) that allows us to represent
the structure of data as a sequence of tokens or token types
and learn it from examples. These can be specific tokens,

Table 1: Classification accuracy for the Naive Bayes and
Logistic Regression classifiers
T=0[T=1[T=2][T=3
(a) fold by wsdl

Naive Bayes 0.64 0.80 0.84 0.86
Logistic Regr | 0.87 0.94 0.95 0.96
(b) fold by message
Naive Bayes 0.65 0.84 0.88 0.90
Logistic Regr | 0.93 0.98 0.99 0.99

such as “90210,” as well as general token types. The gen-
eral types have regular expression-like recognizers, which
simply identify the syntactic category to which the token’s
characters belong: 5DIGIT, NUMBER, CAPS, etc. The
symbolic representation of data content by patterns of to-
kens and token types was shown to be concise and powerful.
These patterns can be efficiently learned from examples of a
data field. We found that learned patterns enabled a system
to locate examples of the field on Web pages with consid-
erable accuracy in a wide variety of information domains
(book sellers, phone books, ...) (Lerman et al. 2004b;
Lerman, Minton, & Knoblock 2003).

In a nutshell, the pattern learning algorithm finds all statis-
tically significant patterns that describe the data. The learn-
ing algorithm is biased towards producing more specific pat-
terns. For example, suppose we are trying to learn the de-
scription of Zipcode. If the specific pattern “90210” and
its generalization “5DIGIT” are both significant, the algo-
rithm will keep the more specific pattern in addition to the
general pattern. This tends to produce content descriptions
comprised of many patterns. In addition to patterns, we de-
scribe the content of data by two other features — the mean
and variance of the number of tokens in the training exam-
ples.

We can use learned patterns to recognize semantic types
of Web service’s output parameters based on the content of
data it returns. The basic premise is to check how well the
set of patterns associated with each semantic type (from the
domain model) describes new examples, and assign them to
the best-scoring semantic type. We developed heuristics to
score the match. Factors that increase the score are:

e Number of patterns that match examples?
e Pattern weight — higher for more specific patterns
e Pattern length — penalty for unmatched tokens

The output of the algorithm is top four guesses for the
semantic type, sorted by score.

Evaluation We validated content-based classification on
data sources from a variety of domains. We used existing
wrappers created by different users to extract attributes from
these sources. We reserved two or three sources from each
domain for learning data patterns, and then used content-
based classification to semantically label data from the re-
maining sources. The sources and extracted attributes were:

Airlines domain: Five sources related to flight status, with
44 attributes: airport, airline, time, date, flightstatus, . . .

Directory domain: Five directory services with 19 at-
tributes extracted: fullname, streetaddress, city, state, zip-
code, and phonenumber

Geospatial domain: Eight sources, 21 test attributes ex-
tracted: latitude, distance, streetaddress, zipcode, . . .

Electronics domain: Twelve sources related to electron-
ics equipment. 137 attributes extracted, such as model-
name, manufacturer, modelnumber, hsize, vsize, bright-
ness, power, colordepth, scanresolution, weight . . .

2To be considered a match, a pattern has to match a prefix of an
example, not all the tokens in the example

@Fo
mF3

N o o
> o ©
\
f f

F measure

o
N

o+H H UE W "W W W TH

NI\] > N D > D A S a4 O > o O
SIS FFTE I FL TS
FLEFSLLL ¥ ¥ "FLFLFLLE
S Q@& &ofo & L LLE

S &

LA R B B p

Figure 1: Performance of the content-based classification
algorithm on data from a variety of domains.

Cars domain: Five sources with 23 test attributes ex-
tracted: make, model, year, color, engine, price, mileage,
bodystyle. Because most of the data was alphabetic, and
each site had its own capitalization convention, we con-
verted all data to lower case strings.

Weather domain: Ten sources with 87 test attributes: tem-
peratureF, templnF, sky, wind, pressure, humidity, . . .

Figure 1 shows performance of the content-based classifi-
cation algorithm on data extracted from a variety of sources.
The F-measure is a popular evaluation metric that combines
recall and precision. Precision measures the fraction of the
labeled data types that were correctly labeled, while recall
measures the fraction of all data types that were correctly
labeled. FO refers to the case where the top-scored pre-
diction of the classifier was correct, and in results marked
F3, the correct label was among the four top-scoring predic-
tions. We believe that even if the algorithm cannot guess the
semantic data type correctly, if it presents the user with a
handful of choices, which contain the correct type, this will
speed up the source modeling task.

Content-based classification attains very good perfor-
mance on the data sources shown in Figure 1, scoring at
least F' = 0.80 on 12 of 16 sources. We also applied the
algorithm to label data from sources in two other domains,
airlines and electronics equipment, but with poorer results,
as shown in Figure 2(a). The electronics equipment domain
was very hard. Most of the fields in the training data con-
tained only numeric tokens (e.g., “1024” for horizontal dis-
play size). The learned patterns did not contain units infor-
mation; therefore, they could not discriminate well between
fields. In the airlines domain, precision suffered for the fol-
lowing reasons: non-standard capitalization of text fields,
such as flightstatus, and incompatible date formats in train-
ing and test data. One way to improve precision and recall
is by considering semantic types from a single domain only.
The domain of a Web service can be identified in a number
of ways, most directly from keywords in the WSDL file, or
by analyzing semantic types assigned to data fields by the
classifier and choosing the domain to which most of the se-
mantic types belong. Figure 2(b) shows results of restricting

1.
B FO 1
BF3
0.8
0.8
(0]
= 0.6 1 o
2 5 0.6
: :
€ 0.4 € 04
w L
0.2 + 0.2 4
0
N 2\ 23 ™
CEEEELEEELEE
F & § §F TS S
N - G SR S S S &
‘240 \®0 \é’ \?/0 O O
& R Q
(a)

@ FO
mF3
N 2 5} N 12 > ™ 5 ©
& & & (\q?b‘ & & & & E S
S & TS
® o T & & & &S
> & & & & &

Figure 2: Performance of content-based classifier on data from electronics and airlines domains when (a) considering all
semantic types in classification, (b) when restricting semantic types to the domain of the source

the content-based classification algorithm to semantic types
within one domain only (e.g., electronics equipment). As
expected, performance of the algorithm improves.

Empirical Validation

To evaluate our approach on live Web services, we searched
for Web services in the Weather and Geospatial domains.
Since quite a few services restrict access to registered users,
we only tested those services for which we obtained license
keys. Furthermore, we filtered out services that only provide
information about places outside of the United States. This
left eight invocable services. Several of the services sup-
ported more than one operation; therefore, we attempted to
semantically model data types used by each of the 13 oper-
ations.?

First, we classify the input parameters used by the ser-
vices. Then, we can generate sample values for the inputs
and invoke the service with them. Our only information
about the service is the WSDL file; therefore, we employ
metadata-based classification to semantically label input pa-
rameters. We retrieved each service’s WSDL file and pro-
cessed it to extract features associated with each input and
output. Next, we classified them using the Logistic Regres-
sion classifier (trained on all WSDL files from Bindingpoint
and Webservicex directories). We then generated sample
data for the input parameters. We took classifier’s top guess
as the semantic type of input parameter and chose a random
sample of this type from data in the domain model.* We
invoked the service with sample input data. If classifier’s
top guess was “Unknown” (the semantic type outside of our
domain model), we left the corresponding input parameter
blank. If we could not invoke the Web service successfully
with the top guesses for the input parameters, we went back
to classifier results and chose the next best guess. Clearly, if
there are many input parameters, this combinatorial search

30ur services included commercial services, such as Arcweb
and DEVPRIM geolocation services, DOTS and EJSE weather ser-
vices, and a handful of free online services.

“These data come previous queries to known sources which
have been stored in a local database.

will be expensive to execute. Fortunately, in the chosen do-
mains, each Web service had one or two mandatory input
parameters.

We classified 47 input parameters. The classifier chose
“Unknown” as the most likely class for four inputs from
two services. For one of them (Arcweb’s AddressFinder),
the “Unknown” parameters were optional (intersection, zip-
code), and the service was successfully invoked. The other
service (Terraworld) could not be invoked because a manda-
tory input parameter (streetaddress) was misclassified.

We successfully invoked seven of the eight services (or
12 of 13 operations), collected 3—6 samples for each output
parameter and classified them using content-based classifi-
cation algorithm. The classifier labeled 168 out of 213 out-
put parameters. The classifier’s top prediction was correct in
107 cases, leading to accuracy A = 0.50. These results are
significantly worse than ones quoted in the previous section.
This is due to an order of magnitude difference in sample
sizes. We believe that performance will improve once we
automate the data collection process and obtain more data
samples from the services.

Sometimes the metadata-based classifier produced more
specific semantic types: “Sunrise” rather than “Time” recog-
nized by the content-based classifier, or “Dewpoint” rather
than “Temperature.” At other times, especially when the ser-
vice uses novel terms in parameter names, the content-based
classifier outperforms the metadata-based classifier. There-
fore, combining them may improve the accuracy of the out-
put parameter labeling. We tested this hypothesis by using
the metadata-based classifier to predict semantic types of the
output parameters. The classifier’s top prediction was cor-
rect in 145 cases (A = 0.68). Sixty one of the incorrect
top-rated guesses were attributed to the “Unknown” class.
This suggests a strategy of combining results of metadata
and content-based classification to improve the performance
of the semantic labeling algorithm. Namely, we take the
most likely prediction produced by the metadata-based clas-
sifier as the semantic type of the output parameter, unless
it happens to be “Unknown.” In that case, we use the top
prediction of the content-based classifier. If content-based

Table 2: Input and output parameter classification results

classifier total [correct | accuracy
(a) intput parameters
metadata-based | 47 | 43 | 091
(b) output parameters
content-based 213 107 0.50
metadata-based | 213 145 0.68
combined 213 171 0.80

algorithm did not assign that output parameter to any se-
mantic types, we look at the second-rated prediction of the
metadata-based classifier. The combined approach correctly
classifies 171 output parameters (A = 0.80), significantly
outperforming individual classifiers (Table 2).

Conclusion

We presented the problem of automatically learning seman-
tic types of data used by Web services. This is an important
part of semantic modeling of Web services to enable them
to be automatically integrated by information mediators. We
described metadata-based classification algorithm, that can
be used to assign semantic types to the service’s input pa-
rameters. This algorithm represents each parameter by a set
of features — terms extracted from the service’s WSDL file.
To test the classifier’s predictions, we invoked the service
with sample data of the predicted type. If the prediction was
correct, the Web service returned output data. We then used
content-based classifier to assign semantic types to the out-
puts. We evaluated performance of both classification algo-
rithms on a variety of domains. Next, we validated our ap-
proach by semantically labeling several Web services in the
Weather and Geospatial information domains. Combined
performance of the two classifiers was very good, showing
that they can be used to accurately and automatically label
data used by Web services.

There remain many ways to improve our algorithms. We
would like to improve the performance of metadata-based
classifier in multi-input parameter domains by considering
dependencies between input parameters. We also need to
improve the performance of the content-based classifier on
complex data types, and data expressed in different for-
mats. Meta-analysis of classification results can help im-
prove them, by eliminating duplicates, for example. Our fu-
ture research will address these topics.

Acknowledgements

This research is based by work supported in part by the NSF
under Award Nos. IIS-0324955 and CNS-0509517, in part
by the Air Force Office of Scientific Research under grant
number FA9550-04-1-0105, in part by DARPA under Con-
tract No. NBCHDO030010. We would like to thank ArcWeb
for providing us with access to their data.

The U.S.Government is authorized to reproduce and dis-
tribute reports for Governmental purposes notwithstanding
any copyright annotation thereon. The views and conclu-
sions contained herein are those of the authors and should

not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
any of the above organizations or any person connected with
them.

References

Baker, D. L., and McCallum, K. A. 1998. Distributional
clustering of words for text classification. In Proc. of ACM
SIG on Information Retrieval (SIGIR-1998).

Carman, M., and Knoblock, C. A. 2005. Learning Source
Descriptions for Web Services. In Proc. of AAAIOS Work-
shop on Exploring Planning and Scheduling for Web Ser-
vices, Grid and Autonomic Computing.

Doan, A.; Domingos, P.; and Halevy, A. Y. 2001. Reconcil-
ing schemas of disparate data sources: A machine-learning
approach. In Proc. of ACM SIG on Management of Data
(SIGMOD-2001), 509-520.

Doan, A.; Domingos, P.; and Halevy, A. 2003. Learning to
match the schemas of databases: A multistrategy approach.
Machine Learning Journal 50:279-301.

Dong, X.; Halevy, A.; Madhavan, J.; Nemes, E.; and
Zhang, J. 2004. Similarity search for web services. In
Proceedings of the International Conference on Very Large
Databases (VLDB-2004).

Hess, A., and Kushmerick, N. 2003. Learning to attach
semantic metadata to web services. In Proceedings 2nd
International Semantic Web Conference (ISWC2003).

Lerman, K.; Getoor, L.; Minton, S.; and Knoblock, C. A.
2004. Using the Structure of Web Sites for Automatic Seg-
mentation of Tables. In Proc. of ACM SIG on Management
of Data (SIGMOD-2004).

Lerman, K.; Gazen, C.; Minton, S.; and Knoblock, C. A.
2004. Populating the Semantic Web. In Proc. of AAAIO4
Workshop on Advances in Text Extraction and Mining.

Lerman, K.; Minton, S.; and Knoblock, C. 2003. Wrapper
maintenance: A machine learning approach. Journal of
Artificial Intelligence Research 18:149-181.

Li, W., and Clifton, C. 2000. Semint: A tool for identifying
attribute correspondence in heterogeneous databases using
neural networks. Data and Knowledge Engineering 33:49—
84.

Minka, T. P. 2003. A comparison of nu-
merical optimizers for logistic regression.
http://research.microsoft.com/~minka/papers/logreg/.

Mitchell, T. 2005. Machine Learning. 2nd edition (draft)
edition. Chapter 1: Generative and Discriminative Classi-
fiers: Nave Bayes and Logistic Regression.

Ng, A. Y., and Jordan, M. I. 2002. On discriminative vs.
generative classifiers: A comparison of logistic regression
and nave bayes. In Proc. of Neural Information Processing
Systems (NIPS02).

Rahm, E., and Bernstein, P. 2001. On matching schemas
automatically. VLDB Journal 10(4).

Thakkar, S.; Ambite, J. L.; and Knoblock, C. A. 2005.
Composing, optimizing, and executing plans for bioinfor-
matics web services. VLDB Journal 14(3):330-353.

