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ABSTRACT
Historical maps contain detailed geographic information difficult
to find elsewhere covering long-periods of time (e.g., 125 years for
the historical topographic maps in the US). However, these maps
typically exist as scanned images without searchable metadata. Ex-
isting approaches making historical maps searchable rely on tedious
manual work (including crowd-sourcing) to generate the metadata
(e.g., geolocations and keywords). Optical character recognition
(OCR) software could alleviate the required manual work, but the
recognition results are individual words instead of location phrases
(e.g., “Black” and “Mountain” vs. “Black Mountain”). This paper
presents an end-to-end approach to address the real-world prob-
lem of finding and indexing historical map images. This approach
automatically processes historical map images to extract their text
content and generates a set of metadata that is linked to large ex-
ternal geospatial knowledge bases. The linked metadata in the RDF
(Resource Description Framework) format support complex queries
for finding and indexing historical maps, such as retrieving all his-
torical maps covering mountain peaks higher than 1,000 meters in
California. We have implemented the approach in a system called
mapKurator. We have evaluated mapKurator using historical maps
from several sources with various map styles, scales, and coverage.
Our results show significant improvement over the state-of-the-art
methods. The code has been made publicly available as modules of
the Kartta Labs project at https://github.com/kartta-labs/Project.
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1 INTRODUCTION
Many professionally created historical maps are now accessible on-
line as images through library repositories or map archives. These
maps provide a unique opportunity for scientific studies that re-
quire long-term, historical geographic data, which do not exist
elsewhere [2]. However, these map images represent only a small
fraction of the available map collections. For example, searching
map records using WorldCat1 shows that less than 4% of all map
records in the US are digitized and published online. In contrast,
the remaining 96% of the map records are paper maps. With the
advances in low-cost, high-speed automated scanners, the main
reason that prevents these paper maps from being published online
is the tedious manual process to compile metadata for the maps
once they are scanned as images. At the University of Southern
California, cataloging a map sheet requires about 30 minutes of
manual work by a professional library curator, which would require
30 years to process all 125,000 historical topographic maps from
the USGS (United States Geological Survey). As a result, even after
paper maps are scanned into images, these map images are still not
searchable because they do not come with any metadata, such as
the geographic coordinates of the map center, the map scale, and
place-related information on the maps. For making all historical
maps accessible, the first and crucial step is to increase the level of
automation in generating a rich set of metadata for these maps so
that they can be indexed and searchable by location and keywords.

Existing approaches to automatically generate map metadata
rely on optical character recognition (OCR) tools that are designed
for conventional document images but not maps [1]. For example,
OCR tools focus on recognizing individual words and paragraphs
in a document [2, 3, 24]. They do not handle map text that can have
varying orientations and spacings. For example, each word of the
place name “Double Head Mountain” on a map can be far away

1WorldCat is a catalog system that indexes library collections from more than 100
countries and 17,900 libraries.
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from each other and can have varying text orientations following
the geographic features on the map. Also, on a map, text regions
that are close to each other are not necessarily a part of the same
location phrase (e.g., a place name). In Figure 1, the word Fall is close
to the word Burgettville, but they are not a part of the same phrase.
The word Fall should be linked to the word River to constitute
the location phrase Fall River. Therefore the distance between two
words is not sufficient to predict the linkage between individual
words. Figure 1 also shows a map area that contains densely packed
text labels with the same font style and font size, which makes
automated processes for generating map metadata challenging.

This paper presents a complete approach and its implementa-
tion, mapKurator, to automatically generate a rich set of metadata
from map images using their text content. mapKurator first detects
individual words from a map using an OCR tool (e.g., [13, 15]) and
then employs a deep neural network to link individual words in
the OCR results (e.g., “Los” and “Angeles”) to complete location
phrases (e.g., “Los Angeles”) based on their text and visual infor-
mation (Section 2.1). Next, mapKurator uses a geocoding service
to find candidate geolocations for each detected location phrases
and then and identifies spatial clusters of the candidates to remove
unlikely geolocations and generate approximate geolocation for
the map (Section 2.2). Geocoding is the process of comparing text
strings of addresses or place names to a large set of georeferenced
data to generate the geocoordinates of the text strings (e.g., [7, 18]).
Once the approximate geolocation of the map is identified, map-
Kurator queries the LinkedGeoData to match the location phrases
to entities in the LinkedGeoData using their location and text sim-
ilarity (Section 2.3). The result is a set of metadata that is linked
to large external geospatial knowledge bases (i.e., LinkedGeoData).
The linked metadata in the RDF (Resource Description Framework)
format support complex queries for finding and indexing histori-
cal maps, such as retrieving all historical maps covering mountain
peaks higher than 1,000 meters in California.

2 OVERALL APPROACH TO GENERATE MAP
METADATA

The overall approach of mapKurator for generating map metadata
includes three major modules. In the first module, mapKurator gen-
erates complete location phrases from the input map. In the second
module, mapKurator geolocates the place phrases and determines
an approximate geolocation of the map. In the last module, map-
Kurator matches the georeferenced place phrases to entities on the
LinkedGeoData to generate linked metadata for the input map.

2.1 Generate Location Phrases fromWords
The goal for this module is to construct full location phrases from
single words by first discovering the words that are in the same
location phrase (text linking) and then sorting the words within
each location phrase (e.g., “Los” should be before “Angeles”). We
formulate this text linking process as a query-retrieval problem.
First, mapKurator runs text detection and recognition tools, such as
Google Vision API [15], to extract separate words and their bound-
ing boxes. Then, mapKurator takes a detected text region as the
query word and returns the potentially linked text regions by exam-
ining all other text regions on the map using its textual predictor

Figure 1: Challenges for text linking. Left: Distance is not the
only deterministic factor for linking separate text regions.
Right: Some maps contain densely-packed text regions.

and visual predictor . mapKurator repeats the querying process for
every single text region on the map to construct a graph of the
linked words. The textual predictor in mapKurator makes the
first prediction to determine if a pair of words are linked together
(i.e., in the same location phrase) using their textual information.
Textual predictor is a binary classification model that looks at all
the individual text regions on the map given a query region and
filters out the ones that are unlikely to be linked to the query region.
The purpose of the textual predictor is to effectively narrow down
the search space for visual predictor. The visual predictor exploits
the prediction from textual predictor and utilizes image informa-
tion to refine the prediction. Visual predictor relies on a semantic
segmentation model to harness the visual context and gives pixel-
level prediction on the linkage relationship. Finally, the consensus
module in mapKurator combines the output from both predictors
and makes the final decision. By combining the results from the two
models, mapKurator could achieve a better F1 score compared with
each separate model. mapKurator uses the final linkage decision to
construct a graph and find its connected components. mapKurator
sorts the elements in each connected component according to a
simple heuristic to constitute each location phrase.

2.1.1 Textual Predictor with Deep Metric Learning. Given a pair of
text regions such as “Jefferson” and “Street”, we want the textual
predictor module to predict whether they belong to the same lo-
cation phrase. If they do belong to the same phrase, which is true
for this case, the classifier should output 1, otherwise 0. We call
the pair “Jefferson” and “Street” a positive pair, and a pair like
“Jefferson” and “Western” that do not belong to the same location
phrase, a negative pair.

The textual predictor in Figure 2 takes pairs of text regions as
input. The multi-modality embedding module in textual predictor
utilizes the textual information associated with the input text re-
gions. We define the inputs for text region Bi as following: text
content ti ; center location cxi , cyi ; angle ai which is the clock-wise
bounding box orientation angle with 0 degrees corresponding to
a vertical and 90 degrees corresponding to a horizontal orienta-
tion; average font area size fi = bi ∗ hi/len(ti ) where bi and hi are
the width and height of the bounding box; capitalization pi which
equals to 1 if all the characters in the word are in upper case, oth-
erwise 0. Both location and font size are normalized to [-1,1] using
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Figure 2: Generating location phrases from historical maps. Our method takes full map images as input, and runs text de-
tection and recognition as a preprocessing step which yields recognized text content and predicted bounding boxes. Both
textual predictor and visual predictor are working towards pairwise linkage prediction, whereas textual predictor considers
text-related information, and visual predictor considers image-related information. Text-related information is the informa-
tion that can be derived from the text region itself, such as location, orientation angle, word embedding, etc. While the visual
information comes from the neighborhood of a specific text region on the image. After pairwise linkage prediction, we con-
struct a graph, G = {N , E}, whose nodes, N , are separate text regions and edges, E, are predicted linkages. By computing the
connected components and sorting their elements, we construct the location phrases.

formula 2x/(xmax −xmin ) − 1, and the angle is normalized to [0,1].
We use the Word2Vec [16] model to embed the text content ti as
a 50 dimensional feature vectorwi . The Word2Vec model weights
are initialized by the pre-trained weights on the Wikipedia 2014 +
Gigaword 5th Edition corpora (6B tokens, 400K vocab) using the
GloVe [10] algorithm. Then we concatenate {wi , cxi , cyi ,ai , fi ,pi }
to obtain the textual feature representation ri of text region Bi . To
determine if the two text regions should be connected together,
we perform binary classification on the textual features. Also, we
enforce the textual feature to be similar in embedding space if
two regions are connected. We use binary cross-entropy as the
classification loss:

LCE = −
1
N

N∑
i=1

yi loд(pi ) + (1 − yi )loд(1 − pi ) (1)

where yi is the ground truth label for sample i , pi is the prediction
for sample i , and N is the number of samples. We also apply triplet
loss [9, 21]on the embedding space to enforce similar features to
be close to each other, and dissimilar features far away. The loss
equation reads as:

Ltr i =
N∑
i
[| |rai − r

p
j | |

2
2 − ||rai − rnk | |

2
2 + α]+ (2)

where ri = concat(wi , cxi , cyi ,ai , fi ,pi ) and ra is the anchor fea-
ture in triplet loss, rp is the positive feature, and rn is the negative
feature.

2.1.2 Visual Predictor with Weekly Supervised Segmentation. The
visual predictor first draws a minimum bounding box that includes
all the retrieved positive candidates from the textual predictor .
Then it predicts the probability of a pixel belonging to a text region
that should be connected to the query text region. The bounding
box is expected to be relatively small compared with the full map
image since the textual predictor has removed the majority of the
negative samples. Thus the previous step saves us from looking at
the whole image so that we could focus on a smaller neighborhood
of the query text region.

We use the U-Net structure [19] for our weakly supervised seg-
mentation model. The model takes two inputs: (A) cropped RGB
image around the neighborhood of the query text region (see the
first column of Figure 3) and (B) a mask that highlights the query
text region (see the second column of Figure 3). The two inputs
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have the same size, letting us concatenate the two inputs along the
channel dimension to form a 4-channel tensor as the direct input
for the model. The output of the model is a probability map that
indicates the probability of a pixel belonging to a connected text
region of the query region. From the probability map (shown in the
last column in Figure 3, we use the threshold p = 0.5 to binarize
the prediction to produce the second input (see lower left image in
Figure 4) for consensus model. We use sigmoid activation for the
last layer of U-Net and binary cross-entropy for the loss.

Figure 3: Visualization of the input, ground-truth and out-
put of weakly supervised segmentation module with U-Net
structure. The first two columns are inputs, the third col-
umn is the ground-truth output, and the last column is the
prediction of the model.

2.1.3 Consensus Model. We combine the results from textual pre-
dictor and visual predictor using a consensus module. Assume that
the textual predictor produces M candidate text regions for the
query region Bq , and each candidate text region is referred to as
Bi with i ∈ [1,M]. Assume that the minimum bounding box that
contains candidate text regions is of size P ×Q , we pad the bound-
ing box to a square whose edge length equals tomax(P,Q). The
padding color is (mr ,mд ,mb ) wheremr ,mд ,mb define the mean
color density for each channel. To facilitate batch training, we re-
size the padded image of sizemax(P,Q) ×max(P,Q) to size N × N
with either upsampling or downsampling and feed into the visual
predictor . Thus the output for visual predictor S is a tensor of size
1×N ×N where N = 256 in our experiments. We use the following
metric to determine if Bi is a consensus for both modules.

1
| |Bi | |

(

N∑
j

N∑
k

(Bi ⊗ Sjk )) > θ (3)

where ⊗ is the element-wisemultiplication, andθ is a hyper-parameter
that serves as a threshold. This metric checks if the average proba-
bility of the overlapping region from textual predictor and visual
predictor is higher than a certain threshold. We use θ = 0.5 as the
threshold in the experiments.

Figure 4: Consensus module to find the common retrievals
of visual predictor and textual predictor

2.1.4 From pairwise linkage prediction to location phrases. After
we obtain pairwise predictions, we construct a directed graph
G = {N , E} where nodes N are the separate text regions from
the map, edges E are the predicted linkages from the previous step.
If the region r j is classified as a linked region with query region
ri , we draw a link from node i to node j on the graph. We can
use either strongly connected components (SCC) or weakly con-
nected components(WCC) to find the clusters where each cluster
should contain all the text regions that form a full location phrase.
A strongly connected component is identified if there is a path in
each direction between each pair of vertices inside the component.
A weakly connected component is identified if each node can either
reach another node or is reachable from another node. The type of
errors for WCC and SCC are different, as that WCC tends to have
"adding words" error and scc tends to have "missing words" error.
In the experiment section, we use strongly connected component
to find the clusters.

The output of connected components are groups of words that
can form location phrases. To generate the final location phrase, we
need to sort the words in the same set and put them in a sequence.
We use a simple method that works well for most of the cases:
sort ascendingly for the x-coordinates of the bounding box centers.
Other methods can be developed to improve the sorting, and we
leave that as future work.

2.2 Detect Geo-locations of Location Phrases
Tavakkol et al. [22] introduce a baseline model that concatenates all
detected words from a map image into a paragraph, and send the
paragraph to Google Geocoding API to produce the geo-coordinates.
Although Google Geocoding API works on contemporary data in-
stead of historical data directly, it still carries some advantage: it
is a scalable publicly available service and it accounts for minor
misspellings and discrepancies. One reason they construct a single
paragraph out of the detected words is that they do not have a
model to generate phrases out of the individual words. As men-
tioned earlier, individual words often are not meaningful per se.
Furthermore, by calling the Geocoding API only once and choosing
the first candidate, they eliminate the need for an algorithm to rank
the candidate locations. We improve their framework by generating
the location phrases, sending them individually to the Geocoding
API, and utilizing a clustering algorithm to produce the geolocation
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Figure 5: Pipeline for geolocalization and entity-matching. The input can either be location phrases or single words extracted
from map images. This figure uses the location phrase as an example, but the steps are the same with single words. Based
on different inputs, we call the process word-by-word or phrase-by-phrase geolocalization. The output for phrase-by-phrase
geocoding is a list of candidate coordinates. We use DB-SCAN to cluster the coordinates and choose the center of the cluster
that has the largest number of elements as the geolocalization output. Given the geo-coordinate of the cluster center, we
perform entity matching that associates the map with external databases such as GeoLinkedData.

Figure 6: RDF schema for linked-historical maps. We con-
vert each raster map image into a node in the linked graph,
and each node has three properties "type", "sfOverlaps" and
"nearby". "sfOverlaps" describes the text regions that are in
the map and "nearby" describes the rough location of the
map study area.

of a map given many candidates that are returned from multiple
calls to the Geocoding API. Note that the Geocoding API might also
return multiple candidates for a single call. The clustering method
we use is DBSCAN [5], which locates the regions that have high
density of geolocalized coordinates returned by the Geocoding API.
We use the centroid of the cluster that contains the largest number
of elements as the final geocoordinates for the map. The workflow
for geocoding is shown in Figure 5. For the sake of comparison, we
once send the texts phrase-by-phrase and once word-by-word to the
Geocoding API. For example, in the phrase-by-phrase method, the
Geocoder takes “Vermont Street” as input while in word-by-word
method, the Geocoder takes “Vermont” and “Street” separately and
returns two groups of candidates. In the experiments, we compare
our phrase-by-phrase geocoding andword-by-word geocodingwith
the baseline.

2.3 Matching Entities in Historical Maps to
OpenStreetMap

In the last few decades, researchers have made efforts to struc-
ture the contemporary map data into a linked form and have built
databases such as LinkedGeoData. Such databases allows queries
on contemporary map databases such as OpenStreetMap. However,
historical maps are inherently unstructured images. Thus geospa-
tial queries are difficult to run on this type of data. In this paper,
we use common vocabularies and the RDF format to represent the
automatically generated metadata from historical maps and link
the metadata to the existing LinkedGeoData database using the in-
ferred geographical coordinates obtained from Section 2.2. Figure 6
shows the common vocabularies and the ontology in mapKurator.
Section 3.3 describes details of the namespaces in the ontology. This
schema provides information for themap image type, coordinates of
the map center, location names that are in the map image, and their
associated information from other sources (e.g., GeoLinkedData).

The “sfOverlaps" predicate connects a map subject with a text
region object, denoting that the location name is contained in the
map image. The “seeAlso" property of “Feature" provides a URI of
the location name in another database. When jointly queried with
the external database, this property provides a way to backtrack
to our Linked-historical-maps dataset. For example, if we are inter-
ested in finding maps that contain mountain(s), and LinkedGeoData
provides us a set of geo-features with type mountain. We could
easily know which ones of them are also contained in the Linked-
historical-maps by comparing the URI, and further backtracking to
the map image.

3 EXPERIMENTS
In this section, we show the experimental results of mapKurator
using several map sources. Our system is evaluated from two as-
pects: location phrase prediction and map geolocalization. We also
provide a case-study of the linked map metadata. This section first
describes the datasets used for the experiments, then elaborates on
experiment details.
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3.1 Datasets
United StatesGeological Survey (USGS) topographicmaps [20]:
This dataset consists of 15 maps produced by the United States Ge-
ological Survey that covers the California State. All the text regions
have been manually annotated and transcribed. There are about
293 text regions per map and 4,375 text regions in total. The ground
truth geolocation is also provided. This dataset can be used to eval-
uate both location phrase prediction and map geolocalization tasks.

United Kingdom Ordnance Survey Maps 2 [17] consists of 10
maps published by Ordnance Survey and related bodies, includ-
ing the War Office (ca. 1840s-1960s). These maps cover some of
the regions in the United Kingdom. All the text regions have been
manually annotated and transcribed. There are 216 text regions per
map on average and 2197 text regions in total. The ground truth
geolocation is not provided. Thus this dataset can only be used to
evaluate location phrase prediction tasks.

NYPL maps [14] consists of 500 maps collected by the New York
Public Library that Tavakkol et al. [22] used to test their geolocal-
ization algorithm. These maps are in the New York region. The text
regions are not annotated or transcribed, but the ground truth ge-
olocation is provided. Thus this dataset can only be used to evaluate
the map geolocalization task.

3.2 Experimental Result
The main result from mapKurator is the location phrases and the
map geolocation, which together, can generate a rich set of linked
metadata. We evaluate the performance of mapKurator in gener-
ating each result component. For the location phrase generation,
we evaluate mapKurator at two stages. The first stage is after pair-
wise prediction has been made, and the second stage is when the
location phrase generation is complete. We show our result on
the Ordnance Survey and USGS dataset since these two datasets
have manually annotated bounding boxes, transcribed words and
phrases. These two datasets have provided the bounding boxes and
text content for individual text regions, thus we skip the text detec-
tion step and use these information directly as the input for linkage
prediction model. Table 1 shows the linkage prediction performance
on these two datasets. In this table, we compare the result of using
only textual information and the result of using textual and visual
information. The precision is defined aspl = TPl /(TPl +FPl ), recall
is defined as rl = TPl /(TPl +FNl ) and F1 = 2pl ·rl /(pl +rl ), where
TPl is the number of predicted linkages that have been correctly
classified, FPl is the number of predicted linkages that have been
incorrectly classified, and FNl is the number of linkages that have
been missed from prediction. We can see that F1 score is improved
by a large margin when visual information is added. We also notice
that when using only textual information, the recall is high, but the
precision is low. This may be due to the fact that if only textual in-
formation is considered, the model lacks information about context
the text regions belong to, which is similar to predicting the linkage
relation on a blank background image. Thus, the network predicts
relatively more positive linkages than the ground truth and incurs
a high false-positive rate. By adding visual information, most of the
2Reproduced with the permission of the National Library of Scotland

false positives can be removed. Table 2 shows the performance for
full location phrase generation. The results are generated on the
map-wise level by calculating howmany location phrases have been
correctly recognized. We show the numerical results for two cases:
1) For Duplicate Phrase, we include duplicate phrases in evaluation
2) For Distinct Phrases, we evaluates the distinct phrase correctness.
For example, if the ground truth contains two "Modoc Lava Beds"
and one "Black Crater", the prediction extracts two "Modoc Lava
Beds" succesfuly but no "Black Crater". In the first metric, the recall
is 2/3 and in the second metric the recall is 1/2.

We evaluated the performance on geolocalization by calculat-
ing the distance deviated from ground truth for the predicted
latitude and longitude coordinates. In table 3, We compare our
word-by-word and phrase-by-phrase geocodingmethod described
in Section 2.2 with the word-to-paragraph method introduced
in [22] on USGS dataset. We show the error in both kilometers
and in scale. The error metrics are defined bellow:

Errkm (g, p) = Haversine(g, p) =
∑
i
2 arcsin(

√
hi ) (4)

hi = sin2(
дlati − plati

2
) + cos(дlati ) cos(plat i ) sin2(

д
lnд
i − p

lnд
i

2
)

(5)

where g is the ground truth location and p is the prediction. The
reason to use Haversine distance instead of Euclidean distance is
that the Haversine distance measures the great-circle distance on a
sphere, which is more appropriate in our setting while Euclidean
distance measures the straight-line distance between two points.

Errscale (g, p) =
Errkm

Haversine(tmin, tmax )
(6)

where tmin is the point at the corner of the map plot area that has
the smallest latitude and longitude value, similarly, tmax is the point
with the largest value. Thus if Errscale is larger than 1, the map
image does not cover the predicted geolocalization coordinates.

We also evaluated geolocalization on a much larger dataset – the
NYPL dataset that contains 500 historical map images. This dataset
does not have bounding boxes information for individual text re-
gions, so we used Google Vision API for text detection and feed the
detection result to the downstream models. Since the number of
map images is large, we could not list the result for each map. We
instead provide the error distribution histogram in Figure 7. The
word-by-word and phrase-by-phrase do not have as many large
errors as baseline word-to-paragraph method. Also, the number
of map images that the model fails to handle got decreased with
word-by-word and phrase-by-phrase method.

3.3 Case Study of Linked Map Metadata
In Section 2.3, we presented the RDF schema adopted for linked-
historical maps, and explained that the structure enables us to
jointly query with other external databases. In this section, we
provide an example of a spatial query using SPARQL and show the
RDF schema graph in XML in Figure 8.

Based on this, we run a query that finds the historical mapswhich
contains mountain(s) higher than 1km. From GeoLinkedData, the
query first select all the mountains and filter out the ones whose
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Dataset Map Name Textual Info. Only Visual and Textual
Prec. Rec. F1 Prec. Rec. F1

USGS
60-CA-amboy-e1942 37.23 100.00 54.26 93.29 56.71 70.54

60-CA-amboy-e1943-rv1943 27.01 100.00 42.53 91.30 59.42 71.99
60-CA-modoclavabed-e1886 29.03 90.55 43.97 94.48 37.85 54.04

OD
103681073 50.12 97.14 66.12 74.52 91.43 82.12
103681079 50.97 97.67 66.98 84.88 91.19 89.29
103681115 62.03 94.94 75.03 87.34 79.75 83.37

Table 1: Linkage prediction result on USGS and Ordnance Survey dataset. We use three images from each test set to compare
the results of using only textual information versus using both textual and visual information.

Dataset Map Name Duplicate Phrases Distinct Phrases # GT
Prec. Rec. F1 Prec. Rec. F1 phrase

USGS
60-CA-amboy-e1942 44.72 63.16 52.36 54.64 57.61 56.08 114

60-CA-amboy-e1943-rv1943 52.45 69.03 59.61 63.43 65.38 64.39 155
60-CA-modoclavabed-e1886 31.28 51.85 39.02 33.33 44.71 38.19 108

OD
103681073 74.54 85.41 79.61 62.50 71.42 66.67 48
103681079 84.00 91.30 87.50 73.91 82.92 78.16 69
103681115 58.33 68.29 62.91 55.31 63.41 59.08 41

Table 2: Phrase prediction result on USGS and Ordnance Survey dataset. Note that the predicted phrases with the exactly
same content and order as the ground truth will be considered as a correct prediction. Duplicate Phrasesmeans the evaluation
considers duplicate phrases in the maps as well. (e.g: "Modoc Lava Beds" may appear twice in the map and we evaluate both
cases.) Distinct Phrases means we remove the duplicate phraes for evaluation

Map Name Wrd2Paragraph WrdByWrd(Ours) PhrasByPhras(Ours) Ground Truth
Lat. Lng. Lat. Lng. Lat. Lng. Lat. Lng.

Pred.
(◦)

60-CA-amboy-e1942 38.57 -121.48 33.94 -116.83 34.25 -116.24 34.50 -115.50
60-CA-amboy-e1943-rv1943 38.57 -121.48 33.97 -116.78 34.24 -116.18 34.50 -115.50
60-CA-modoclavabed-e1886 - - 37.99 -121.80 41.16 -121.54 41.50 -121.50

km scale km scale km scale km scale

Error
60-CA-amboy-e1942 699.89 4.85 137.23 0.95 73.38 0.51 N/A N/A

60-CA-amboy-e1943-rv1943 699.89 4.85 131.60 0.91 68.78 0.48 N/A N/A
60-CA-modoclavabed-e1886 N/A N/A 391.14 2.82 37.95 0.27 N/A N/A

Table 3: Geolocalization result on USGS maps. The upper rows are the prediction results from different methods, and the
bottom rows are the errors deviated from ground truth. We use the Haversine distance in kilometers and in map scale as the
error metric, thus the lower the better. "-" in the entry means no geolocalization result was returned by the model.

elevations are less than one kilometer. Then it checks the seeAlso
predicate and backtrack to the text regions that are associated with
those mountains. At last, our system returns the names of the maps
that overlaps with those text regions.

3.4 Error Analysis
Since geolocalization and entity linking heavily depend on the
result of phrase generation, it is crucial to analyze the errors in
the phrase generation step. In Table 2, we have already shown the
precision and recall of the generated phrases, and we can dig deeper

into that by looking at the cases that caused the error. There are
mainly three types of error: 1) pairwise linkage prediction error that
happens during the text linking step 2) linkage graph generation
error that depends on the method of graph construction 3) element
sorting error for deciding the correct sequence of the text regions
that belong to the same phrase. The first type of error has been
analyzed in previous sections and the second type of error depends
on the graph construction. Thus we analyze the third type of error
in this section. In Table 4, we show the precision and recall for both
unordered word sets (i.e., elements in connected component) and
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Figure 7: Comparison of the histogram distribution for
word2Paragraph [22], word-by-word encoding (ours) and
phrase-by-phrase encoding (ours) on the NYPL dataset. Left:
word2Paragraph; Middle: word-by-word; Right: phrase-by-
phrase. The x-axis denotes the error. It is clear to see that
phrase-by-phrase and word-by-word do not have extreme
large errors compared with word2Paragraph.

Figure 8: Linked historical map in RDF with XML syntax

Figure 9: Sample SPARQL query to retrieve map names that
contain peaks higher than 1km

phrase prediction result. The values in the “Unordered" column
can be seen as the upper bound of the phrase prediction given the
current graph construction setting since it ignores the sequence of
the word in the location phase, which is the same as the perfect
ordering of words. By comparing these two columns, we could

see that our simple ordering method, which sorts according to the
x-axis coordinate works fine for this type of maps, as the difference
between “Unordered" and "Ordered" is pretty small. These two
columns analyzed the third type of error.

Err (km) Unordered Ordered # miss # add #GT

amboy-e1942 46.58/65.79 44.72/63.16 89 0 114
amboy-rv1943 52.94/69.68 52.45/69.03 95 4 155
modoclavabed 31.28/51.85 31.28/51.85 123 0 108

Table 4: Error analysis for generated phrases. In the table,
“Unordered" column shows the precision and recall when
we do not consider the phrase ordering, “Ordered" means
we consider both the words and the ordering for the phrase.
#miss counts the number of errors caused bymissing words,
#add counts the number of errors caused by adding words
and #GT means the number of ground truth phrases con-
tained in the map.

4 DEPLOYMENT
Tavakkol et al. [22] introduce an open-source project, Kartta Labs,
to organize the world’s historical maps and make them universally
accessible and useful. They define a modular design for the project
to let it thrive on a collaborative community development effort.
The current study is done in collaboration with the Kartta Labs
team and with the purpose of being deployed in the project. We,
specifically, design and implement the Geolocalizer and Linker mod-
ules of Kartta Labs. To learn more, see https://github.com/kartta-
labs/Project.

To use our model in production, we plan to deploy it on Google
Cloud Functions, which is an event-driven serverless compute plat-
form. Our Cloud Function deployment runs the model as a service
and makes it accessible through HTTP requests. In our preliminary
implementation, the map images are stored on Google Cloud Stor-
age and each image has been assigned with a URI. The model cloud
function takes the URI of the map image as the input. It then sends
it to the Google Vision API to retrieve the textual information of the
map. The response from the Vision API is preprocessed and sent to
the model for generating location phrases. The generated phrases
are sent to Google Geocoding API. Finally, the geolocation of the
map is determined based on the candidate locations returned from
the Geocoding API. The generated phrases, and the geolocation of
the map is returned to the client in a JSON response which can be
used for downstream tasks such as entity linking.

After successful deployment and productionization, our imple-
mentation will replace the word2paragraph geolocalizer in Kartta
Labs Warper web application. Warper is a web application that
lets the users upload a historical map and georectify it by finding
control points on the historical map and corresponding points on
a contemporary base map. Once the user uploads a map, the map
is sent to the geolocalizer. The base map is loaded according to
the estimated geolocation of the historical map. This lets the user
immediately start the georectification process without the need to
navigate the world map and load the base map in an appropriate
location.
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5 RELATEDWORK
5.1 Text Detection and Text Linking
Historical map processing has attracted a lot of attention in recent
years[2, 4, 12], but the textual information extraction on maps still
remains a challenging problem. Many networks have been devel-
oped to detect and recognize text content from scene images such
as EAST [25] and TextBox++ [13] ; however they do not provide
any information about the relation between detected words. Some
words can be joined together to form phrases. The task of linking
related words can be seen as finding similar features in a hidden
embedding space. Deep metric learning aims to explicitly capture
the similarity among the features and learn an embedding space
where similar features are grouped together, and dissimilar features
are quite far away. Siamese network [8, 21] and Triplet network [9]
are the most widely used structures for the deep metric learning
models. Siamese network computes pairwise similarity and tries
to push the similar pairs closer and dissimilar pairs far away. In
Triplet networks, instead of comparing two feature points, it com-
pares 3-element tuple. Another work that is closely related to text
linking is weakly supervised segmentation [11], where only partial
labels are given. We take advantage of both deep metric learning
and weakly supervised segmentation to generate linking results.

5.2 Geolocalization based on Text Content
Geolocalization of historical map is estimating the location of the
map on Earth. Some work has been done to geolocalize the social
network users based on the text content that the user posted [6, 23],
but not much has been done to geolocalize map images. The work
that is most closely related to ours is [22], which utilized Google
NLP API and Google Geocoding API to produce latitude and longi-
tude coordinates. This work takes in all the location-related words
detected from the map and concatenates them into paragraphs.
The Geocoding API reads the paragraph as input and produces
one location. We proposed word-by-word and phrase-by-phrase
geocoding that takes words or phrases instead to generate can-
didate locations, then further clusters the candidate locations to
produce the geolocalization output.

6 DISCUSSION AND FUTUREWORK
This paper presented an end-to-end approach to generate rich,
linked metadata from historical maps. In addition to the complete
approach that addresses the real-world problem of finding and
indexing historical map images, our contribution is two-fold: First,
we proposed a model to harness both textual information and visual
information to generate location phrases. Second, we designed a
method to geolocalize a map image using the location phrases
generated from the first step. The proposed method constitutes
an important building block for efficient, large-scale information
extraction processing chains from historical map archives. We plan
to investigate sophisticated ontologies to represent the metadata
so that the metadata can support more types of queries and record
important information, such as the provenance information. We
also plan to expand the phrase generation module to automatically
identify the source (e.g., map publisher) and temporal information
from a map image.
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